Ex35 - Page 183

a) First of all, we prove that the image of a connected space under a continuous map is connected (see Theorem 23.5 - Munkres):

\[f: X \rightarrow Y \text{ continuous } \Rightarrow f(X) \text{ connected} \]

Because the map \(f: X \rightarrow f(x) \) (restricts the range) is also continuous, we can assume that \(f \) is surjective.

Now \(f: X \rightarrow Y, \text{ continuous, surjective } \Rightarrow Y \text{ connected} \)

\[X \text{ connected} \]

Suppose \(Y = A \cup B \) a separation of \(Y \)

\[f^{-1}(A), f^{-1}(B) \text{ open in } X \]

\[f^{-1}(A), f^{-1}(B) \neq \emptyset \text{ since } f \text{ surjective and } A, B \neq \emptyset. \]

\[f^{-1}(A) \cap f^{-1}(B) = \emptyset \text{ since } A \cap B = \emptyset \]

and \(X = f^{-1}(A) \cup f^{-1}(B) \) since \(Y = A \cup B \) and \(f \text{ surjective} \)

\[f^{-1}(A), f^{-1}(B) \text{ is a separation of } X \]

Contradiction.

Now come back to the problem:

If suppose \(X \) is arcwise connected but not connected.

\[\exists A, B \text{ s.t. } X = A \cup B, A, B \text{ open, } A \neq B \neq \emptyset, A \cap B = \emptyset \]

Let \(a \in A, b \in B. \)

\[\Rightarrow \exists f: [0,1] \rightarrow X \text{ continuous } \]

\(X \text{ arcwise connected } \) and \(f(0) = a, f(1) = b. \)

But \([0,1] \text{ connected (Ex34) } \Rightarrow f([0,1]) \text{ connected } \) (above fact)

\(f \text{ continuous} \)
\[f([0,1]) \subset X = A \cup B \Rightarrow [f([0,1])] \subset A \]
\[f([0,1]) \text{ connected} \Rightarrow [f([0,1])] \subset CB \]

(I proved in Ex 32)

and this contradicts the fact that \(f(0) = a \in A, f(1) = b \in B \).

Therefore, \(x \) arcwise connected, then \(X \) is connected.

\[g : (0,1) \to \mathbb{R} \]
\[x \mapsto \sin \frac{1}{x} \]

\(g \) continuous (clear)

\[f : (0,1) \to \mathbb{R}^2 \text{ is also continuous} \]
\[x \mapsto (x, g(x)) \]

\((0,1) \text{ connected (Ex 34)} \)

\[\Rightarrow B = \{ (x,y) : y = \sin \frac{1}{x}, 0 < x < 1 \} \text{ is connected } \]

Take a rectangle neighborhood of a point \(E \subset A = \{ (x,y) , x=0, y \in \mathbb{R} \}

(rectangle \sim \text{ circular neighborhood; because they are homeo.})

\[\exists \, n \text{ large enough s.t. } \frac{1}{2\pi n+1} < \varepsilon \]

\[\Rightarrow \frac{1}{2\pi n} \leq x < \frac{1}{2\pi n+1} \Rightarrow x \in (0, \varepsilon) \]

\[\cdots \]

\[\frac{1}{2\pi n+1} \leq x < \frac{1}{2\pi n+2} \Rightarrow x \in (0, \varepsilon) \]
This observation says that when \(x \in (0, \varepsilon) \), \(\sin \frac{1}{x} \) varies from \([-1, 1]\) infinitely many of times.

This says that the rectangle contains infinitely many points of \(\text{graph}(\sin \frac{1}{x}) = B = \{(x, y) : y = \sin \frac{1}{x}, 0 < x \leq 1\} \).

\[\Rightarrow A \subset B. \]

Hence \(X = A \cup B = B \) (input \(X = B \), but we don't need).

Now we have \(B \) connected \(\frac{1}{2} X \) connected (Ex 33 - Improved in Ex 34).

\[\checkmark \]

* \(X \) is not arcwise connected because there is no function \(p : [0, 1] \rightarrow X \)

s.t. \(p(0) = (0, 0) \), \(p(1) = \), \(P \in B = \text{graphg} = \text{graph}(\sin \frac{1}{x}) \)

since \(p : [0, 1] \rightarrow R^2 \) continuous, \(p([0, 1]) \subset X = A \cup B \)

\[\Rightarrow p([0, 1]) \subset B ; \text{ and } \tilde{p} = \text{pr}_2 \circ p \text{ continuous, } (\text{pr}_1 : R \times R \rightarrow R) \]

If \(p(0) = (0, 0) \)

\[\Rightarrow \tilde{p}(0) = \text{pr}_2 \circ p(0) = 0 \]

since \(p((0, 1]) \subset B = \text{graphg} \) and for all \(x > 0 \)

\[\tilde{p}(x) = \text{pr}_2 \circ p(x) = \text{pr}_2(x, g(x)) = g(x) = \sin \frac{1}{x} \]

because \(\tilde{p} \) continuous, \(\forall x > 0 \) then there exist a nbhd \(V \) of \(0 \) s.t.

\[\tilde{p}(x) < \varepsilon \forall x \in V \]

But this is a contradiction since \(\sin \frac{1}{x} \) can receive every value between \([-1, 1]\) in every nbhd of \(0 \) (as we showed above).

Therefore \(X \) is not arcwise connected.

\[\checkmark \]

b) \(\exists x \in G \)

\[\exists x \in G \text{ s.t. } \exists \text{ } f \text{ continuous } : [0, 1] \rightarrow G \]

such that \(f(0) = x \), \(f(1) = y \).

We prove that \(H \) is open, closed, \(\neq \emptyset \). Therefore \(H = G \), since \(G \) connected.

c) \(\exists x \in G \)

\[\exists x \in G \text{ s.t. } \exists \text{ } f \text{ continuous } : [0, 1] \rightarrow G \]

such that \(f(0) = x \), \(f(1) = y \).

We prove that \(H \) is open, closed, \(\neq \emptyset \). Therefore \(H = G \), since \(G \) connected.
\[H \neq \emptyset \quad \text{x} \in H \quad \text{because } f : [0,1] \rightarrow G \quad \text{connects } x \text{ to } x \\

\text{H open}:

\[
\begin{aligned}
\text{let } y \in H \Rightarrow \exists f : [0,1] \rightarrow & \quad \text{s.t.} \\
& \begin{cases}
 f(0) = x \\
 f(1) = y
\end{cases}
\end{aligned}
\]

\[\text{let } B_\varepsilon(y) \subset G \quad \text{(since } G \text{ is open)} \]

\[\text{let } z \in B_\varepsilon(y) \quad B_\varepsilon(y) \text{ is arcwise connected (because we can connect any two points by a straight line - "convex property")} \]

\[\Rightarrow \exists g : [0,1] \rightarrow B_\varepsilon(y) \subset G \text{ cont.} \]

\[\text{and } g(0) = y ; g(1) = z \]

\[\text{Attach } f \text{ and } g \text{ as follow:} \]

\[
\begin{aligned}
h = & \begin{cases}
 f(2s) & \text{s} \in [0, \frac{1}{2}] \\
 g(2s - 1) & \text{s} \in [\frac{1}{2}, 1]
 \end{cases} \\
\text{g(2s-1), f(2s) cont.} \Rightarrow n \text{ is continuous}
\end{aligned}
\]

\[\text{so by Attaching lemma (Munkres)} \]

\[\text{and clearly } h(0) = f(0) = x \]

\[h(1) = g(1) = z \]

\[\Rightarrow z \in H \Rightarrow B_\varepsilon(y) \subset H \]

\[\Rightarrow H \text{ is open} \]

\[\text{H closed: If } y \notin G \setminus H \]

\[\Rightarrow \exists B_\varepsilon(y) \subset G \text{ s.t. } B_\varepsilon(y) \cap H = \emptyset \]

\[\text{(if } 2 \in B_\varepsilon(y) \setminus H \text{ then we can connect } x, z \text{ by } f \text{ (by def. of } H) \]

\[\text{and connect } z \text{ and } u \text{ by } f ; (u, y) \subset G \rightarrow \text{similar to the above proof} \]