LAB 8

This lab analyzes the Lorentz system which is the system

o' =o(y—z)
y =pr—y—x2 (1)
7= —Bz+ay

Outside of lab (either before or after).
In the Lorentz system let ¢ = 10, p = 28, and g =
the equilibrium points are (0,0, 0), (6v/2,6v/2,27), an

Verify that in this case

61/2, —6+/2, 27).

-

During lab.

(1) Let 0 = 10, p = 28, and 3 = 3. Plot the Lorentz system with the initial
value [Z,, Yo, 20] = [0,1,0]. For this you will need to create a function file
(call it lor.m) which contains the lines

function up=lor(t,u)
up(1,1)=-10*u(1)+10*u(2);
up(2,1)=28*u(1)-u(2)-u(1)*u(3);
up(3,1)= u(1)*u(2)-(8/3)*u(3);

(The symbol “up” is chosen to remind you of u’.) Once this file has been
saved, enter

[t,ul=ode45(’lor’, [0,20],[0;1;0]1); plot3(u(:,1),u(:,2),u(:,3));

The command “ode45” solves the system defined by the function lor.
The “0,20” tells us that the time interval is 0 < ¢ < 20 and [0, 1, 0] is the
initial condition.

The beautiful butterfly shape you are seeing is just one orbit. The
“wings” of the butterfly seem to be approaching planes. The purpose of
this lab is to find formulas for these planes.

(2) Note that each “wing” seems to have a hole in it. We guess that there is an
equilibrium point at the hole’s center which, form the work done outside of
lab, must be (6+/2, 6v/2,27). It appears to be approaching a spiral source in
the plane. To prove it we will use the linear approximation to the system.

Specifically, let ©w =  — 6v/2, v = y — 64/2 and w = z — 27. Assuming
that x, y and z satisfy the system (1) with the stated values of o, p and
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B, find a system satisfied by u, v and w. Then show that this system is
approximated by the linear system X’ = AX where

—10 10 0
A=1] 1 -1 —6v2
6v2 6v2 -3

For the matrix A from the previous exercise, use the MATLAB command
“[P,D]=eig(A)” to find the eigenvectors and eigenvalues for A. (The columns
of P will be the eigenvectors and the diagonal entries of D are the eigen-
values of A.) The first and second columns of P are complex. In MAT-
LAB, the i*" column of P is denoted “P(:,i)”. Let “R=real(P(:,2))” and
“I=imag(P(:,2))”.
Plot (in R3) the orbit of X’ = AX over the interval 0 < ¢ < 20 with R as
initial data. (Use “ode45” as above, after creating the appropriate function
file.) Then plot (on the same graph) the orbit of X’ = AX over the interval
0 <t < 20 with I as initial data. (For this you can simply use the up arrow
key to return to the plot command and change “R” to “I” and reenter the
line. Don’t forget to use “hold on” which should be executed after the
first graph is drawn.) Notice that both orbits seem to lie in a single plane.
Prove that this is indeed the case. (Hint: Show that the solution X to
X" = AX with initial data X (0) = R can be expressed as a function times
R plus another function times I. Repeat for the solution with initial data
X(0)=1.)

The plane in question is the span of the vectors R and I. Find an equation
for it in the form au + bv 4+ cw = 0.
On the same figure as in the previous exercise, get MATLAB to plot the
orbit whose initial data is ten times the real eigenvector. Let W denote this
eigenvector. If, for example, this is the first column of P, then W = 10 P(:
,1) and we would replace R by W in the ”"ode45” command. The orbit
seems to be a line. Prove that this is indeed the case. Does the solution
tend toward or away from the origin as ¢t — oo?
Clear the previous figure with the command “cla” and plot the solution
with initial data (R+(seed/10)*W). Get your plot printed and draw arrows
indicating the direction of travel along the orbit. Do you think that the
spirals actually lie in a plane? The behavior you are seeing is called a
“spiral saddle.” The plane is an “attractor” for the linear system because
all orbits are attracted to it. It turns out that the linear approximation to
the Lorentz system at the other equilibrium point also has a spiral saddle
which is attracted to a plane.
Clear the previous graph with “cla” , issue the command “hold off” and then
plot the phase portrait of the Lorentz system over the interval 1 < ¢ < 30
with initial data [0,1,0]. Note the way that the orbit randomly hops from
spiral to spiral. The “butterfly” shape you see is an attractor for the orbits
because all of the orbits are drawn to it. It is referred to as a “strange
attractor” because it is unlike attractors found in linear systems.
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In linear algebra, if T, X and Y are vectors in R3, then the set of all points
of the form T'+7rX +sY, where r and s vary over all real numbers, is a plane
through the point 7. This description is called the parametric description
of the plane. If T = (6v/2,61/2,27), X = Rand Y = I where R and I are
as in the previous exercise, then one of the butterfly wings is attracted to
the corresponding plane. Explain why this is true on the basis of the work
done in the previous exercise.

Find a description of the plane from the preceding exercise in the form
axr +by+cz=d.

Find both a parametric description and a description in the form ax + by +
cz = d for the plane which is approached by the other butterfly wing.

You can change the viewing angle of your graph with the command ” view(a,b)”
where “a” is the viewing angle in the xy-plane and “b” is the angle of el-
evation (both measured in degrees). Look at the Lorentz attractor from a
variety of viewpoints and print the two that you think are the most reveal-
ing.

Construct the plots (with respect to t) of z, y and z with the initial condi-
tions (a) (%o, Yo, 20) = (0,1.1,0) and (b)(z, Yo, 2z0) = (0,1.01,0). Comment
on how long it takes for two solutions of the Lorentz system with very close
initial conditions to separate and any consistency (or lack there of) in the
size of oscillations of the coordinates over large time intervals Note: To
plot, say, the xz-coordinate of the solution generated above against ¢, you
can simply enter the command “plot(t,u(:,1))”. To see the detail of interest
you may need to recompute the solution with a different ¢ range.



