The Helgason Conjecture
for non-symmetric domains

Richard C. Penney
Purdue Unwversity

July 20, 2005

Contents

1 Intorduction 1
2 Abstract Asymptotic Expansions 11
3 Invariant Operators 27
4 Explicit Expansions 37

1 Introduction

Let X = G/K be a Riemannian symmetric space and let Dg(X)
be the algebra of all G-invariant differential operators on X. Let
7T C Dg(X) be a co-finite ideal. A C* function F' on X is Z-harmonic
if it is annihilated by every element of Z. For example, if x is a
character of Dg(X) and F' satisfies

XF = x(X)F (1)

for all X € Dg(X), then F' is Z-harmonic where Z is the kernel of .

One of the most beautiful results in the harmonic analysis of sym-
metric spaces is the “Helgason Conjecture”, which states that on a
Riemannian symmetric space of non-compact type, a function satis-
fies 1 if and only if it is the Poisson integral of a hyperfunction over
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the Furstenberg boundary. A companion result, due to Oshima and
Sekiguci, [13] says that the boundary hyperfunction is a distribution
if and only if there are positive constants A and r, (depending on F')
such that

IF(a)] < Aerom) (2)

for all z € X where 7(x) is the Riemannian distance in X from z to
the base point x, = eK.

In this work, we begin work on generalizing these results to gen-
eral connected, homogeneous, Kaher manifolds X. Specifically, we
assume that X = G/K where G is the connected component of the
holomorphic isometry group of X and K is the isotropy subgroup of
a point in X. In this context, we hope to

1. Define a collection G-invariant differential operators F on C*°(X)
to play the role of Dg(X).

2. Define an appropriate boundary for X.

3. Define a distributional “boundary value” for any Z-harmonic
function F' satisfying 2.

4. Define a “Poisson” transform which reconstructs F' from its
boundary distribution.

A result of Dorfmeister and Nakajima [6] (generalizing earlier
work of
Gindikin and Vinberg [8] ) states that the general homogeneous Kéhler
manifold is a holomorphic fiber bundle whose base is a bounded ho-
mogeneous domain in C" and whose fiber is the product of C* with a
compact, complex, homogeneous Kahler manifold. Thus, we assume
that X is a bounded homogeneous domain in C". In this work, we
solve (a)-(d).

Concerning (a), in the non-symmetric case, the group of bi-holomorphisms
can be quite small, in which case the algebra Dg(X) can be so large
that the space of harmonic functions can consist of little more than
the constant functions. In particular, holomorphic functions need
not be harmonic. Hence, to produce an interesting theory we need a
smaller algebra.

In place of Dg(X) we use an algebra of “geometrically” defined
invariant differential operators. Specifically, let T'(X) be the tangent
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bundle for X and let g be the Riemannian form on 7'(X) x T'(X).
Let o
gh6r<Z7 W) = g(Z7 W)

be the corresponding Hermitian form on 7,.(X) where ¢ is extended
to T.(X) by bi-linearity.
Let A()(-) be the torsion free Riemannian connection defined by
g and let
R(U,V)=vVuyVy = VvVy — Vi

be the curvature operator. Then for each k € N, we define sections
wk of (T*)?*(X) by

WXL Y Xp, Ve, X Vi) = (D T (J RIXG, YY) (3)

J=1

It is clear that w* is invariant under any isometry of X. Let Tyeo(X)
be the subalgebra of the full tensor algebra 7%(X) generated by the
Wk k> 1.

Let TY(X) denote the bundle of complex tangent vectors of type
(0,1) and let {Z;};=1., be a (local) frame field for 7% (X) which is
orthonormal with respect to guer.

For f € C*(X) and w € T,e,(X) of degree 2k, we define

Dwf = ZW(Ziu?jla SRR Zik77jk)v2kf(2’il7 Zj17 s 7?%7 Zﬂk) <4>
1]

where V¥ denotes the k-fold covariant derivative of f and i and j
range over the set of multi-indices of length k£ with entries between
1 and n. It is easily seen that these are real differential operators
which are independent of the orthonormal frames and thus define
canonical differential operators which commute with all holomorphic
isometries of the domain; hence, they belong to Dg(X). We extend
this definition to all of Tj.,(X) by linearity in w.

Definition 1. The operator algebra generated over C by the D for
w € Tyeo(X) ts denoted Dyeo(X).

It should be remarked that a given complex manifold may carry
many non-isometric Kéahler structures for which the corresponding
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group of biholomorphic isometries acts transitively. This is true even
if the underlying manifold is bi-holomorphic with a symmetric space.
On a bounded homogeneous domain, the Bergman metric yields the
largest isometry group since all bi-holomorphisms are automatically
isometries. However, the Dorfmeister, Nakajima, Gindikin, Vinberg
Theorem does not imply that the induced metric on the base is the
Bergman metric. Hence, we are forced to consider more general met-
rics, even in the symmetric case. The spaces of operators defined
above are only guaranteed invariant under the holomorphic isometry
group of X which will not typically be the full bi-holomorphism group
unless we are actually using the Bergman metric. Fortunately, this
all causes only minor complications.

Definition 2. By a “co-finite ideal 7, we mean a co-finite ideal of
Dyeo(X). In this case we say that F' € C*(X) is Z-harmonic if it is
annihilated by every element of I.

We use the concept of Z-harmonic as a replacement for the har-
monicity studied in the semi-simple case.

The next question is, “What should play the role of the Fursten-
berg boundary in the non-symmetric case?” There seems, in general,
to be no way of constructing an analogue of the Furstenberg bound-
ary. We can, however construct what, in the symmetric case, is an
open subset of the Furstenberg boundary. Specifically, in general, G
is algebraic and has an “Iwasawa” decomposition

G = ANgK

where A is an R split algebraic torus, Ng is a unipotent subgroup
normalized by A, and K is a maximal compact subgroup. Then
S = ANg acts simply-transitively on X.

We identify X with S.

As an algebraic variety,

S = Ng x (R")? C Ng x R?

where d is the rank of X. Under this identification, Ng is contained
in the topological boundary of ANg. We use Ng as a substitute for
the Furstenberg boundary. In the semi-simple case this amounts to
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restricting to a dense, open, subset of the Furstenberg boundary. We
refer to Ng as the naive boundary.

We prove the following result in the Hermitian-symmetric case.
Our proof carries over to the non-symmetric case. However, in the
non-symmetric case, our operator algebras are non-abelian so the
concept of regular singularities requires some conditions on the com-
mutators of the operators which we have not been able to verify.
(See [10] and [12].) Our techniques do, however, provide an especially
simple way of proving the regular singularity property for Hermitian
symmetric spaces.

Theorem 1. Let X be a Hermitian symmetric space and let T be a
co-finite ideal. There are elements D; € T and elements @Q; € (5),
1 <i < d, such that the system R(Q;)D; has reqular singularities in
the week sense along the walls t; = 0 with edge Ng where R 1is the
right action of S on C*(X) = C*(95).

Without the regular singularity property, we cannot appeal to
the general theory of hyperfunctions to define the boundary values.
Instead, we use ideas due to Wallach [16] as extended by van den
Ban and Schlichtkrull [1] to construct a family of boundary values
on the naive boundary for F. To describe these ideas we require
some notation. Our basic references for the structure of bounded
homogeneous domains are [7] and [15], although we will at times
refer the reader to some of our papers where the results are presented
in similar notation to our current needs. In particular, the summary
given on p. 86-91 and p. 94-97 of [4] covers many of the essentials.

Throughout this work, we will usually denote Lie groups by upper
case Roman letters, in which case the corresponding Lie algebra will
automatically be denoted by the corresponding upper case script letter.

Since the elements of Dge,(X) commute with the left action of
S on X = S, we may consider Dy.,(X) C (S) where the univer-
sal enveloping algebra is identified with the left invariant differential
operators, in which case we will usually set Dye,(X) = Zyeo-

Let 7 C Zy, be a co-finite ideal. Let

J =(8)I C(S) (5)
be the left ideal generated by Z and
P=(S)/(J+(S)Ns)
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Since
(S) = (A) + (S)Ns, (6)
it follows that
P = (A)/(A)N(T + (S)Ns) (7)

In particular, P is an abelian algebra over R which is also an (S)-
module. The following result, which is proved in Section 2, is central:

Proposition 1. P is finite dimensional.

An element A € P* is a root of P if there is a non-zero X € P
such that .
AX = \NA)X

for all A € P. The roots are characters on P. In particular, A is

determined by its lift A € A7. The set of such functionals in A} is

denoted &, and is referred to as the set of characteristic exponents.
Since P is abelian, there is a direct sum decomposition

Pe=> Pa (8)

aefo

where each P, is an ideal in P, and for all A € A

(La= < Aya >)"|, =0 (9)

where n, = dim P, and L4 denotes the action of A on P. The of
« is, by definition, n,. Let ¥ C A* be be the set of roots of A on
Ns—i.e. A € ¥ if and only if there is a non-zero vector X € Ny such
that

A, X]|=<AX>X

There is an ordered basis Ai, g, ..., Ay for A* consisting of roots for
which the root space of ); is a one dimensional subspace M,; of Ng.
All of the other roots are one of the following types

1. Bij = (A — Aj)/2 where ¢ < j,
2. By = (\i + \;)/2 where i < j,
3. \i/2.
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The root spaces are denoted, respectively, (a): S;;, (b): M,;, and
(c): Z;. We let v;; = dim S;; = dim M,; and v; = dim Z;. Note that
some of these dimensions may be 0.
The ordered basis of A that is dual to the basis formed by {\;}
is denoted {A;}. Let
W+ = span . 3.

Then, W7 is an open cone in A* which plays the role of a positive
Weyl chamber. Let

At ={AcA|<AX>>0, AeX}
A= —A*

Finally, let
& = &, + span , (X)

where

Ny =NU {0}
Now for r € R, let

LL(S) = L'(S, e @ dx)

where dz is a choice right-invariant of Haar measure on S and 7(z)
is the Riemannian distance from x to e in S = X. Since S acts on X
by isometries, it is easily seen that

T(zy) < 7(x) +7(y) (10)

for all z,y € S. It follows that L1(S) is invariant under right transla-
tion by elements of S. Let 7, be the right-regular representation of .S
in L1(S). Let H,(m,) (resp. H*(m,)) be the space of analytic vectors
(resp. C™ vectors) for m,—i.e. the space of functions f € L.(S) for
which g — 7,.(g)f extends holomorphically to a neighborhood of e in
the complexification S, of S (resp. is C'™ on a neighborhood of e in
S). Tt follows from Theorem 4 of [11] that H,(7,) is dense in L}(S).

The topology on H,(m,) is of particular importance to us. Let
p(-, ) be some metric on the complexification S, of S which defines
the topology of S, and, for s > 0, let By C S, be the closed p-ball
of radius s centered at e. For each s > 0, let H?(m,) be the set of
v € H,(m,) such that ¢ — m,.(g)v extends continuously to B, and
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holomorphically to the interior of this set. This space is non-zero for
all sufficiently small s. For v € H (m,) let

[o]ls = sup [l (g)v]|
gEBs
where we use the L!(S) norm on the right. Then HZ (7,) is a Banach
space in this norm. Furthermore, for s < t, there is an obvious injec-
tion of H! () into H? (m,) where the norm of the injection mapping
is < 1. The H, () topology is defined by the equality

H,(m,) = Dir lim H? ()
The dual topology is defined by
H_,(m.) = Invlim(H (7,))*

(See p. 155 and p. 174 of [9] for notation.)
Now let F' be Z-harmonic on X = S and satisfy 2. For each
A€ A, let Fy € LL(S)* be defined by

< ¢, Fp >= /ng5($)F($epr) dz. (11)

By restriction, we may also consider F4 as an element of either
H=>°(7") or H_, (7).

The following result is a strengthening of Theorem 3.5 of [1]. The
convergence of this expansion, which seems to be new even in the
symmetric case, is one of or main results. Our arguments are based
techniques of Baouendi and Goulaouic [3]. (In both [1] and [16], only
aysmptotic convergence, similar to (a) below, was proven.)

Theorem 2. Assume that F' € C*(X) satisfies 2 and is Z-harmonic
where I is either a co-finite ideal in Dye,(X) or X is a Riemannian
symmetric space and L is a co-finite ideal of Dg(X). Let s > 0. Then
for each a € &, there exists a unique H_,(m,)-valued polynomial Fy,
on A (independent of s) and a t, > 0 (which may depend on s) such

that
Fa= > ( > Fa(A)e<A’°‘>> (12)

BE<AE> \acl,<A,a>=0

for all A € Ay, |A| > t,, where the convergence is in (H?(m,))*.
(The inner sum is finite and the outer is countable.) Furthermore
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1. For all A and «, F,(A) € H™°(n"). Hence the F,(A) define
distributions on S. Also, for all s € R and A € A~ there is
a finite set Js C &€ such that the following set is bounded in
H—o(n"):

{e™(Fa— ) Fa(A)e™*>") |t e RY}

aer

2. The F, have bounded homogeneous degree. Specifically, for a €
&,, deg F, < n, where n, is the multiplicity of «.

3. Forall A,B € A~

m.(exp B)F,(A)e™ <> = [, (A+ B).

Remark: Since C°(S) C H™>°(n"), part (a) of Theorem 2 implies
that the expansion 12 converges in the sense of distribution valued
asymptotic expansions. Hence, our result implies Theorem 3.5, part
(i), of [1].

In [1], the asymptotic expansions are over AT as A — oo. This
is because they use the parabolic opposite to ours-i.e., they use Ng
rather than Ng. The difference is really just a matter of notation. If
we think of Mg as being in the opposite parabolic, then we should
call the roots —\; rather than );, in which case our A~ becomes their

At

Definition 3. The boundary values of F' are the set of polynomials
F,(A) for a € &,.

According to the preceding definition, the boundary values are
distributions on S x A. It appears that we have made describing the
harmonic functions more difficult in that we have replaced functions
on S with distributions on S x A. It turns out, however, that each
boundary function is uniquely determined by a distribution on the
C° sections of a finite dimensional line bundle over Ng.

To describe this, let F' satisfy the same conditions as F,, in con-
ditions (b) and (c) in Theorem 2. For n = n,, let W, be the space
of polynomial functions on A of total degree < n and let p, be the
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representation of A in W,, defined by right translation. F' defines an
element of H=>(7") ® W,, which is the dual space of H*(7") ® W.
The covariance condition becomes

o (a)F = pu(a™)F (13)

for all @ € A. (With obvious abuse of notation, we denote m, ® I and
I ® p, by 7, and p,, respectively.)
Formally, for ¢ € C°(S) @ Wi,

<¢,F>:/S<¢(a:),F(x) > du
_ /N S /A < d(na), F(na) > dadn (14)
_ /NS < Té(n), F(n) > dn
where

To(z) = / pr(@)(za) da (15)

and p; is the contragrediant representation to p, in W. Then

Té(za) = p,(a~")Te(a).

Hence, T'¢ is a section of the homogeneous line bundle L, over Ng
defined by
L,=(SxWH/A

where the A-action is defined by
(z,p)a = (za, pj(a™")p)

As is well known, and easily shown, 7" maps C2°(S,W,) onto the
space ['°(L,) of C*, compactly supported sections of L,,. These
calculations suggest the following proposition.

Proposition 2. For any F' € H™>°(7")@W,, which satisfies 13, there
is a unique element TF € T2 (L,)* such that for all p € C2°(S)@W,

< ¢, F>=<T¢,TF >
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Proof For the functional TF to be well defined it suffices to show
that T'¢p = 0 implies < ¢, F >= 0. If F' is a function, this follows
from 14. The general case follows by convolving F' on the left with
a 2 approximate identity. The continuity of TF is due to the
observation that kernel of T' is a closed subspace of C3(S,W,). O

It is clear that I'°(L,) = C°(Ng) ® Wi, Hence, I'®(L,)* =
D'(Ng) @ W, implying that each boundary function is uniquely de-
termined by a finite family of distributions on Ng.

In the Hermitian symmetric case, our boundary values are the
restrictions of those of [1] to the naive boundary. In [2] it was shown
that in the Hermitian symmetric case, the function F' is uniquely de-
termined by the restrictions of its boundary values to any open subset
of the Furstenberg boundary. It is a consequence of our convergence
result mentioned above that the same holds in the general case for re-
strictions to the naive boundary. As in the symmetric, case we require
all of the boundary values. (For the Furstenberg boundary, there is
a distinguished boundary distribution that uniquely determines the
solution. This, however, is not true for restrictions to open subsets
of the boundary.) We also describe an algorithm for reconstructing
all of the F,, from the boundary distributions. From the convergence
result mentioned above, this then reconstructs F', producing a kind
of Poisson transformation.

2 Abstract Asymptotic Expansions

Here we prove the existence and convergence of general asymptotic
expansions. The existence, but not the convergence nor the bound-
edness of the degrees, was already proven in [14].

Let V be a locally convex, topological vector space space over C.
For r € R, let C, be the set of F': (—00,0] — R such that

{e ™ F(t)|t € (—00,0]} (16)

is bounded in V. Let
C=uU,C,

Let I C C be countable. An exponential series with exponents from

I is a formal sum 3
F(t) =) €e'F(t) (17)

yel
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where F), is an V-valued polynomial. If I is finite the above sum
(which is now an element of C) is referred to as an exponential poly-
nomaal.

Let F be the family of finite subsets of I, directed by inclusion.

Definition 4. Let F' € C. Given a topology T on C, we say that the
exponential series 17 equals F(t) in T if

F(t) = £1EH% e E (1)
yedJ

where the limit is in the sense of nets.

The two topologies of interest are
1. The topology of point-wise convergence.

2. The locally convex TVS-topology for which the spaces C, form a
base of neighborhoods of 0. We refer to this as the asymptotic
topology. Convergence in this topology is called asymptotic
convergence. It is a T} topology.

d
Let D = I We consider a differential equation on C of the form

P(D)F(t)=NF(t)+ G(t) (18)
where:

1. P is a polynomial of degree d.
2.

k
N =) "N, (19)
i=1
where the NN; are continuous linear operators on )V and
re 3; >b>0

forall1 <i¢<k.

3. G is a exponential polynomial with exponents from & C C.
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Note that under these assumptions,
N:C. — Cryp (20)
We factor P(D) as
P(D)=(D—a1)(D—az)...(D—ay) (21)

where some of the roots may be repeated. Let a; = re «;. We assume
that the «; are ordered so that

a; < Giqq-

Let
]:{Oé—i-Zﬁjkj|OZESOU51,/€]'EN0}
J

where

E ={a,...,aq}.

Theorem 3. Let F' € C satisfy 18. Then F has an asymptotically
convergent expansion with exponents from I. Furthermore, the F,
have degrees bounded independently of «.

Proof From Corollary 1.7 of [14], it suffices to show that for all r
there is an exponential polynomial F, with exponents from I such
that ' — F, € C,.

Let A2 be the integral operator on C defined by

t
AN(F)(t) = eat/ e “F(r)dx
0
It is easily checked that A2 is a right inverse for D — o and
AN C—C,, (22)

where r, = min{r, re a}. Let
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Then, A is a right inverse for P(D) and
AD . — ¢, (24)

where 7 = min{r, a; }.

Let Hy = AONF. Then from 18
P(D)(F —Hy)=NF -NF+G =G
Hence
F—Hy=A9G+F,=H, (25)

where P(D)F, = 0. Thus, Fy, A©)G, and, H; are exponential poly-
nomials with exponents from 1.
We write equation 25 as

(I —AON)F = H,

Let

so that
F—F, = (AON)"E

F, is an exponential polynomial with exponents from . Also, from
24 and 20, for r +nb > ay,
F=F—F,eC,.

Note that

where )
G=NF,—P(D)F,+G
is an exponential polynomial. Equation 27 has precisely the same

form as 18. Hence, we are reduced to the case where F' € C,,.
For r > re «, the operator A, defined by

t

AL (F)(t) = eat/ e “F(x)dx (28)

—00
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maps C, into itself and is the (two sided) inverse of D—« on C,. Also,
from 20, for r > rea—b

AN :Cp — Crp. (29)

We repeat the argument leading up to 27 with A©® replaced by
A® where

i d
A =TT TTA2) (30)
1 i+1
Note that from 24 and 29, for r > a;,
A C =, (31)

where 7; = min{r, a;1}. In particular, AV NF is defined since F €
Ca,. Precisely as before we are able to replace 18 with a similar
differential equation where F' € C,,.

We continue, using each of the operators A® in succession, even-
tually reducing to the case where F' € C,,. In this case, the asymptotic
series is produced by 26 with A replaced by A, The boundedness
of the degrees follows from the observation that A, preserves degrees
of exponential polynomials. O

For future reference, we note the following lemma:

Lemma 1. If F satisfies 18 where F' and G both belong to C, then
F™ ¢ C,, for all n where r, = min{r, re oy }.

Proof
Suppose that F' € C, is such that P(D)F = H € C,. Then

F=A"H+K
where P(D)K = 0. In particular, K is an exponential polynomial

with exponents from the «;. Hence

d
(D—a1)(D—a)...(D—ap)F = [] (A%)H + K
i=k+1
where K, is an exponential polynomial with exponents from the «;. It
follows easily by induction on k that F*) € C,, for 0 < k < deg P(D).
Our result now follows by repeated differentiation of 18. O
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Remark: We can actually generalize Theorem 3 to apply to equa-

tions 18 where .
N=> e"P(D)N
i=1

where the P; are polynomials. In fact, suppose that F' satisfies such
an equation where F' € C,. Let F': (—o0,0] — C, be defined by

F(t)(s) = F(t+s)
Then F satisfies

P(Dy)F(t) Zeﬁzt Bis P.(Dy)N;F(t) + G(s)

where G is a C, valued exponential polynomial. Hence, the more
general result follows from Theorem 3. We leave the details to the
reader as we don’t require the more general result.

Next we define a “Poisson transformation” for 18 with G = 0. For
the remainder of this section, we assume that there is an increasing
family of Banach spaces (V(s), || -||s) for s € RT, with continuous and
dense, injections, such that

VY = Invlim V(s).
For example, if V(s) = H® (m,), then V = H_,(m,). (See the dis-

cussion below 10 for the notation.) The theory also works, with only
slight modifications, for inverse limits. We do not, however, require
this case.

We say that an operator N : )V — V has degree < d if for all
0<a<u<wv<b N:Vu — V), and there is a constant
Cn(a,b) such that

Cn(a,b)

[Nwll,, < WH wllu (32)

for all w € V(u).
Assume that I satisfies 18 with G = 0. We assume also that

degreeN; < d
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for all @ where d is the degree of P(D). By definition, the Poisson
transformation maps the F,, a € &,, into F'. We showed in [14] that
asymptotic expansions may be differentiated term-by-term. Substi-
tution of 17 into 18 and equating terms with the same exponent shows
that

PD)(EF (1) = Y NiFya (1), (33)

Let a € £ have re a minimal with respect to F,, # 0. Equation 33
shows that
P(D)(e™F,(t)) = 0.

Hence, « is a root of P. Let the distinct roots of P be a7 ..., a; so
a = &; for some j.

Then deg Fi, < n; where n; is the multiplicity of &; as a root of
P. Let the &; be ordered so that re &; < re ¢; for ¢ < j. For each
multi-index n of length k, let

v(n) =a&; +nifr+ -+ B

Given a V(s)-valued polynomial H, we inductively define for each
n € Z* a polynomial H, (which also depends on j through v(n)) by
the stipulations

1. Hy(t) = H(2).

2. H, = 0 if any of the components of n are negative.

P(D)(e"™'H,)(t) = "™y " N;H,_,(t) (34)

=1

where e; is the ith standard basis element in R.

4. If for some n # 0, y(n) = a; € &,, then
D™ (™ H)(0) =0 0<m <mny
where ny is the multiplicity of aj as a root of P.

We remind the reader that No = NU {0}.
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Proposition 3. Conditions (1)-(4) uniquely determine polynomials
H,, which are valued in V(u) for all w > s. Furthermore, for all
u > s, there is a t, < 0 such that

T(H)(t) = M H,(t) (35)

nEng

converges in the V(u) topology for t < t,. If P(D)(e?™!H)(t) = 0,
then 7/ (H) is a V(u)-valued solution to 18 for t < t,.

Proof
Let
PY(D) = P(D+a)=e *P(D)e™

Equation 34 can be written
P"™(D)H, = Q,

where @), is may be assumed (by induction) to be a known polyno-
mial, valued in V(u) for all u > s.

If v(n) ¢ &,, then P"™ (D) has trivial kernel in the space of
polynomials. Hence, in this case, P(D)"™ maps the space of polyno-
mials of a given degree invectively onto itself. Thus equation 34 has
a unique solution H, in the space of polynomials. It is clear that H,
is valued in V(u) for all u > s.

If y(n) = &; € &, then

P™(D)=D"D,

where D, is bijective on the space of polynomials of a given degree.
It follows that 34, together with condition (4), uniquely determines

To prove convergence, for r € R, let C(u), be the set of
F € C®((—00,0],V) for which the set 16 is a bounded subset of
V(u). For such F, we define

[Flur = sup e ||F ()]

te(—00,0]

Let n, € NE be such that re y(n) > re a; for all |n| > n, where
n € N} and |n| = Y n;. (Note that due to the ordering of the roots,
this implies that re y(n) > re @; for all i.) Let

K, (t) = ot g (t).
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Then Ky € C, where r = re y(n,) and equation 34 implies that

k
Ko(t) =Y AINeM K, . (t). (36)

=1

For g € Ny, let
p(q;u,8) = sup [ Ky ||y

In|=q

Lemma 2. For alln € Ny and all 0 < u, < u < v < v,,

elC(ug, v5) \ "
p(n,u,r+nb) < K (m) p(0,v,7)

where

C(to, ) = Z Cn; (Uo, Vp)-

and K is independent of u, v, and n.

Proof
For simplicity of notation, we let C'(u,,v,) = C. It is easily seen
that for re « = a and r > a,

(A0 ||ur < (1 — a)_lnF”u,T'
Let m = re ;. Then for r > m,
HA(d)F“u,T <(r-— m)_d“FHu,T'

Let 0 < u, <u <wv <, be given. It follows from the preceding
equality that

CN, (u07 UO)

ADNEPYF |y <
||< e ) ‘|’+b_(7‘—m—i—b)d|u—v|

Al Ellor (37)

We apply this inequality to 36 with v replaced by u + € where
e = (v —u)/n, and r replaced by r + (n — 1)b, finding

Cnd

Pl ) S e = ) o) — o]

n—1,u+er+(n—1)b)
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We repeat n — 1 more times, with (u,v) replaced by (u+ ke, u+ (k+
le), k=1,2,...,n— 1, finding

C )n n™T((r —m)/b)?
bllu—v|?) T'(n+(r—m)/b+1

p(n,u,r +nb) < ( )dp(O,U,T)

Our lemma follows from Stirling’s formula. O

The convergence of the series 35 follows since for all ¢t < 0,
€™ Hy (8] < e p(|n], u, 7+ |nb)

That 7/(H) is a solution to 18 follows since a series such as 17
satisfies 18 if and only if 33 holds. O

Remark: The G = 0 assumption is made only for convenience.
In fact, suppose that F' satisfies 18 with G a non-zero exponential
polynomial. Then there is a polynomial () such that

Q(D)P(D)F = Q(D)NF.

The reasoning from the remark following the proof of Theorem 3
allows us to reduce to the case of Theorem 3. Again, we leave the
details to the reader as we don’t require this generality.

The following theorem, together with the uniqueness of the asymp-
totic expansions, implies the convergence of the asymptotic expan-
sions in the topology of V(s) for all s > 0. In the case of direct limits
this implies convergence in V since the injection of V(s) into V is
continuous.

Theorem 4. Let F' € C, satisfy 18 with G = 0. Then for 1 <i <
there exist unique V-valued polynomials H; satisfying P(D)(e®"H;)(t)
0 such that for for all s > 0 there is a t, (depending on s) such that
in the V(s) topology

F(t)=) ' (H))(t)

Jj=1

for allt > t,. Furthermore, deg H; < n;, where n; is the multiplicity
of &; as a root of P.
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Proof

Let re a be minimal with respect to F, # 0. Then, as noted
previously, &« = &; is a root of P and P(D)(e*F,)(t) = 0. Let
H, = F,. Since H; € V, H; € V(s) for all s > 0. Fix s > 0 and set

Fy(t) = F(t) — =/ (H1)(t)

Then, for sufficiently large ¢, F} is a V(s)-valued solution to 18 such
that (F1)s, = 0. We repeat this argument [ times, producing H; such
that

I
F=F=> /(H)
j=1
is a V(s)-valued solution to 18 with all of its boundary functions zero.

The following lemma shows that then F; = 0, proving our theorem.

Lemma 3. Suppose that F' € C,, satisfies 18 with G = 0. If F, =0
for all a € &,, then there is a t, such that F(t) =0 for all t <t,.

Proof 1t follows by induction from 33 that F,, = 0 for all a. Then
Theorem 3 implies that F € C, for all » € R. Since A is a left
inverse for P(D) on C, for sufficiently large r, we have

F=AYNF

Thus
F=(AYN)F

for all n € N. Reasoning as in the proof of Lemma 2 using 37, we see
that for all 0 < u, < u < v < v,,

" e?C (g, V) "
Il = AON) s < 5 (S22) o)

Our lemma follows by letting n tend to infinity in
[E@)]l. < e(r+nb)tHFHu,r+nb

O

The following result follows from Theorem 3 and the uniqueness
of the asymptotic expansions.
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Theorem 5. Assume that F' € C, satisfies 18 where the N; in 19
have deg N; < deg P. Then for all s > 0 there is a t, < 0 such
that the expansion from Definition J converges pointwise in the V(s)
topology for all t <t,.

Next we consider multi-variable expansions. By a V-valued expo-
nential series on R™ with exponents from & € C" we mean a formal

sum of the form .
F(t) = 32 R (1) (39)

ve€

where the [, are V-valued polynomials on R". If £ is finite, then
F(t) is an exponential polynomial.
Let 8 € R". We say that F' € Cs if

{e P'F(t) |t € (—o0,0]"} (39)

is bounded in V. We say that F' € C7° if for all multi-indecies j of
length n,

D'F =D}'Dj} ...D’"F € Cs. (40)
For 3 and v in R", we say
G-
if, for all i, 3; > ;. If B C R" is finite, we define inf B, to be the
vector ¢ where ¢; = min{b; | (by,...,b,) € B}.

Suppose that ' € C3. We say that a series as in 38 is an asymp-
totic expansion for F' if for all 7 € R™, there is a finite subset £(y) C &
such that

F—-F"eC,

where F7 is the sum in 38 with &£ replaced by &(7).

Proposition 4. Suppose that I’ € Cg has an asymptotic expansion
as in 38. Then both the subset £ and the polynomials F., are uniquely
determined.

Proof
Our Proposition clearly follows from the following lemma.

Lemma 4. Suppose that F is an exponential polynomial as in 38
where F' € C,. Then F, =0 for all v > re a.
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Proof Let U be the set of X € (—00,0)" such that X - o # X - 3 for
all a, 8 € €. Since & is finite, U is an open, not necessarily convex,
cone. For X € U,

G(t) = F(—tX)
is an exponential polynomial on (—oo, 0] with exponents from —X -&
which belongs to C_x.,. Since X € U,

G_xa(t) = Fo(—tX)

foralla € €. Fory > re aand X € (—00,0)", =X -y > —X - re a.
Hence, G_x.,(t) = 0. Our lemma follows since a polynomial which
is zero on an open subset is zero. [

Let the general variable ¢ € R™ be t = (t1,...,t,) and let D; =
d

T We assume that F' : (—00,0]" — V satisfies a system of differ-
enjtial equations of the form

Py(D;)F(t) = NiF(t) + Gy(t) (41)
for 1 < j < n where:

1. The P; are polynomials of degree d; > 0.

2. For 1 <j <n,

k
N, = Z et Bii Nij (42)
i=1
where the N;; are continuous linear operators on V and 3; ; =
( i{j, ..., 0;) € C" satisfies

re ﬁffj >b>0
where b is independent of 4, j, k.

3. The G; are exponential polynomials in ¢ with exponents from

& eCn.

~ We factor P; as in 21 where the «; corresponding to P; are denoted
. We assume that for each j, the o] are ordered so that re o] <
re o), for all i. Let
re ol 1 <i<d;

al = g 43
J oo 1> dj ( )
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We also let
i (i i i
a' = (aj,ay,...,a,).

Let £J be the set of roots of P; and let
E =& x...&cC
I = {CY—l- Zﬂ”kw ’ (NS Sougl,kij € No}
J

Let A% and AJ be, respectively, the analogues of the operators
A% and A, from 22 and 28 defined by integration in the jth variable.
The analogs of the A® are the operators defined by

i d;

A =TI TT o). (44)

[0
P

where 1 < ¢ < d;. For i > d;, we set Ag.i) - Ag.dj).
A is defined on Cz for all § while A is defined on Cy for
aj, X

B; > re ai. Hence Ag-i) is defined on C3° as long as

B> rea), 1<k<i (45)
We also let ' ‘
Al =1 AVP(D;) (46)
and
N = AN = APAIN, — - — ADAIAL AL N,

Note that for ¢ > d;, A; =0.
Since on its domain, A is a two-sided inverse for (D; — o), for
1 < dj,

J T
where
dj
A =TT @
h—itl "
and
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Thus IBJ(D])A; = 0. Hence, if H € C3° where (3 satisfies 45, there
are constants ¢y (independent of H) such that

d; dj—i—1 _
ASH(E) = > Y cpm D H(H)eb. (47)
k=i+1 m=0

where t/ = (t1,...,t;-1,0,t511,...,t,). It also follows that A} is
defined on C3° for all 8 and for ¢ < dj, A; : C5° — C° where

Y= (/817'--;ﬁj—laa;’—"_l)ﬁj—l?"'7/871) (48)

For the next lemma, let 1 = (1,1,...,1) € R®. We remind the
reader that for i > d;, a’ = co. (See 43.)

Lemma 5. Let § € R" and i € N be such that 3; > re ai for
1 S k S 1. Then ]VZ . C’go — C’(;o where v = 1nf{/6+ bl7ai+1}‘

Proof This all follows easily from the observation that N; : C5° —
C31p1 along with 45, 31, and the comments following 47. O

Theorem 6. Let ' € C3° satisfy 41. Then F has an asymptotic
expansion with exponents from I.

Lemma 6. Let E; = P;(D;) and let (3 satisfy the hypothesis of
Lemma & with respect to i. Then on CZ,

E;N' = N; + MY (E;N, — E\N;) + N AV (E;Ny — E,N;) + ...
+ AL AL AV (BN — B N)
Proof For j =1, our lemma claims that £y N* = N; which is clear
from FyAl = 0 and E;AY) = I. Thus we assume by induction that

our result is known for all £ < j.
Using E;A% = 0 and EjAg.Z) = I, we find

EiN' = AVE;N, + AYALE;N, + -+ AV ATAY AL BN,
+ AJA, . AN
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If we replace A} | with I — ASZElEj_l and combine the last two
terms, we obtain

E;N' = AVE;Ny + AYALE;Ng + -+ AV LAY AL BN o+
AIAY AL NG+ AN AL AW (BN — BjN)

The last term on the right is as required for the lemma. The sum of
the other terms equals

Ej(APNy + AP AN, + -+ AP ALAL AL N o
AVAIAL . AL,N;)
This has the same form as that described in our lemma except that
the terms corresponding to the j — 1st variable are omitted. We

use the inductive hypothesis to simplify this expression, proving the
lemma. O

Corollary 1. Let I' € C5° satisfy 41 where (3 satisfies the hypothesis
of Lemma 5 with respect to i. Then G = (I — N*)F is an exponential
polynomial.

Proof Since N;F = E;F — G}, it follows that (E;N; — E;N;)F is
an exponential polynomial. Hence, form Lemma 6, for each j, H; =
P;(D;)N'F is an exponential polynomial. Let

G=G-AN"H - APAH, — ..
CAOAINY A,

it follows easily from the following lemma that G is an exponential
polynomial, proving our corollary. O

Lemma 7. For all 1 <i<mn, P(D;)G = 0.
Proof Using the observations

P(D;)H; = P(D;)H;
P(Di)A; =0
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we see

P(D;)Gy=H; — (I — A(l))Hi - (I - Ag)A?Hi e
— (I =AY DAY AY JH — AJAY LAY Hy =0

proving the lemma. O
We set .
F, =) (NG (49)
k=0
so that

F—F,=(N°)""'F.

Note that F), is an exponential polynomial. It follows from Lemma 5
that for sufficiently large n, F' — F,, € C¥. Then F' — F), satisfies a
similar system of differential equations as F', allowing us to assume
that F' € C37. In this case G; = F' — N;I' € Cy.

Now we repeat the preceding argument using N! instead of N°.
This is allowed since now F, P(D;)F, N;F and G; all belong to the
domain of Agl). We conclude that there is an exponential polynomial
F,, such that F' — F,, € C5. We replace F' by I' — F,,, and continue
the argument.

Once we reach the point where F' € C2, then the proof is finished
just as in the one variable case. O

3 Invariant Operators

We begin with a few observations concerning the structure of homo-
geneous domains. We assume the notation from the introduction is
still in force. Let Q C S, be the set of complex tangent vectors at e
of type (1,0) i.e. Q is the Lie algebra of left invariant vector fields
which annihilate holomorphic functions. Let J : & — S be the op-
erator whose +i eigenspaces are Q and Q respectively. Thus, J is
the complex structure on § corresponding with the identification of
S with D.
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It is known that
J: ’Sij — Ml'j
where the notation is explained below Proposition 1. Let S, M, and
Z be, respectively, the spans of the S;;, M;;, and Z;;.
Since the Hermitian structure on X is invariant, it is determined
by a Hermitian product H on S. Let ¢ = re H. Then g defines a

real scalar product on § which defines the Riemannian structure on
X. The Kahler form on X is then defined by

o(X,Y)=g(X,JY).

The Kahler assumption is equivalent with the statements that ¢ is
J-invariant, skew-symmetric, and closed—-i.e.

¢([X7 Y], Z) - ¢([X7 Z],Y) + ¢(X7 [Y, Z])
For X € S, we define
X[ = Vy(X, X)

Many of the results in [4] were based on the assumption that there
is a linear functional v such that for all X and Y in S,

o(X,Y) =< [X,Y],v > (50)
The following lemma is certainly known, although we lack a reference.

Lemma 8. The functional v described above exists.

Proof For each i we let E; = —JA; € M,;;. Then

Let

E=YE

1
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Then

JE:ZAZ-.

1
It follows that

ad JE|, =0
ad JE| =1, (52)
ad JE|Z =1/2.

We define v to be zero on Z and S and,
< M,v>=g(M,E)

for M € M. We claim that formula 50 holds. To see this, consider
first the case where X € S and Y € M. Then [X,Y] € M so

<[X,Y],v>=g(X,Y],E)
- _¢<[X= Y]? JE)
= _(b([Xa JELY) - ¢<X7 [Yv JE]) = ¢(X> Y)

as desired.
The equality for X and Y in Z is similar.
For X and Y in M, we must show that ¢(X,Y) = 0. However,

¢(X7 Y) = ¢([JE7X]’Y)
= (b([JEvY]vX) +¢(JE7 [X7Y]>
= ¢(Y7X)

which must be zero due to the skew-symmetry of ¢.
It follows from the J-invariance of ¢ that ¢ is also zero on § X §
which is consistent with our definition of v. O

Let g be the projection to Q along Q. For each Z € Q, we define
an operator M(Z): Q — Q by

M(2)(X) = mq([2, X]).

Then
VX = M(Z)(X).
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(See the discussion following formula (1.7) in [4].)
Since the connection is real, it follows that

VxZ =M(X)(2),

where

M(X)Z =M(X)Z.
From Theorem (1.9) of [4], on Q, for Z and W in Q,

R(Z,W) = —-M*(Z)M(W) + M(W)M*(Z) (53)
— M (M(W)Z) = M(M(Z)WV)

where M*(Z) is the adjoint of M(Z) on Q with respect to the Her-
mitian form. B

For X € S, let X =X —iJX € Qand X2 = X2 € Q. Then
Q:SQ. LetA:alAj—i—---—i—adAd.

Lemma 9. For Ac A,

ol 1
M(AQ)XQ = §(aj + ak)XQ X e Sjk + Mjk
ol 1
M(A®)X© = §an9 X ez
Proof Let JA=M € . M;;. Let X € Sy andlet Y = JX € M.

Then, since the span of the M is abelian, we have (mod Q)

— [A+iM, X +iY] — 2i[A+iM,Y]
= —2[AY] = —i(a; +a,)Y
1

= i(aj +ap) (X — 1Y)

proving the first equality for X € S;;. The equality for X € M,;

follows from the complex linearity of M (Z). The second equality is
a similar argument. O

Proposition 5. For A e A
R(A2,AX? = —(a? +a)X% X €S+ My
R(A9 AYXC = —a2X°? X € 2
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Proof From Lemma 9, M*(A9) = M (Ag). Hence, our proposition
follows from formula 53 and Lemma 9. O

For X € (S), we let 6(X) € (A) be the (A) component in the
decomposition 6. Then

§(X) = CpAp Al Ay
k| <l

where k = (ky,ko,...,kq) is a multi-index of length d and |k| =
ki + -+ 4 kg. The minimum value of [ for which such an inequality
holds is referred to as the A-degree of X and is denoted deg,(X).

Let

| Ai]
We identify A with R? via the orthogonal mapping

E;

(xl,...,xd) —>$1E1+"'+Qded.

For | > deg4(X) we define the symbol 0;(X) to be the polynomial
on A
ol(X)(A) =D Cralfralr . aje.
k| =1
(If I > deg4(X), 0y(X) = 0, while 0;(X) is undefined if [ < deg4(X).)
Let w € Tyeo(X) have degree 2k. We identify D* from formula 4
with an element of (S). Our first goal is to compute o(D%).

Proposition 6. Let w € Ty.,(X) have degree 2k. Then
ok (D¥)(A) = 27w (A2, A2, A%, A°)

Proof The spaces S;;, M,;, and Z; are all mutually orthogonal.
(See [4].) Furthermore,

H(E® ES) = g(E;, E;) + g(JE;, JE;)

i)

We may choose an orthonormal basis Z; for P such that

1. Z;=2"2E% for 1 <i < d.
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2. Z; € (Ng), for i > d.
Let Wy, Wy, ..., Wy, € P. The differential operator
f= VW, Wa, oo, Wy, W)
is degree 2k with leading term
L=WWy.. Wap_1 Way.

If W; € (Ng), for any i, then L € (S.)(Ns). and oo (L) = 0.
Hence, only those terms in 4 where all of the Z;, equal ES can con-
tribute to oo (D).

Thus, assume that the operator L above is such that W; = 2~/ ZEE

for all j. Since JE; € N, the leading part of §(L) is 27 *FEi, Fiy ... E;,, .
Finally, from formula 4

O-Qk(Dw)(A) :2_kz EQ EQ .. EQ ~-7E3%)$z‘1$j1---xikxjk

117 g1 (2R

which is equivalent with the stated formula. O
For the sake of the next proposition, we remind the reader that

Vij = dim Mij = dim Sij and Vv, = dim Zz

Proposition 7. Let D¥ = D*" where w* is as in 3 and let A =
a1A; + - +agAy. Then

o9 (DP)(A) = 27K( Z vij(a; —I—a by Z )

1<i<j<d 1<i<d

Proof This follows immediately from Propositions 5 and 6. O

Next we consider a general co-finite ideal Z.
If 7 is an ideal in Z,, then we will (without comment) set

J=(8T
K=J+ (S)NS

Note that K is an algebra since (S)Ns is an ideal in (S). In the case
of Zyeo, we will denote K by Koo and J by Fyeo.
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Now let Pol(A) be the space of polynomial functions on A. For
any subset V C (S), let

V =span {ox(X) | X € V, 04(X) defined}.

Then K is an ideal in Pol(A) since, if X and Y are elements of (S)
of A-degrees k and [ respectively, then

O']H_l(XY) = O'k(X)O'l(Y)
Since o factors through ¢, it is clear that 7 is co-finite in fgeo.
Proposition 8. 7 is co-finite in Pol(A).

Proof We consider first the case where 7 = 7., so that 7 contains
all of the elements ao,(D*) from Proposition 7. Let

m = Zyij = dim M

1<j
d

f= Zl/i =dim Z
1

Let A;; = a? + a?. We embed A into R/*™ using the mapping ¢
where

p(A) = (a3,...,a3,a3,...,a3,...,a5...,a3,

54
A117"'7A117A12a'"7A127"'7Add7"'7Add) ( )

where we only use the A;; for i < j, a? is repeated v; times, and and
A;; is repeated v;; times. Then for t = ¢(A)

oa(DF)(A) =7 + 15+ -+ th .,

Let Qk(t) be the polynomial on the right side of the above equality.
The Qr, 0 < k < f + m, generate the algebra of all symmetric
polynomials on R¥*™. (See [5], pp. 2-4.) Hence Z,., contains all
polynomials p o ¢ where p is an arbitrary, non-constant, symmetric
polynomial.

The elementary symmetric polynomials S;(t) in f + m variables
are defined by the equality

J+m f+m

[[@+t)=>" Spimr(t)a* (55)

=1
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Letting x = —t; in 55 shows that

f+m—1

(=) = = Y (D) S e (01 (56)

k=0

Composing with ¢ and choosing 7 so that t; = A;; = 2aj2.j shows that
aJQ-(Hm) € Jyeo- Hence, the monomials a*ay? . .. ag", n; < 2(f +m),
span Pol(A)/Jye0, proving our proposition in this case.

To prove the general case, suppose that Z is a co-finite ideal of
Zyeo. From 56, for all [ > 2(f + m), there are polynomials Pilj such

that
f+m—1

ai= " Pl(S106,....Smpr0p)al (57)

k=0
Since fgeo/f is finite dimensional, ~the Zfilj(Sl 0 @,..., 450 0)
span a finite dimensional subspace of Zy.,/Z. Hence, {a} |1 < j <

d,l > 0} spans a finite dimensional subset mod J. In particular, for
each j there is an [ such that

-1
aé = ZCkaf mod J
1
for some scalars C. Our proposition follows as before. O

Corollary 2. For any homogeneous, symmetric polynomial p in f+m
variables, there is a polynomial P and a k € N such that

pod=ox(P(D',...,DI*™)).
Proof Let p be homogeneous of degree ¢q. Choose P so that
p=PQ1,...,Qpsm)
Since the @; are homogeneous of degree i,
P(t)=>_Ct'
where i = (41, ...,%74m,) ranges over a set of multi-indices such that

i1+ 2+ -+ (f+m)ifem = q.
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Then,

agq(P(Dl, cly Df+m)) = 094 (Z Ci(Dl)il o (Df+m)if+m>
= P(O’Q(Dl)7 PN ,O'Q(f+m)(Df+m>>
:P<Qlo¢7"'>Qf+mo¢)
=po¢

as desired. O

We grade (S) by degree. For any V C (S) we let V), be the set
of X € V with deg(X) < I. We say that an element X € (S) is
non-expansive if deg(X) = deg(d(X)). Note that the product of two
non-expansive elements is non-expansive. We say that a subspace
YV C (S) is non-expansive if it is spanned by a (possibly infinite) set
of non-expansive elements. It is clear from Proposition 7 that the D*
are non-expansive, implying that Z, is non-expansive.

We say that a not necessarily co-finite ideal Z C Z,,, is N-co-finite
if it satisfies the conclusion of Proposition 8. It turns out that the
general theory we will develop requires only that Z be AV-co-finite and
non-expansive. The ability to work in this generality is important due
to the following lemma, which allows us to replace a co-finite ideal
by a non-expansive, N-co-finite one.

Lemma 10. Let T C Iy, be a co-finite ideal. Then there is a N -co-
finite, non-expansive, ideal 7, C Z.

Proof From Lemma 2, there are non-expansive elements Ej € Zge,
such that

oo(Ex) = Sk o ¢

for 1 < k < f+m. From the co-finite condition, for each k there is a
non-zero monic polynomial P, € R[z] such that P(Ex) € Z. Let 7,
be the ideal in Z,., generated (as an ideal) by the elements Py (E}),
1 <k < f+m. 7y is non-expansive since it is spanned by products
of the P,(E}) and D’ both of which are non-expansive.

To see that Z; is N-co-finite, let dj, = deg P,. Note that

(Sk 0 §)™ = oopa, (Pe(Ey)) € L.
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Hence, any polynomial in the S; o ¢ is equivalent to one of degree
less than ) d; in the Sy o ¢, mod Z;. Our lemma follows from the
reasoning following 57. O

Let
Pr = (A)/ (AN (T + (S)i-1Ns)

Proposition 9. Let _{Xi,..., X} C (S) be a set of non-expansive
elements such that there are l; such that {o;,(X;)} projects to a basis
for Pol(A)/J where T is N -co-finite and non-expansive. (It is clear
that such X; exist.) Then By projects to a basis of P, for alll. Hence
B projects to a basis of P. Furthermore

(AN (T + (S)Ns) = T + (S)i-1Ns

Proof Let X € (S);. Let [, = deg(6(X)) < [. Then there are
scalars ¢;, elements B; € (S), and non-expansive elements [; € Z,
with deg(d(B;1;)) = l,, such that

01,(X) =) o, (X;) = Z o1, (Bjl;).

%

We may in fact choose B; € (\A) since ¢ is zero on (S)Ns.
Let J; = B;l;, a non-expansive element. From the non-expansive
property, X; and J; belong to (S);.

Let
X1:X— E CiXi_ E Jj.
i J

Then X; € (S); and 0(X;) has lower degree than §(X).

We may repeat this argument with X; in place of X. It follows by
induction that there are elements J; in J; and constants ¢; as above
such that 6(X;) = 0. Then X; € ((S)Ng);, proving the first part of
our proposition.

To prove the last statement, let A € (J + (S)Ns);. From the
preceding argument

A:Zcix,-+J+y
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where the ¢; are scalars, J € J;, and Y € (S)Ng. A € J + (S)Ns
implies that the ¢; are all 0. Hence Y = A — J belongs to ((S)Ns), =
(8);_1Ns, proving out result. O

Remark: If X is a Riemannian symmetric space and Z is Dg(X),
then the finite dimensionality of P is known. (See the discussion in
Section 5 of [1].) The existence of a non-expansive spanning set for Z
follows from the observation that the Harish Chandra homomorphism
preserves degree. The analogue of Lemma 10 follows from a similar
argument. These comments are used to prove Theorem 2 in the
Riemannian symmetric case.

4 Explicit Expansions

In this section we prove the existence and convergence of the asymp-
totic expansions. We refer the reader to §1 for our the notation.

Proposition 10. Let F' be an Z-harmonic function on S which satis-
fies 2 and let Fy € H_(7,) be defined by formula 11 where A € A*.
Let s > 0 be given. Then for each A € A" and each v €< A,E >,
there ezists an unique H_,(m,)-valued function F7(A,t) (not depend-
ing on s) which is polynomial of bounded degree in t and a t, > 0
(which may depend on s) such that for all t > t,,

Fa= Y FE(Ate! (58)

yE<AE>

where the convergence is in (H2(m,.))*. Furthermore for all t € RY,
F,(A,t) € C=*°(n,) and the above equality is valid in the asymptotic
topology on C—°(m,)
-valued functions.

Proof From Lemma 10 we may assume that Z is non-expansive and
N -co-finite. Then Proposition 9 shows that P is finite dimensional.
Let P be decomposed as in 8.

For Ae Aandt € R, let

PAt) = [ (t— < A a>).

a€eé,
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P4 is a real polynomial since the roots of P occur in conjugate pairs
with equal multiplicity. The following lemma is clear from 9 since P
has a unit.

Lemma 11. For A € A, let A € P be the projection of A. Then
PA(A) =0.

It follows from the preceding lemma that
PAA) = X4+ 4

where X4 € (S)Ns and J4 € J. From Proposition 9, we may take
deg X4 < deg PA. We may also assume that X* depends linearly on
PA(A) and thus polynomially on A. Thus X4 is a sum of terms of

the form

where the p are polynomials in A and each X}, belongs to either S;; or
M,;; for some i < j depending on k. Furthermore, since X4 € (S)N,
there is at least one X} in each term for which ¢ < j.

Since F'is annihilated by J it follows that F' satisfies

PYAVF(z) = XA F(x) (60)

where elements of the enveloping algebra are identified with left in-
variant differential operators on S.

For X € (S), let X(t) = Ad (exp(tA))X. We replace x by
x(exptA) in 60 discovering that

PA(D)Fiq = XA(t)Fa (61)

d
where D = —. Expanding X4 in a sum of terms of the form of 59,

we find that F;4 satisfies an equation of the form

PAD)Fa=Y e*>XAF,, (62)
k

where (3, € span yX and X/ € (S) depends polynomially on A. In
particular, A € A" implies that < A, 3, > > 0.
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We interpret 62 as an H_,(m,) valued differential equation. We
claim that in this case, the hypotheses of Theorem 5 are satisfied.
We note first that for all ¢ € H,(7,), F € H_, (), and X € (S),

<m(g7 )¢, XF > =< m (97 "), w1 (X)F >
=< WT(X*)T('T(Q_l)QS,F >
= X(<m(9g7 "o, F >).
It follows from Lemma 1, p. 459 of [3] and the definition of the
H_.,(m,) topology, that if X has degree d as an element of (S) then
it has degree < d as an operator on H_, ().
From the example on.p 282 of [17], there are positive constants C'

and 7’ such that
"™ < C| Ad (z)|I”

where ||-|| denotes the operator norm with respect to any conveniently
chosen norm on L. In particular, if x = exptA

eT(exptA) < Cer"t
for some constant r”. Hence, from inequalities 2 and 10,
{e7" Fia |t € (—o0,0]}

is bounded in L}(S)* and, thus, in H_, (7).

Formula 58 now follows immediately from Theorem 5. The state-
ment about C'~*°(7,.) follows from Theorem 3 together with the unique-
ness of the coefficients. O

Next we prove Theorem 2:
Proof (Of Theorem 2)
Let F' be Z-harmonic and let By, Bs, ..., B, be a basis for A con-

tained in AT. For t € (—o0,0)", let
Gr(t) = Fgq)

d
where B(t) = t; By + ta2By -+ + t4Bg. Then letting D; = 7 and

reasoning as in 62, we find

P5(D;))Gp =Y e~ X]Gyp
k
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where 3, € A and X7 € (S).
We consider the preceding set of equations as a C~>°(m,.) valued
system. Theorem 6 shows that under asymptotic convergence

Gr(t) =Y _ e F(t)

6eé

where & C R? and Fjs(t) depends polynomially on .
Let A = B(s) where the s; > 0. Then, under asymptotic conver-
gence,
Fia=Gp(ts) =) eI Fy(ts). (63)
0€€r
The uniqueness of coefficients in asymptotic expansions shows
that for the F, as in 58,

Fy(At) =) Fy(ts)

y=s-0

It follows that the series 63 converges in H_ () for all ¢ > t,. From
the proof of Lemma 2, t, depends continuously on A. In particular,
we may choose a value of £, so that the series for t — F} 44/ converges
for all for ¢ > t, and all A which are positive linear combinations of
the B;. Hence, the series in question converges at ¢t = 1 if |A| > ¢,.
For such A, we define

F5(A) = Fg(S).

This finishes the proof of Theorem 2 for homogeneous domains, with
the exception of the covariance property (c). This, however, is a
simple consequence of the equality

R(exp B(S))FB(t) = FB(st1)-

The proof of 2 in the case of Riemannian symmetric spaces is
almost identical. See the remarks at the end of §2. O

Remark We still need to discuss the Poisson transformation. This
however, is more or less immediate from Theorems 3 and 4. Explicitly,
let A € A*. Theorem 4 allows us to construct Fy for t > t, using
the boundary values and the operators 7/. Hence, we can construct

F =m.(exp — t,A)Fy 4.
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If F' is harmonic, then the result will of course be independent of
the choice of A. Conversely, one might hope that if the result is
independent of A then I would be harmonic. This, however, is the
subject of future research.
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