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CHAPTER 1

Compound Interest

1. The TI BA II Plus Calculator

A financial calculator approved by the SOA is required for the Course 2 Actu-
arial Exam. We recommend the TI BA II Plus, either the solar or battery version.
We will discuss some of the details of its operation in these notes as the need arises.
However, a few initial comments are in order.

You will probably want to change some of the default settings for the BAII.
Changing the defaults is accomplished by pressing [2nd][FORMAT] and using the
up/down arrows to browse the format menu. Changes are made either by entering
a value or pressing [2nd][SET] to change a choice. The changes you make remain
permanent until you either replace the battery or enter [2nd][RESET]. To exit the
FORMAT menu, press [CE/C].

Some changes you might want to make are:

(1) By default, the BA II rounds the display to 2 decimal accuracy, despite
the fact that it stores them, and works with them, to a much higher degree
of accuracy. This can present a problem if you, say, record answers on
paper for subsequent use in further calculations; two decimal accuracy is
not sufficient for many applications. We suggest that you reset the value
of the DEC variable in the FORMAT menu from 2 to 8.

(2) By default, the BA II does not follow the standard rules concerning the
order of operations. Instead, it computes numbers in the order they
are entered. Thus, entering 2 + 3 ∗ 6 produces 5 ∗ 6 = 30 rather than
2 + 18 = 20. To get the BA II to behave more like a standard scientific
calculator, we suggest that you reset the Cnn (chain calculation) vari-
able to AOS(Algebraic Operation System) by scrolling down to Cnn and
pressing [2nd][SET].

(3) If you use the BA II for other classes, you might also want to change the
DEG variable to RAD.

The BA II remembers the values of all registers, even when turned off. Hence,
every time you begin a new session, you should enter [2nd][CLR WORK] and
[2nd][CLEAR TVM] to clear out all registers. Don’t use [2nd][RESET] as this
will also reset the defaults. Similarly, you should enter [2nd][CLEAR TVM] at the
beginning of each new problem if you have accessed TVM features of the BA II. If
you have used other work sheets, you should also enter [2nd][CLR WORK].

Remark. Financial calculators are not as useful on the Course 2 Actuarial
Exam as one might expect. Few of the problems may be solved using only the
calculator. It is essential that you learn to use the formulas as well as how to use
the calculator. For this reason, we will insist, at least initially, that you write a
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6 1. COMPOUND INTEREST

formula for the solution to all assigned homework problems, even if you do the
computations on the calculator.

2. Compound Interest

The simplest example of interest is a loan agreement two children might make:
“I will lend you a dollar, but every day you keep it, you owe me one more penny.”
In this example, the interest rate is 1%/day and the amount owed after t days is

A(t) = 1 + .01t

In this formula, the quantity .01t is the interest at time t. (In general, the interest
is the difference between what was borrowed and what is owed.)

Remark. In the above example, we can describe the interest rate as a percent
(1%) or as a numeric value ( .01). When we state an interest rate we will always
mean a numeric value, and not a percent, unless we indicate otherwise.

In these notes, we use the year and the dollar as our fundamental units as this
is most common in actuarial science. We will assume that, unless otherwise stated,
all interest rates are per unit time–i.e. per year. However, the reader should be
aware that all of our formulas are valid regardless, of the units of measure.

If, as above, the interest is proportional to time, then we say that the interest
is simple interest.

Definition 1. An quantity grows at a rate i simple interest if the amount at
time t is given by

(1) A(t) = (1 + it)P

for some constant P . A(t) is also referred to as the “future value at time t of P
at simple interest rate i.” P is referred to as the “present value at time 0 of the
account at simple interest rate i.”

Example 1. On Jan. 1 of a non-leap year, I invest $5,000 at 3% simple interest.
How much do I have on May 1? How much would I have in 3 years?

Solution. On May 1, I have had the money for 3 · 31 + 30 = 123 days, which
is 123/365th of a year. Hence, I have

(1 +
123

365
.03)5000 = 5050.55

dollars.
In 3 years, I have

(1 + 3(.03))5000 = 5450.00

Remark. In computing interest, it is typically assumed that interest is earned
only on either the first day the account is open or the last day, but not on both.
Which day doesn’t matter in computing the interest. Thus, in Example 1, it is
correct not to count the interest earned on May 1.

The question of how many days are in a year is actually somewhat complicated.
The most obvious answer is that a year will have either 365 or 366 days, depending
on whether or not it is a leap year. It has to be remembered, however, that
accounting practices became standardized long before even hand held calculators
were available, not to mention personal computers. Thus, many schemes have been
developed to simplify hand computations.
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For example, it is common to not give interest on Feb. 29, in which case all
years effectively have 365 days. Another method, referred to as exact interest, is
to give interest on leap day, but still say that all years have 365 days. Thus, under
this standard, at the nth day of the year, P dollars invested at rate i simple interest
grows to

(1 +
n

365
i)P

In particular, at the end of a leap year, you have

(1 +
366

365
i)P

dollars.
There is another method, ordinary interest, (not to be confused with “simple

interest”) in which it is assumed that all months have 30 days and every year has
360 days! Thus, if you opened an 4% account on Jan. 1 1950 and closed it on May
10, 2002, you held your money for 51 years, 4 months and 10 days which, according
to the rules of ordinary interest, is

51 · 360 + 4 · 30 + 10 = 18490

days. Hence P dollars invested at rate i simple interest will have grown to

(1 +
18490

360
.04)P

dollars. Ordinary interest has the feature that each month is 1/12 of a year. In this
class, unless otherwise stated, we will use ordinary interest as this greatly simplifies
counting days.

There is also something called Banker’s rule, in which every year has 360 days,
but you count the exact number of days you have held the money in computing the
interest. To use Banker’s Rule on the preceding example, you would have to count
the days between Jan. 1, 1950 and May 10, 2002 and use this number instead of
the 18490.

The use of exact interest is common in Canada while the Banker’s rule is
common in the US and in international markets.

Compound interest is much more common than simple interest. Suppose, for
example, that I invest P dollars at rate i, compounded yearly. As with simple
interest, at the end of the year, I have

A(1) = (1 + i)P

dollars.
With compound interest, however, I earn interest on the total amount on de-

posit at the beginning of the compounding period, not just the original principal.
Hence, in another year, my account will again grow by a factor if (1 + i), yielding

(1 + i)2P

dollars. After n years, I have

(2) A(n) = (1 + i)nP

dollars.

Example 2. At the end of 1980, I deposited $1,000 in an account that earns
7.3% interest, compounded yearly. How much did I have at the end of 2000, as-
suming that no further deposits or withdrawals are made?
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Solution. My funds were on account from Dec. 31, 1980 to Dec. 31, 2000: a
full 20 years. Hence, I have

(1.073)201000 = 4, 092.55

dollars.

What if, in Example 2, I were to close my account after having left my money
on deposit for only 6 months; how much would I get? The answer depends on the
rules of the bank. Some accounts charge a substantial penalty for early withdrawal,
meaning that you could actually lose money. In some cases, the bank uses simple
interest for partial periods, in which case you would get

(1 +
.073

2
)1000 = 1, 036.50

dollars since the money was on deposit for a half year. Finally, we might simply
substitute n = 1/2 into formula (2) yielding

(1.073)1/21000 = 1, 035.86

In practice, this last method is probably the least common. However, in the
mathematical theory of interest, if we say that an account earns compound interest
at a rate i, we are implicitly stating that we use formula (2) for partial periods as
well:

Definition 2. An quantity grows at a rate i compound interest if the amount
at time t is given by

(3) A(t) = (1 + i)tP

for some constant P . A(t) is also referred to as the “future value at time t of P at
compound interest rate i.” P is referred to as the “present value at time 0 of the
account at compound interest rate i.”

In interest theory, we often use A(t) (the amount function) to indicate the value
of the account at time t. The function

a(t) =
A(t)

A(0)

is referred to as the accumulation function. Thus, the accumulation function for
compound interest is

a(t) = (1 + i)t.

Example 3. Banks A and B both offer savings accounts that pay 5% interest
per year. Bank A compounds yearly but uses simple interest for partial periods
while bank B uses straight compound interest for all times. Compare the amount
that you would have after 3 years and 2 months if you invested $2,000 in bank A
with the same investment in bank B.

Solution. In bank A, at the end of 3 years, you have

(1.05)32000 = 2315.25

dollars. For the next 2 months you earn simple interest on $2,315.25 dollars, yielding

(1 + .05(
2

12
))2315.25 = 2334.54

In bank B you have

(1.05)
38
12 2000 = 2334.15
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This example makes an important point: the difference between using simple
interest for partial periods verses compound interest is slight. In fact, in Figure 2
we have graphed the amount of money in banks B and A on the same graph for
0 ≤ t ≤ 1. The graphs are so close that they appear to be one single graph.

Figure 1. There are two graphs here!

Often banks offer accounts which compound at intervals other than one year.
For example, a bank might offer an account that pays 6% interest, compounded
four times a year. What this means is that every quarter of a year, the account
grows by 6

4%. Thus, in one year, P dollars grows to

(1 +
.06

4
)4P = (1.0613)P

This is the same growth as an account at 6.13% interest, compounded annually.
This 6.13% is called the annual effective yield while the “6%” interest rate is re-
ferred to as the nominal rate, in that it’s the rate that the bank might name when
describing the account.

In general, the symbol i(n) indicates an interest rate i which is compounded n
times a year. Thus, the discussion in the preceding paragraph says that an interest
rate of .06(4) is the same as .0613(1). The rate i(n) is equivalent with the annual
effective rate j where

(1 +
i(n)

n
)n = 1 + j

Example 4. A bank offers an account that yields a nominal rate of return of
3.3% per year, compounded quarterly. What is the annual effective rate of return?
How many years will it take for the balance to double?

Solution. Since each year has 4 quarters, P dollars at the beginning of the
year grows to

(1 +
.033

4
)4P = (1.0334)P

by the end of the year. Hence, the annual effective rate of interest is 3.34%.
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To compute how long it takes for the account to double, we can either work in
quarters or years. In quarters, we seek n so that

(1 +
.033

4
)nP = 2P

(1 +
.033

4
)n = 2

n ln(1.00825) = ln 2

n =
ln 2

ln(1.00825)
= 84.36

The number of years is 84.36/4 = 21.09.
Since our effective rate of return is 3.34% per year, we can find the answer

directly in years as follows:

(1.0334)nP = 2P

(1.0334)nP = 2

n ln(1.0334) = ln 2

n =
ln 2

ln(1.0334)
= 21.1

The answer differs slightly from that found previously due to round off error.
Specifically, 3.34% is only an approximation of the annual effective yield. A more
exact value is 3.3410626%, which does yield the same answer as before.

Actually, both answers might be wrong. If the bank only credits interest each
quarter, then the doubling would not occur until after the 85th quarter, in which
case the correct answer is 21 1

4 years.
This problem may also be solved on the BA II. Explicitly, enter

0[PMT] (We are not making payments into the account)

[2nd][P/Y]4[ENTER] (four compounding periods per year)

[CE/C] (return to calculator mode)

3.3[I/Y] (3.3 % nominal interest rate per year)

1[PV] (present value is one–i.e. we deposit $1)

4[N] (number of compounding periods)

[CPT][FV] (compute the future value of the account)

yielding FV = −1.0334. The value is negative because the final balance is consid-
ered as a final withdrawal; hence it is negative. This tells us that an investment of
$1 grows to $1.0334, making the annual effective yield .0334% as before. Instead
of entering 4[N], we could have entered 1[2nd][xP/Y][N] since [2nd][xP/Y] converts
the number of years into the number of payments.
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To solve the second part of the problem, we enter

-2[FV]

[CPT][N]

getting N = 84.36 quarters. We can then divide by 4 to get the answer. Note that
the rest of the data does not need to be reentered since it has not changed.

Remark. The preceding example makes an important point: If deposits are
entered into the BA II as positive quantities, the [FV] key yields the negative of
the actual future value. Thus, one should enter [+/-]before using this value in other
calculations. Similarly, if the future value is entered as a positive quantity, then
both the present value and the payments are the negative of their actual values.

Example 5. Bank A offers a nominal rate of 5.2% interest, compounded twice
a year. Bank B offers 5.1% interest, compounded daily. Which is the better deal?

Solution. We convert each nominal rate into an annual effective rate:

Bank A

(1 +
.052

2
)2 = 1.052676

for a 5.27% annual effective rate of return.

Bank B We recall that under ordinary interest, years have 360 days. Hence, the
annual rate of return is

(1 +
.051

360
)360 = 1.052319218

for a 5.23% annual effective rate of return. It’s darn close, but Bank A wins.

Remark. Daily compounding is very common. I recently called Huntington
Bank in Lafayette to ask what the current interest rate on 5 year CD’s was. I
was told something like 5.2% with an annual effective yield of 5.23%. I asked how
often it is compounded. The answer was daily. Daily compounding eliminates the
problem of partial periods: you get whatever the balance was at the end of the
preceding day.

Example 6. On Jan.1, 1998, I open an account with a $1000 deposit. On
Jan.1, 1999, I withdraw $500 and on Jan.1, 2001 I deposit $1,500. If the account
earns 7.5% interest, compounded yearly, and no further deposits or withdraws are
made, what was the balance on Jan.1, 2002?

Solution. It is often helpful to draw a “time line” (Figure 2) to indicate what
deposits were made when:

There are two ways to solve this problem; easy and easier. First, the easy way:
The balance on Jan. 1, 1999 was one year interest on $1000, minus $500:

1000(1.075) − 500 = 575

The balance on Jan. 1, 2001 was 2 years interest on $575, plus the $1,500 deposit:

575(1.075)2 + 1500 = 2164.48
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My final balance is 2 years interest on $2164.48:

2164.48(1.075)2 = 2501.34

Now for the easier way. Without any further deposits, our $1000 would have
grown to

1000(1.075)5 = 1435.63

Withdrawing $500 caused us to loose both the $500 as well as its interest for the
next 4 years; a net loss of

500(1.075)4 = 667.73

Finally, the $1,500 deposit was on account for 2 years, yielding a total of

1500(1.075)2 = 1733.44

Hence, our balance is

1435.63 − 667.73 + 1733.44 = 2501.34

as before.

In general, we may treat deposits and withdrawals separately: The balance
B(t) at time t in an account that earns compound interest at rate i is given by the
formula

(4) B(t) = B(0)(1 + i)t + C1(1 + i)t−t1 + · · · + Cn(1 + i)t−tn

where B(0) is the initial balance, Ci are all of the deposits/withdrawals made
between time 0 and time t, (withdrawals are considered as negative deposits) and
ti is the time at which the deposit/withdrawal Ci was made.

Example 7. Ed invests $550 at 3% interest. At the end of the first year, he
withdraws $100, at the end of the second year, he withdraws $300 and at the end
of the third year he deposits an additional $50 at the same interest rate. He closes
the account at the end of the fourth year. What was his final withdrawal?

Solution. The time line is indicated in Figure 2. We treat each deposit and
withdrawal separately. The deposits, together with interest, total to

(1.04)4550 + (1.04)50 = 695.42

Each withdrawal reduces both the balance and the future interest. Thus, the with-
drawals up to the end of year 4 reduce the balance by

(1.04)3100 + (1.04)2300 = 436.97

Thus, Ed still has

695.42 − 436.97 = 258.45

which is his final balance.

One of the most important concepts in interest theory is that of present and
future value.

Example 8. How much must I deposit today into an account that pays 6.4%
to be able to pay you $500, two years hence?
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Solution. Let the amount deposited be P . We need to solve the equation

(1.064)2P = 500

P = (1.064)−2500 = 441.66

dollars.
On the BA II Plus, we would enter 0[PMT], [2nd][P/Y]1, [CE/C], 6.4[I/Y],

−500[FV], 2[N], [CPT][PV].

The preceding example makes an extremely important point: a promise to
pay $500, two years from today is not worth $500 today: if we can invest money
at 6.4%, $500 two years from now is only worth $441.66 today. We say that the
present value of $500 two years from now at 6.4% interest is $441.66. Equivalently,
at 6.4% interest, $441.66 will grow to $500. Hence, the future value of $441.66 two
years from now at 6.4% interest is $500.

The following definition is just a restatement of Definition (2) in different terms.
These concepts are, however, sufficiently important to bear repeating.

Definition 3. The future value (FV ) of P dollars at interest rate i, t years
from now, is the amount that P dollars will grow to in n years. Hence

(5) FV = (1 + i)tP

The present value (PV ) of P dollars at interest rate i, t years from now, is the
amount we would need to invest now to yield P dollars t years from now. Hence

(6) PV = (1 + i)−tP

The quantity (1 + i)−1 occurs so often that it has a special symbol:

(1 + i)−1 = ν

Hence, Formula 6 is often written

PV = νtP

Example 9. On Jan. 1, you won a “$400,000 sweepstakes.” The prize is to be
paid out in 4 yearly installments of $100,000 each with the first paid immediately.
Assuming that you can invest funds at 5% interest compounded yearly, what is the
present value of the prize?

Solution. The time line is indicated in Figure 2.
If you invest each $100,000 payment at 5% interest, in 3 years you will have

(1.05)3100000 + (1.05)2100000 + (1.05)100000 + 100000 = 431012.50

The present value is
(1.05)−3431012.50 = 372324.80

dollars. Note that the award is actually worth considerably less than the advertised
$400,000.

Remark. We could have done this calculation in one step:

(1.05)−3((1.05)3100000 + (1.05)2100000 + (1.05)100000 + 100000)

= 100000 + (1.05)−1100000 + (1.05)−2100000 + (1.05)−3100000

= 100000 + ν100000 + ν2100000 + ν3100000 = 372324.80

In the last equality we are just summing the present value of each payment.
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It is a general principle that the value today of a promised series of future
payments is the sum of their present values, computed at the prevailing interest
rate for comparable investments.

Multiplying both sides of formula (4) by (1 + i)−t yields

0 = B(0) + C1(1 + i)−t1 + · · · + Cn(1 + i)−tn − B(t)(1 + i)−t

If we consider B(0) as an initial deposit C0 and −B(t) as a final withdrawal Cn+1,
this formula becomes

(7) 0 = C0 + C1(1 + i)−t1 + · · · + Cn(1 + i)−tn + Cn+1(1 + i)−t

Each of the terms in the sum on the right is, then, the present value at time 0
of either a deposit/withdrawal. Specifically this formula says that the sum of the
present values of all deposits/withdrawals is zero, where the initial balance is con-
sidered as an initial deposit and the final balance as a final withdrawal. Equation 7
is referred to as the equation of value. Solving for C0 tells us that the initial balance
is the present value of the future withdrawals, minus the present value of the future
deposits, where the final balance is considered as a final withdrawal. Computing
C0 in this manner is referred to as the prospective method because it uses future
activity in the account to compute the balance.

Example 10. The balance on Jan. 1, 2003 in an account that earns compound
interest at rate 3.2% per year was $2,500. What was the balance on Jan. 1, 2000,
given that the activity on the account was as described in the following chart.

Date 3/1/00 6/1/01 1/1/02 6/1/02
Dep./With. 300 −700 600 −200

Solution. The time line is indicated in Figure 2.
According to formula (7), the initial balance is

C0 = −(1.032)−2/12300 + (1.032)−17/12700

− (1.032)−24/12600 + (1.032)−29/12200 + (1.032)−36/122500

= 2267.57

We can use formula (7) to compute the balance in the account at any point in
time. We simply define this time to be time 0.

Example 11. What was the balance in the account from Example 10 on
10/1/01?

Solution. The $600 was deposited 3 months after 10/1/01, the $200 with-
drawal occurred 8 months after 10/1/01, and the balance was $2500, 15 months
after 10/1/01. Hence, according to formula (7), the balance was

−(1.032)−3/12600 + (1.032)−8/12200 + (1.032)−15/122500 = 2004.02

Since, from the solution to Example 10, we know the initial balance, we can
also use formula (4) to compute the balance:

(1.032)21/122267.57 + (1.032)19/12300 − (1.032)4/12700 = 2004.02

Computing the balance using formula (4) is referred to as the retrospective
method because it uses past activity in the account to compute the balance. The
retrospective method is useful when we know the initial balance while the prospec-
tive method is useful when we know the final balance.
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Exercises

Calculate each of the following:

(1) You invest $500 at 6.4% simple interest per year.
(a) How much is in your account after 1 year?
(b) How much is in your account after 5 years?
(c) How much is in your account after 1/2 year?
(d) How much is in your account after 5 years and 6 months?

(2) Redo Exercise 1 using compound interest instead of simple interest.
(3) Redo Exercise 1 assuming that the account earns compound interest for

integral time periods and simple interest for fractional time periods.
(4) How long will it take for $1,000 to accumulate to $2000 at 5% annual

compound interest?
(5) Value of $1250 invested for 4 years at 5% simple interest.
(6) Value of $1250 invested for 4 years at 5% compound interest .
(7) Value of $624 invested for 3 years at 6% simple interest.
(8) Value of $624 invested for 3 years at 6% compound interest .
(9) Value of $624 invested for 3 years at 6% compounded quarterly.

(10) Value of $3150 invested for 1 year at 4% simple interest.
(11) Value of $3150 invested for 1 year at 4% compound interest .
(12) Value of $8635 invested for 8 years at 5% compounded monthly.
(13) Amount you need to invest now to have $5000 in 4 years if your account

pays 6% simple interest.
(14) Amount you need to invest now to have $5000 in 4 years if your account

pays 6% compound interest .
(15) Amount you need to invest now to have $5000 in 4 years if your account

pays 6% compounded monthly.
(16) Amount you need to invest now to have $100000 in 15 years if your account

pays 5% compounded monthly.
(17) Your account had $486 in it on October 1, 1989 and $743 in it on October

1, 1997. Assuming that no additions or withdrawals were made in the
meantime, what annual effective interest rate accounts for the growth in
the balance?

(18) What is the annual effective interest rate that would account for a CD
increasing in value from $4000 on October 1, 1992 to a value of $5431.66
on October 1, 1997?

(19) One bank is paying 4.8% compounded monthly. Another bank is paying
5% annual effective. Which is paying more?

(20) What is the annual effective rate on an investment that is paying 6%
compounded quarterly?

(21) What is the present value of a payment of $12,000 to made at the end of
6 years if the interest rate is 7% effective?

(22) What is the value in eight years (i.e. the future value) of a payment now
of $45,000 if the interest rate is 4.5% effective?

(23) George is borrowing $20,000 and will pay 8.5% interest . He will pay off
the loan in three annual installments, $6,000 at the end of the first year,
$7,000 at the end of the second year, and a final payment at the end of
the third year. What should the amount of the final payment be?
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(24) Alice is saving money for a new car she hopes to buy in four years. She
is putting the money in an account that earns 5.5% effective. At the
beginning of this year, she deposited $4,000, and the beginning of the
second year, she expects to deposit $5,000, and the beginning of the third
year, she expects to deposit $5,000 again. She anticipates the price of the
car she wants to buy will be $20,000. How much more will she need in
four years to make the purchase?

(25) Value of $12500 invested for 3 years at 6% compounded quarterly.
(26) Amount you need to invest now to have $25000 in 4 years if your account

pays 6% compounded monthly.
(27) Amount you need to invest now to have $100000 in 15 years if your account

pays 5% compounded monthly.
(28) You can buy a $25 Series EE savings bond for $18.75; that is, you invest

$18.75 today and in 6 years, you get back $25. What is the annual effective
interest rate that you are getting.

(29) Assuming that house prices have inflated at an average rate of 8% per year
for each of the last 20 years, how much would a house that is currently
worth $100,000 have cost 20 years ago?

(30) On Jan. 1, 1998, I opened an account in a bank yielding 3.4% annual
(compound) interest. On each subsequent Jan. 1, I made either a deposit
or a withdraw according to the following chart. What is my balance on
Dec. 31, 2002?

Year 1998 1999 2000 2001 2002
De./With. 2000 −700 600 −200 1500

(31) I borrow $5,000 at 7.1% compound interest per year for 5 years with yearly
payments starting at the end of the first year . My first 4 payments were:
$1,000, $700, $2,000, and $1,000. What is my last payment?

(32) I want to be able to buy a $25,000 car in ten years. If I can invest money
at 8% compound interest, how much do I need to invest now?

(33) What is the present value of $25,000 ten years from now at 8% interest?
(34) If I invest $25,000 now at 8% compound interest, how much will I have in

ten years?
(35) What is the future value of $25,000 ten years from now at 8% interest?
(36) I buy a piano from Cheapside Music company on March 1, 1998. I pay

$1,000 immediately, then 3 more payments of $1,000 on March 1 for each
of the next 3 years. Finally, on March 1, 2002, I pay $10,000. What was
this deal worth to Cheapside on March 1, 1998, assuming that they can
invest funds at 4% interest–i.e. what was the present value of all of my
payments on March 1, 1998?

(37) In Exercise 36, assuming that Cheapside did invest all of my payments at
4% interest, how much did they have in their account on March 1, 2002?

(38) You just won the Publisher Clearing House grand prize which is $1,000,000
paid in 10 annual installments of $100,000 each. Assuming that you can
invest money at 3.9% compound interest, what is the present value of this
prize?

(39) An insurance company earns 7% on their investments. How much must
they have on reserve on January 1, 2002 to cover the claims for the next
3 years, if they expect claims of $500,000 for 2002, $300,000 for 2003 and
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$250,000 for 2004. For sake of simplicity, assume that the claims are all
paid on Dec. 31 of the stated year.

(40) On January 1, 1995, Susan put $5,000 into a bank account at Stingy’s
Bank which pays 3.5% compounded twice a year. On July1, 1996, she
withdrew $500. On January 1, 1997 she deposited an additional $700.
How much did she have on account on January 1, 2000?

(41) What is the effective annual rate of return on an investment that grows
at a discount rate of 7%, compounded monthly for the fist two years and
at a force of interest of 5% for the next 3 years?

(42) An interest rate of 6% compounded three times a year is equivalent to
what rate of interest compounded twice a year.

(43) I have a bank account that initially has $6,000. After 2 years I withdraw
$4,000. After 4 years, I empty the account by withdrawing $3,000. What
is the annual effective interest rate i?

3. Rate of Return

In finance, one of the most fundamental problems is determining the rate of
return on a given investment over a given year, the annual effective rate of return.
In the simplest case, we put money in at the beginning of the year and don’t touch
it until the end of the year. In this case, the annual effective rate of return i is
defined by

(8) 1 + i =
B1

B0

where B1 is the end balance and B0 is the initial balance. Thus, the annual effective
rate of return, as a percentage, is the percentage of growth in the account over the
year. (Of course, it can also be negative, in which case it represents the percent of
decrease in the account.)

The problem of determining the rate of return becomes more complicated when
money is being added to or subtracted from the account throughout the year. This
situation might arise, for example, in a large mutual fund in which individual
investors periodically buy and sell shares. In this case, there are several different
ways of defining the rate of return which do not necessarily yield the same answer.
One of the most common is the following.

Definition 4. An effective rate of return (ROR) (or dollar weighted rate of
return or internal rate of return or yield rate) on an investment over a given period
of time is an interest rate i which would yield the same final balance for the same
activity in the account. It is found by solving equation (4) for i.

According to formula (7) the ROR can also be described as that interest rate
i for which the total present value at time 0 of all of the activity in the in the
investment is 0, where the initial balance is considered as income and the final
balance as outgo.

Typically, finding an exact solution for i in equation (4) is impossible. However,
for short periods of time (less than a year) the observation that there is little
difference between simple and compound interest allows us to approximate the
solution, as in the next example.
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Example 12. The following chart is a record of the activity in an investment.
The initial balance was $10,000 and the final balance was $10,176.22. Approximate
the annual effective rate of return.

Date Deposit(+) or
Withdraw(-)

Jan. 1 0
Apr. 1 1500
Sept. 1 −1000
Jan. 1 0

Solution. In this case, equation (4) yields

10176.22 = (1 + i)10000 + (1 + i)9/121500 − (1 + i)4/121000

Replacing compound interest with simple interest yields
(9)

10176.22 ≈ (1 + i)10000 + (1 +
3

4
i)1500 − (1 +

i

3
)1000

10176.22 − 10000 − 1500 + 1000 ≈ (10000 +
3

4
1500 − 1

3
1000)i

−323.78

47166.67
= −.030 ≈ i

Hence, the annual effective rate of return was approximately −3%.

The technique demonstrated in Example 12 is the standard method of comput-
ing the annual rate of return. In general, applying this technique to equation (4)
with t = 1 yields the following formula, whose derivation is left as an exercise for
the reader:

(10) i ≈ B(1) − (B(0) + C1 + C2 + · · · + Cn)

B(0) + (1 − t1)C1 + (1 − t2)C2 + · · · + (1 − tn)Cn

Remembering equation (10) is easy: the numerator is the final balance minus
all of the year’s activity in the account. Hence the numerator represents the growth
of the account due to interest since, witout interest, this number would be 0. The
denominator is the sum of the deposits weighted according to how long they were on
deposit. Equation (10) is very useful for actuarial exams and should be memorized.

Example 13. Use equation (10) to solve Example 12.

Solution. Equation (10) yields

i ≈ 10176.22 − 10000 − 1500 + 1000

10000 + 3
41500 − 1

31000
= −.030

as before.

It should be remarked that the BA II Plus can find a more accurate approxima-
tion to the dollar weighted ROR, which it calls the internal rate of return (IRR).
See pp. 67-69 of the BA II manual for an example of such a calculation. This
feature, however, is not as useful as one might expect; we find it easier to apply for-
mula (10). If one does choose to use the BA II, some important points to remember
are:
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(1) The example in the manual suggests resetting the calculator before be-
ginning the computation. DON’T! Instead, after entering [CF], enter
[2nd][CLR][WORK] which clears the current work sheet without reset-
ting the defaults for the calculator.

(2) The BA II expects equal periods between the cash flows. Hence, if the
deposits are monthly, as in Example 12, a value must be entered for each
month of the year. Sequences of months with 0 cash flow can be entered
as one cash flow with an appropriate frequency, as in the example in the
manual.

(3) The computed ROR is per period, which in the case of Example 12, is per
month. Hence, one would need to convert to a yearly rate by returning
to calculator mode ([CE/C]) and computing (1 + [2nd][Ans])12.

Occasionally, an exact answer can be found for the ROR can be found as in
the next example.

Example 14. Find the rate of return for an investment that yields the income
stream indicated in the time line below.

Solution. We need to solve the following equation for i:

50(1 + i)2 − 115(1 + i) + 66 = 0

From the quadratic formula

1 + i =
115 ±

√

(115)2 − 4 · 66 · 50

100

=
115 ±

√
25

100

=
115 ± 5

100

Hence 1+ i is either 1.1 or 1.2, implying that the ROR is either 10% or 20%. There
is no way of choosing between these answers; both are correct.

Example 14 makes an important point: the ROR might not be unique. This
situation is rare, but does occur. There is also no guarantee that the ROR exists at
all–i.e. for certain payment valued Ci, equation (4) might not have any solutions.
For example, if the first payment in example 14been 51 instead of 50, then there
are no real solutions to equation (4) since

(115)2 − 4 · 66 · 51 = −239

The reason non-uniqueness is rare is that it is a theorem, which we shall not
prove, which states that if the balance in an account is never negative, then the
ROR i, if it exists, is unique as long as it satisfies i > −1.

Another situation under which the ROR is unique is where the all of the pay-
ments to the account occur prior to any payments out of the account.

Computing the dollar weighted rate of return requires knowing the amounts of
the deposits/withdrawals and the times at which they occurred. There is another
way of defining a rate of return that requires knowing instead the balances before
and after each deposits/withdrawal. The idea is most easily demonstrated with
an example. It is convenient to consider the initial balance as an initial deposit
which opens the account and the final balance as a final withdrawal which closes
the account.
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Example 15. The following is a record of the balances in an account which
earned compound interest at rate i over a single year. Find i.

Activity Balance before Balance after
Activity Activity

Deposit 0 50, 000
Withdrawal 51, 000 46, 000

Deposit 46, 500 47, 500
Withdrawal 50, 000 0

Solution. Assume that the first activity occurred at time t1 and the second
at time t2. Over time t1, the account grew from 50,000 to 51,000. Hence

(1 + i)t150000 = 51000

(1 + i)t1 =
51000

50000

Over the time interval from t1 to t2, the account grew from 46,000 to 46,500. Hence

(1 + i)t2−t146000 = 46500

(1 + i)t2−t1 =
46500

46000

Finally, over the time interval from t2 to 1, the account grew from 47,500 to 50,000.
Hence

(1 + i)1−t247500 = 50000

(1 + i)1−t2 =
50000

47500
It follows that

1 + i = (1 + i)t1(1 + i)t2−t1(1 + i)1−t2

=
51000

50000

46500

46000

50000

47500
= 1.085354691

Hence, i = 8.54%.

In general, suppose that over the space of a year, an account earning compound
interest at rate i had n deposits/withdrawals occurring at times t0, t1, . . . tn. We
consider the initial balance as an initial deposit and the final balance as a final
withdrawal so that t0 = 0 and tn = 1. Let B′

k be the balance just before the kth
transaction let Bk be the balance just after the kth transaction. Over the period
from tk to tk+1, the account grew from Bk to B′

k+1 Hence,

(1 + i)tk+1−tk =
B′

k+1

Bk

Hence, as in Example 15,

(11) 1 + i =
B′

1

B0

B′
2

B1

B′
3

B2
. . .

B′
n

Bn−1

In words, formula (11) says that 1 + i is product of the end balances for each time
period divided by the product of the beginning balances for each time period.

If the account was an investment, such as a mutual fund, where the interest rate
was not constant over the year, we can still use formula (11) to define an average
rate of return for the account:
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Definition 5. The time weighted rate of return on an account is the number
i defined by formula (11) where B0 and B′

n are, respectively, the initial and final
balances in the account and for 0 < i < n, B′

i and Bi are, respectively, the balances
immediately before and after the ith transaction.

In analyzing an investment, we can use either the time weighted or the dollar
weighted methods to compute the rate of return. If the rate of return was relatively
constant over the year, then both will yield similar answers. In fact, if the yield
rate i is constant, then both methods yield exactly the same answer–i. In a very
volatile investment, the two methods will vary as they emphasize different aspects
of the investment. These issues are explored further in the exercises.

Example 16. The following is a record of the balances in a fund over 2001. (a)
Compute the time weighted rate of return and (b) approximate the dollar weighted
rate of return.

Date Activity Amount Balance before
Jan. 1 Deposit 50000 0
Mar. 1 Withdrawal 5000 46, 000
July. 1 Deposit 1000 49, 000
Jan. 1 Withdrawal 51000 51, 000

Solution. From formula (10), the dollar weighted ROR is (approximately)

i =
51000 − 1000 + 5000 − 50000

50000 − 5000(10/12) + 1000(6/12)
= .1079136691

for a 10.8% return.
To facilitate computing the time weighted ROR we compute the beginning

balances by adding the deposits to (subtracting the withdrawals from) the end
balances:

Date Activity Amount Balance before Balance after
Jan. 1 Deposit 50000 0 50, 000
Mar. 1 Withdrawal 5000 46, 000 41, 000
July. 1 Deposit 1000 49, 000 50, 000
Jan. 1 Withdrawal 51000 51, 000 0

Hence, from formula (11)

1 + i =
46000 · 49000 · 51000

50000 · 41000 · 50000
= 1.121502439

for a 12.15% ROR.

A mutual fund is a organization which typically invests contributions from
many different sources into many different investment vehicles. When an individual
investor chooses to sell his/her share, the payment depends on the growth (or
decline) of the fund a whole over the period of investment. Under the portfolio
method, a yield rate for the fund as a whole is computed over the period of the
investor’s contributions and is used to determine the value of his/her account.

The portfolio method, however, is not always an accurate indication of the
performance individual contributions. Suppose, for example, we can invest money
at a higher rate now than we could have at the same date last year. Since the term
on most investments is longer than a year, funds invested this year (“new money”)



22 1. COMPOUND INTEREST

make a greater contribution to the growth of the fund than funds invested last year.
To award these funds only the average ROR of the mutual fund is over the past
few years does not seem reasonable.

To account for such factors, many investment firms use the investment year
method. We will describe it on an annual basis, although typically smaller time
intervals would be used. When incremented annually, at the end of each year, a
separate rate of return is declared for each possible year of investment. Thus, for
example, a portion of the ROR chart for a fund might look something like the
following:

Purchase Year 1994 1995 1996 1997 1998 1999 2000 2001 2002
1994 Y ields 6.4% 6.8% 7.1% 6.9% 7.3% 5.1% 4.9% 4.8% 4.7%
1995 Y ields 6.9% 7.0% 7.0% 7.4% 5.0% 4.9% 4.8% 4.7%
1996 Y ields 7.1% 7.3% 7.3% 5.5% 5.4% 4.8% 4.7%
1997 Y ields 7.0% 7.4% 5.4% 5.2% 4.6% 4.7%
1998 Y ields 7.2% 5.7% 5.5% 4.5% 4.4%
1999 Y ields 5.8% 5.1% 4.3% 4.7%
2000 Y ields 5.0% 4.1% 4.6%
2001 Y ields 4.0% 4.5%
2002 Y ields 4.1%

ROR Chart

Thus, for example, if we had invested $1,000 on Jan. 1, 1994 and $500 on Jan.
1, 1995, then our total accumulation on Jan. 1, 2003 would be

(1.064)(1.068)(1.071)(1.069)(1.073)

· (1.051)(1.049)(1.048)(1.047)1000 = 1688.75

from our 1995 contribution, plus

(1.069)(1.070)(1.070)(1.074)

· (1.050)(1.049)(1.048)(1.047)500 = 794.31

from our 1996 contribution, for a total of

1688.75 + 794.31 = 2483.06.

Notice that from the ROR Chart, investments made between 1994-1996 all
earned the same rate of return both in 2001 (4.8%) and 2002 (4.7%). This illustrates
the principle that under the investment year method, funds on investment longer
than a certain fixed period (5 years in our example) are assumed to grow at the
overall ROR for the fund (the portfolio rate), regardless of when the funds were
invested.

To better indicate the switch from the investment year method to the portfolio
method, the data from the ROR chart above would typically be displayed in the
following abbreviated format where the first five year’s yield rates for each invest-
ment year are listed beside the year and the portfolio rates are listed in a separate
column to the right. Thus, the investment rates for a given investment year are
the entries in the row to the right of the year, including the entry in the Port Folio
Rate column, together with all of the entries in the Portfolio column below the
given year.
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.

Purchase y y + 1 y + 2 y + 3 y + 4 Portfolio Portfolio
Year (y) Rate Year

1994 6.4% 6.8% 7.1% 6.9% 7.3% 5.1% 1999
1995 6.9% 7.0% 7.0% 7.4% 5.0% 4.9% 2000
1996 7.1% 7.3% 7.3% 5.5% 5.4% 4.8% 2001
1997 7.0% 7.4% 5.4% 5.2% 4.6% 4.7% 2002
1998 7.2% 5.7% 5.5% 4.5% 4.4%
1999 5.8% 5.1% 4.3% 4.7%
2000 5.0% 4.1% 4.6%
2001 4.0% 4.5%
2002 4.1%

Abbreviated ROR Chart

For example, reading all of the way to the right, and then down, from 1995
yields the sequence

6.9%7.0%7.0%7.4%5.0%4.9%4.8%4.7%

which is the row corresponding to 1995 in the ROR Chart
It should be commented that determining the entries for the ROR Cart is

somewhat complicated. Suppose, for example, a security, bought in 1994, was sold
in 1996. The income might then be used to purchase a new security. Do the
returns on this new investment count as 1994 returns since the original investment
was made in 1994, or do the returns count as 1996 returns since they came from a
1996 purchase? Under the first described approach, money that came into the fund
in 1994 remains “1994 money” for ever (or rather until the portfolio rate kicks in).
For this reason, this approach is called the fixed index system. If reinvested funds
are associated with the reinvestment year, then the amount of “1994 money” will
gradually decline. This approach is called the declining index system.

Another application of rates of return is to what are called short sales. Imagine
that I run an investment house that holds 10 shares of stock in your name which
is currently worth $100 per share. I anticipate that the value of this stock will
decline in the coming year. I sell your stock at the beginning of the year. Suppose
that at the end of the year, this stock is selling at $90 per share. I buy back your
10 shares for $900, and walk away with a $100 profit. You still have your stock
and I have $100 profit. Selling securities that you don’t own with the intention of
eventually repurchasing them is called selling short. At first glance, it appears that
the yield rate on a short sell is infinite. In the above example, I earned $100 with
no investment. In actuality, however, my yield rate was not infinite. If the value of
your stock had gone up, I still would have had to buy it back whenever you demand
it. If I wish to avoid going to jail, I need to have enough money in reserve, over and
above the $1000 earned by selling your stock, to cover any potential gain in value
of your stock. These reserves, which are called the margin, are my investment;
they are what I put at risk. Typically the margin is described as a percentage of
the value of the security sold and is fixed by law. Thus, in my example I might
be required to have a margin of 50% of the value of the security, in which case
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my margin is $500. Thus, I invested $500 and earned $100, making my yield rate
20%. I am allowed to invest the margin in some (presumably secure) investment.
Hence, I would also earn interest on the margin, which would increase my yield rate
slightly. I am (by law) not allowed to invest the original $1,000 as this, in principal,
is not my money.

Computing the yield rate on a short sell is slightly more complicated if the
security sold yields dividends or income since I must pay all dividends and/or
income out of my own funds, as if the security had never been sold.

Example 17. 18. On Jan. 1, I sell a bond short for $5,000. My margin
requirement is 40% and I invest the margin at 3% annual effective. The bond pays
$30, quarterly. At the end the fourth quarter, I repurchase the bond for $4,700.
What was my dollar weighted ROR?

Solution. . We use the quarter as our basic time interval. The profit on the
short sale was $300. Our margin was .4 · 5000 = 2000. Over the year, our margin
earned .03 · 2000 = 60 dollars interest. Thus our year’s income/outgo was

0 1 2 3 4
−2000 −60 −60 −60 −60 + 2060 + 300

Thus, the dollar weighted ROR is (approximately)

i =
2300 − 60 − 60 − 60 − 2000

2000 + 3
460 + 1

260 + 1
460

= .0574

for a 5.74% return.

4. Discount and Force of Interest

According to formula 6, the value of money decreases as we look backward in
time. Specifically, at rate i, P dollars today was worth only (1 + i)−1P dollars last
year. The amount of decrease, then, is

P − (1 + i)−1P = (1 − ν)P

The rate of decrease

(12) d = 1 − ν

is called the discount rate. It is common to state the discount rate, instead of the
interest rate, in which case we will typically need first to compute the interest rate.
Formula 12 in Section 1 may be written in the form

(13) (1 + i)−1 = 1 − d

which facilitates translating back and forth between discount and interest.
Just as with interest, there are also nominal discount rates.

Definition 6. A discount rate of d compounded n times per year is equivalent
with a discount rate of d/n per compounding period.

Example 18. How much will we have after 10 years if we invest $ 2000 at a
discount rate of 4% per year, compounded monthly.
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Solution. From Formula 13 in Section 1, the monthly interest rate is com-
puted from

1 + i = (1 − .04

12
)−1 = 1.003344482

Hence i = .003344482. Thus, using Formula 5, our accumulation is

(1.003344482)1202000 = 2985.64

dollars.

Another common measure of interest is what is called the “force of interest.”
From Formula 5, the balance B(t) in the account at time t satisfies

(14)

B(t) = (1 + i)tP

= eln((1+i)t)P

= etδP

where

(15) δ = ln(1 + i)

The number δ is the force of interest.

Example 19. An account grows with a force of interest of .0334 per year.
What is the interest rate?

Solution. From Formula 15,

1 + i = eδ = e.0334 = 1.034998523

Thus, i = .035.

Note that differentiating Formula 14 produces

B′(t) = δB(t)

This tells us two important things:

(1) The rate of growth of the amount function is proportional to the amount
of money in the account.

(2) The proportionality constant is the force of interest.

We can use the force of interest to describe circumstances in which the interest
rate varies over time. Specifically, solving the preceding equation for δ produces

(16) δ =
B′(t)

B(t)
=

d

dt
(lnB(t))

Definition 7. If B(t) represents the amount in an account at time t, then the
force of interest for this account is the quantity δ(t) defined by Formula 16.

Note that from Formula 16
∫ t1

t0

δ(t) dt = lnB(t1) − lnB(t0)

= ln
B(t1)

B(t0)

This formula proves the following proposition.
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Proposition 1. If an account grows with force of interest δ(t) over the interval
[t0, t1], then

(17) B(t1) = e
∫ t1

t0
δ(t) dtB(t0)

Example 20. What is the annual effective rate of return on an account that
grew at 4% interest per year for the first 2 years, a force of interest of δt = 1

2+t for

the next 3 years, and a discount rate of 4% for the last 2 years?

Solution. From formulas (17) and (13) over the 7 year period P dollars will
grow to

(1 − .04)−2e
∫

5

2

1
2+t

dt(1.04)2P

= (1.085)e(ln 7−ln 4)(1.0816)P

= (1.085)(
7

4
)(1.0816)P

= (2.054)P

The annual effective rate i is determined by solving the equation

(1 + i)7 = 2.054

which yields i = 10.82%.

5. Annuities

The single most important theorem in interest theory is

(18) xn + xn−1 + · · · + x + 1 =
xn+1 − 1

x − 1

The proof is simple:

(xn + xn−1 + · · · + x + 1)(x − 1) = (xn + xn−1 + · · · + x + 1)x − (1 + x + x2 + · · · + xn)1

= xn+1 + xn + · · · + x2 + x

− xn − xn−1 − · · · − x − 1 = xn+1 − 1

which is equivalent with formula (18).
The significance of formula (18) is that it is used to analyze annuities. An

annuity is an account into which we make either periodic deposits or periodic with-
drawals. If the transactions always occur at the end of the compounding period,
the annuity is said to be an annuity immediate while if the transactions always
occur at the beginning of the compounding period, the annuity is said to be an
annuity due. If we deposit C dollars at the end of the year for each of n years into
an account that earns compound interest at rate i, then, from formulas (4) and
(18), our balance is

B(n) = (1 + i)n−1C + (1 + i)n−2C + · · · + (1 + i)C + C =
(1 + i)n − 1

i
C,

which we may express as

B(n) = sn|iC

where

(19) sn|i =
(1 + i)n − 1

i
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Example 21. I deposited $300 at the end of each year from 1981 to 2000 into
an account that yields 3% interest per year. How much do I have at the end of
2000?

Solution. From formula (19) I have

300s20|.03 = 300
(1.03)20 − 1

.03
= 8061.11

dollars.
On the BA II Plus we enter [2nd][P/Y]1,[ENTER], [CE/C], 3[I/Y], 0[PV],20[N],

300[PMT], [CPT][FV], [+/-]yielding 8061.11 . If there had been an initial balance
in the account, we would have entered it (as a positive value) into the PV register.

Depositing C at the beginning of each year is equivalent with depositing (1+i)C
at the end of the year. Hence, n deposits of C at the beginning of each year
accumulates to

B(n) = (1 + i)sn|iC.

The corresponding accumulation function is

(20) s̈n|i = (1 + i)sn|i

Example 22. I deposited $300 at the beginning of each year from 1981 to 2000
into an account that yields 3% interest per year. How much do I have at the end
of 2000?

Solution. From formula (20) we have

(1.03)s20|.03300 = (1.03)8061.11 = 8302.95

dollars.
On the BA II, we first set the calculator to beginning mode by entering [2nd][BEG][2nd][SET].

We then enter the data just as in Example 21. Don’t forget to reset the calculator
to END mode after the calculation is finished.

We may use formulas (19) and (20) for accounts where the periods between
deposits differs from the compounding period. We only need to remember that i is
the interest per deposit period and n is the number of deposit periods.

Example 23. At the beginning of 1992, I opened a bank account earning 4%
interest, compounded quarterly, with a $5,000 deposit. I deposited $100 at the
beginning of each month from 1992 to 2001. What was my balance on Dec. 31,
2001?

Solution. Over the 10 years from Jan. 1, 1992 to Dec. 31, 2001, the original
$5000 grew to

(1 + .04/4)405000 = 7444.32

The annual effective interest rate is (1 + .04/4)4. Hence, each month, my account
grows by

(1.04/4)4/12 = 1.003322284

making the monthly rate .003322284. Ten years is the same as 120 months. Hence,
from formula (20), the monthly deposits accumulated to

1.003322284
(1.003322284)120 − 1

.003322284
100 = 14763.58
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Hence, the total is

7401.22 + 14717.61 = 22118.83

dollars.
On the BA II Plus, after setting th calculator to beginning mode, we would

enter [2nd][P/Y]. The display should read “P/Y =”. Enter 12[ENTER] (12 pay-
ments/year), followed by the down (or up) arrow. The display now should read
“C/Y =”. Enter 4[ENTER] (quarterly compounding)[CE/C]. We would then en-
ter -5000[PV], -100[PMT], 10[2nd][xP/Y][N], [CPT][FV].

Remark. Computations using short compounding periods over long periods
of time are highly susceptible to round-off error. For example, had we rounded the
monthly rate from Example (23) to .003, then we would compute the accumulation
of the monthly deposits as

(1.003)
(1.003)120 − 1

.003
100 = 14461.83

which is off by almost $300! When doing compound interest problems without
a financial calculator, you should make full use of the memory of your calculator,
writing as little on paper as possible. Specifically, in Example (23), I would compute
the interest rate as (1.01)1/3 − 1, never recording the answer. I would compute the
final answer as

[2nd][Ans] ∗ (1 + [2nd][Ans])120 − 1

[2nd][Ans]
100 = 14763.58

As mentioned previously, in actuarial work, the most typical example of an
annuity is a retirement account where the individual accumulates a sum of money
while employed, intending to make periodic withdrawals over a space of time to
cover living expenses. It follows from the prospective method (formula (7)) that
the balance required at time 0 to make future payments of C1, C2, . . . , Cn at times t1,
t2, . . . , tn is the sum of the present values at time 0 of the payments. In particular,
to receive n payments of C at the end of each compounding period, i.e. for an
annuity immediate, our initial balance must be

B = (1 + i)−nsn|iC

= an|iC

where

(21) an|i = (1 + i)−n (1 + i)n − 1

i
=

1 − νn

i

If we wish to receive the payments at the beginning of the compounding period,
i.e. for an annuity due, we require an initial balance of

B = (1 + i)an|iC

= ¨an|iC

where

(22) ¨an|i = (1 + i)an|i

Example 24. I Plan to retire at age 70, at which time I will withdraw $5,000
per month for 20 years from my IRA. I also want to receive a final payment of
$8,000 for a 90th birthday trip to Hawaii. Assuming that my funds are invested
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at 4.7% interest, compounded monthly, how much must I have accumulated in my
IRA?

Solution. The interest rate is i = .047/12 and ν = (1 + i)−1 = .9960986134.
The required balance is the present value of the future payments which, from the
above discussion, is

a20·12|i5000 + ν20·128000

=
1 − ν240

i
5000 + ν2408000

= 777005.53 + 3130.77 = 780136.30

dollars.
On the BA II, I would enter [2nd][P/Y]12,[CE/C], 20[2nd][xP/Y], [N], −8000[FV],

−5000[PMT], [CPT][PV]. Note that the payments are negative since we are with-
drawing funds from the account.

Remark. At times, figuring out what to enter into the calculator can be con-
fusing, Suppose, for example, we wish to find the present value of 75 payments of
$200 at 6% interest per payment. It is clear that we can set P/Y = 1 and then enter
75[N], 200[PMT], 6[I/Y]. What is, perhaps, less clear is that we should enter 0[FV].
This might seems wrong at first because certainly, the future value of the payments
is not 0! Remember, however, that the present value is the amount we need to
invest today to eventually grow to the same amount as the total accumulation of
the payments. Thus, in addition to receiving the payments, we are also making an
investment at time 0–i.e. receiving a negative payment. The total future value is
zero when we include this negative value.

A perpetuity is an annuity that generates a stream of income that lasts “forever.”
Just as with annuities, a perpetuity immediate generates income at the end of each
compounding period while a perpetuity due generates income at the beginning of
each compounding period. For example, an account that funds a $5,000 annual
prize to be awarded at the end of each year could be considered as a perpetuity
immediate.

In the typical perpetuity immediate, a sum P is invested at rate i. At the end
of each payment period, the perpetuity pays out the interest earned during that
period so that the principal remains intact. Thus, the payment is

C = iP.

Conversely, to receive payments of C at the end of each compounding period in
perpetuity, then, at interest rate i, the principal must be

P =
C

i
.

If we wish to pay C at the beginning of each compounding period, then, to
have the principal intact at the end of the period, we require

P = (1 + i)(P − C)

which is easily solved to yield

P = (1 + i)
C

i
.
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We have seen previously that the principal required to make a finite series of pay-
ments in the future is the total present value of all of the payments. This suggests
the following definitions.

Definition 8. The present value at interest rate i of a perpetuity immediate
that pays C at the end of each compounding period is

(23) PV =
C

i
.

For an annuity due that pays C at the beginning of each compounding period, the
present value is

(24) PV = (1 + i)
C

i
.

Another way of motivating this definition is to let n tend to infinity in for-
mula (21):

lim
n→∞

an|iC = lim
n→∞

1 − νn

i
C =

C

i
.

Similarly,

lim
n→∞

¨an|iC = lim
n→∞

(1 + i)an|iC = (1 + i)
C

i
.

Example 25. Purdue Life is interested in acquiring a company (IU Guarantee)
that is expected to yield a net income of $400,000 at the end of each year after the
acquisition for the conceivable future. If Purdue Life can invest funds at 8% interest
per year, what is the most they should pay for this company?

Solution. From formula (23), the present value of the future payments at 8%
interest is

400000/.08 = 5, 000, 000

dollars, which is the most they should pay.
Another way of reasoning would be to note that $5,000,000, invested at 8% per

year would yield the same income stream, so this is the most the company is worth.
If the income had begun immediately, instead of at the end of the year, then,

from formula (23), the final answer would be multiplied by 1.03.

The annuities discussed so far have been constant annuities in that the payments
are the same each period. In a decreasing annuity immediate, at the end of each
period, each payment is P less than the previous payment, where P is constant.
For example, if P = 10, our payments might be 200, 190, 180, 170, . . . , 110. As the
reader will see shortly, such annuities may all be analyzed in terms of the special
case where the last payment is P , in which case the first payment would be nP
where n is the number of payments. In this case, if payments P are made at the end
of each period into an account at interest rate i per period, the amount is PDsn|i

where

Dsn|i = n(1 + i)n−1 + (n − 1)(1 + i)n−2 + · · · + 2(1 + i) + 1
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To obtain a formula for Dsn|i, we differentiate both sides of formula (18) with
respect to x, obtaining:

nxn−1 + · · · + 3x2 + 2x + 1 =
(n + 1)xn(x − 1) − (xn+1 − 1)

(x − 1)2

=
nxn(x − 1)

(x − 1)2
+

xn(x − 1) − (xn+1 − 1)

(x − 1)2

=
1

x − 1
(nxn) − 1

x − 1

xn − 1

x − 1

Setting x = 1 + i yields

(25) Dsn|i =
n

i
(1 + i)n − 1

i
sn|i

Note that

PDsn|i =
Pn

i
(1 + i)n − P

i
sn|i

This formula says that an n payment decreasing annuity with payments nP, (n −
1)P, . . . , P has the same value as an n term annuity with initial balance nP/i and
constant payment −P/i. In using this formula, the reader must be careful to note
that i is the interest per compounding period; not the nominal interest rate.

Example 26. We pay $7,000 at the end of the first quarter into an account that
earns interest at 3.3% compounded quarterly. Each quarter thereafter we deposit
$1000 less. What is the accumulation at the end of the year?

Solution. Or deposits were

7000 6000 5000 4000

which cannot be analyzed using formula (25) since the last payment was not 1000.
However, the above payment stream is equivalent with paying

3000 + 4000 3000 + 3000 3000 + 2000 3000 + 1000

From the comments following formula (25) our annuity is equivalent with a constant
annuity with initial balance

4 · 1000/(.033/4) = 484848.4848

and payment

−1000/(.033/4) + 3000 = −118212.1212

Hence, the answer is

484848.4848(1 + i)4 − 118212.1212s4|i

where i = .033/4. To compute this on the BA II, we enter

[2nd][P/Y]4[ENTER][CE/C]

4[N]

3.3[I/Y]

4 ∗ 1000/(.033/4) = [PV]
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−1000/(.033/4) + 3000 =[PMT]

[CPT][FV]

[+/-]

getting 22315.34162.

An increasing annuity immediate is an annuity immediate with the property
that each payment is P more than the previous payment, where P is constant. We
don’t need any new formulas to analyze increasing annuities, as the next example
shows.

Example 27. We pay $4,000 at the end of the first quarter into an account that
earns interest at 3.3% compounded quarterly. Each quarter thereafter we deposit
$1000 more. What is the accumulation at the end of the year?

Solution. Or deposits were

4000 5000 6000 7000

which we interpret as

8000 − 4000 8000 − 3000 8000 − 2000 8000 − 1000

Hence, letting i = .033/4, we see that the accumulation is

8000s4|i − 1000Ds4|i

which we compute by setting PMT = 8000+1000/(.033/4), PV = −4·1000/(.033/4),
and proceeding otherwise as in the preceding example, getting 22, 232.159.

The above example makes it clear that we do not need a separate formula for
increasing annuities. It is, nevertheless, useful to have one, especially if one is, say,
taking an actuarial exam. We leave it as an exercise to show that accumulation
of an annuity immediate whose payments at the end of each payment period of
1, 2, . . . , n is

(26) Isn|i =
1 + i

i
sn|i −

n

i

This formula says that the future value of a n payment increasing annuity with
first payment P equals −Pn/i plus the future value of an n term annuity with
present value 0 and constant payment (1 + i)P/i where, again, i is the interest per
compounding period; not the nominal interest rate.

Example 28. Solve Example 27 using formula (26).

Solution. We interpret our deposits as

3000 + 1000 3000 + 2000 3000 + 3000 3000 + 4000

The accumulation is
3000si|4 + 1000Isi|4

where i = .033/4. To compute this, after having set i and P/Y as before, we enter

0[PV]
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3000 + (1 + .033/4)1000/(.033/4) =[PMT]

[CPT][FV]

[+/-]

−1000 ∗ 4/(.033/4) =

getting 22, 232.159 as before.

The present values of increasing and decreasing annuities are, of course, also
important. These are denoted, respectively, by

Ias|i = ν−sIsi|a

Das|i = ν−sDsi|a

Example 29. Compute the present value of the annuity in Example 26.

Solution. As in Example 26, our annuity is equivalent with a constant annuity
with initial balance

4 · 1000/(.033/4) = 484848.4848

and payment

−1000/(.033/4) + 3000 = −118212.1212

Our strategy is to first compute the present value of the payments and then add
the initial balance. For this, if the calculator is still set as in Example 26, we can
enter 0[FV], [CPT][PV],[+/-],[2nd][Ans]+484848.4848 =. Note that we needed to
use the [+/-] key since, as we have noted previously, the computed present value is
really the negative of the true present value. We get 21,593.9388.

Exercises

(1) What is the amount you will have if you invest $75 at the end of each
month for 10 years if the account pays 7.5% compounded monthly?

(2) How much will you will have on December 31, 2000 if you invested $150
at the end of each month starting in January 1996 in an account that pays
4.8% compounded monthly?

(3) What is the amount you can borrow today if you are willing to pay $300 at
the end of each month for 5 years for a loan that charges 9% (compounded
monthly).

(4) What is the amount you need to invest at the end of each month to have
saved $8000 at the end of 4 years if the account pays 5% compounded
monthly?

(5) You intend to start depositing $100 into an account at the end of each
month starting December 31, 2000. How long will it take you to save
$38,000 for your dream car if the account pays 6% compounded monthly?

(6) You intend to start depositing $200 into an account at the end of each
month starting December 31, 2000. How long will it take you to save
$38,000 for your dream car if the account pays 6% compounded monthly?
(Compare with previous problem.)
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(7) Starting January 31, 1990, you saved $100 at the end of each month in an
account that paid 6% compounded monthly. Starting August 31, 1999,
you increased the monthly contribution to $150. How much will you have
accumulated by December 31, 2000?

6. Loans

In interest theory, the difference between borrowing money and saving money is
only in the point of view. In a bank account, each deposit is in essence a loan to the
bank and each withdrawal a partial repayment of the loan. The interest I earn on
the account is the interest the bank pays me on this loan. Thus, the only difference
between a bank loan and a bank account is in who is doing the lending and who
is doing the borrowing. It follows that formula (4) also describes the balance on a
loan after n payments where B0 is the amount borrowed (the principal), Ci is the
amount of the ith payment which is made at time ti (Ci will be negative in this
case), and i is the interest rate.

The most common method of repaying a loan is by equal, periodic payments
of C, made at the end of each compounding period together, if necessary, with a
final, additional, “balloon payment” made at the end of the term. This method
of repayment is called amortization. In this case, from formulas (4) and (18), the
balance after the nth payment is

(27) P (n) = P (1 + i)n − Csn|i.

Example 30. I borrow $25,000 to buy a car on which I pay $1000 down and
make monthly payments at the end of the month over the next 5 years. If I pay
7% interest, compounded monthly, what are my monthly payments?

Solution. After my down payment, I owe $24,000. Saying that the interest
is 7% compounded monthly, means that the monthly interest rate is .07/12. From
formula (27)

0 = (1 +
.07

12
)5·1224000 − (1 + .07

12 )12·5 − 1

.07/12
D

0 = 34023.01 − 71.59D

D = 475.23

which is our monthly payment.
On the BAII, we would simply enter 24000[PV], -200[PMT], 0[FV], [2nd][P/Y]12,

[CE/C], 5[2nd][xP/Y][N], [CPT][PMT]].

Example 31. I make the following deal with a piano rental company. For
$200 a month, I can rent a piano which is worth $15,000. After 10 years, I own
the piano. In essence, they are loaning me $15,000 which I repay in installments of
$200/month. What annual interest rate, compounded monthly, are they charging
me for this loan?

Solution. Let i be the monthly interest rate. From formula (27), for my loan
to be paid off in 10 years

(28) 0 = (1 + i)12015000 − (((1 + i)120 − 1)/i)200

There is no direct way to solve this equation for i. On the BAII, we would
simply enter 15000[PV], -200[PMT], 0[FV], [2nd][P/Y]12, [CE/C],10[2nd][xP/Y][N]
[CPT][I/Y].
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If we borrow P dollars at rate i per period, then at the end of one period we
owe P + iP . If we pay only the interest iP , then we still owe P at the end of the
period. Hence, to pay off the loan with a finite number of equal payments, each
payment must be greater than iP . It is possible to have a loan where the payments
are less than iP . In this case the lender will require that the borrower will pay off
the remaining balance after a fixed period of time.

Definition 9. An amount P lent at rate i per period is said to be lent at a
premium if the periodic payment C satisfies C > iP . If C ≤ iP the loan is said to
made at a discount.

Example 32. I borrow $8,000 at 5% interest, compounded quarterly, on which
I pay $75 per quarter for 10 years. What is my final, additional, payment?

Solution. Notice that (.05/4)8000 = 100 > 75. Hence our loan is at a dis-
count, so our final payment will be larger than $8,000. Specifically, the final pay-
ment will be

8000(1 + .05/4)40 − 75s40|.05/4 = 9287.24

On the BAII, we would enter 8000[PV], -75[PMT], [2nd][P/Y]4, [CE/C], 5[I/Y],
[CPT][FV].

For a borrower, an important question is ”How much do I owe after the nth
payment?” The prospective method tells us that the outstanding balance is the
present value of all of the remaining payments. This method is useful when we are
not given the original amount borrowed.

Example 33. I have a 30 year loan at 7.3% compounded quarterly on which
I pay $500 each quarter together with an additional final payment of $3000. How
much do I still owe at the end of 5 years? How much did I originally borrow?

Solution. The present value of the 25 · 4 = 100 remaining payments is

3000(1 + .073/4)−100 + a100|.073/4500

which we compute on the BAII: -3000[FV], -500[PMT], 7.3[I/Y], [2nd][P/Y]4[ENTER],
[CE/C], 25[2nd][xP/Y][N], [CPT] [PV] finding that we still owe $23,398.74. The
original amount borrowed is found by entering 30[2nd][xP/Y][N], [CPT][PV], get-
ting $24,612.35.

Let B(n) denotes the balance on a loan at interest rate i after the nth payment.
The absolute value of the change in the balance

P (n) = |B(n) − B(n − 1)|
is the principal adjustment in the nth period. Then

B(n) = B(n − 1) ± P (n)

with “±” depending on the sign of B(n) − B(n − 1).
Specifically, for a loan at a premium, B(n) < B(n − 1) and the minus sign

holds. The principal adjustment is then less than the payment. For a loan at a
discount B(n) ≥ B(n − 1) and the plus sign holds.

To find a formula for P (n), note that just before the nth payment, we owe
(1 + i)B(n − 1). Hence, immediately after the nth payment, we owe

(29) B(n) = (1 + i)B(n − 1) − C
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where C is our payment. Thus

(30) P (n) = |(1 + i)B(n − 1) − C − B(n − 1)| = |iB(n − 1) − C|
For a loan at a premium, iB(n − 1) < C so P (n) = C − iB(n − 1) so

C = iB(n − 1) + P (n)

We think of iB(n − 1) as that part of the payment going into paying the interest
on the loan and P (n) as that part of the payment going into paying the principal.

Example 34. In Example 33, divide the 21st payment into the portion going
into paying the interest and that going into paying the principal.

Solution. From the solution to Example 33, the balance after the 20th pay-
ment is $23,398.74. One quarter’s interest on this balance is

(.073/4)23398.74 = 427.03

which is the portion of the payment going into interest. The rest of the payment,
500 − 427.03 = 72.97, goes into paying the principal.

On the BAII, enter all of the data just as in Example 33. Then enter [2nd][AMORT]
to put the calculator into the amortization work sheet. At the “P1 =” prompt press
21[ENTER]. Then press the down arrow to get the “P2 =” prompt. Press 21[EN-
TER]. Then press the down arrow; you see the balance after the 21st payment
(32,325.77). Press the down arrow again; you see -72.293, the total principal paid
between payments P1 (21 in our case) and P2 (again, 21). Press the down arrow
again; you see -427.03, the total interest paid between payments P1 and P2.

If you would like to see what portion of the 22nd payment is interest and what
is principal, press the down arrow again to return to the “P1 =” prompt and press
[CPT] which will increase both P1 and P2 by one unit.

An amortization schedule is a table which lists, payment-by-payment, the amount
of the payment, the portion of the payment going into interest, the portion going
into principal, and the balance. It is clear from the discussion at the end of Exam-
ple 34 that we can generate an amortization schedule using the BAII. However, it
is easier to use Excel. Below is the first 5 lines of an amortization schedule for the
loan described in Example 33 through the 21st payment.

Loan Amt. $24,612.35 %i 0.073 quarterly

Pmt. # Value Prin. Int. Balance
1 500 50.82 449.18 24, 561.53
2 500 51.75 448.25 24, 509.77
3 500 52.70 447.30 24, 457.08
4 500 53.66 446.34 24, 403.42
5 500 54.64 445.36 24, 348.78

As the loan is paid off, the principal adjustment steadily increases. In fact,
from formula (29),

B(n) − B(n − 1) = (1 + i)B(n − 1) − C − [(1 + i)B(n − 2) − C]

= (1 + i)(B(n − 1) − B(n − 2))

Hence
P (n) = (1 + i)P (n − 1)
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Thus, P (n) grows according to the compound interest formula. In particular

(31) P (n) = (1 + i)n−1P (1)

Remark. Equation 31 is useful on actuarial exams and should be memorized.

Example 35. In the 17th payment on a loan, $125 goes into the principal,
while in the 20th payment, $150 goes into principal. What is the interest rate on
the loan? If each payment is $200, and the loan is at a premium, what was the
original amount of the loan? Answer the same question under the assumption that
the loan is at a discount.

Solution. From Equation 31,

125 = (1 + i)16P (1)

150 = (1 + i)19P (1)

150

125
= (1 + i)3

1 + i = 1.062658569

for a 6.3% interest rate. It also follows that

P (1) = (1.062658569)−16125 = 47.27265944

For a loan at a premium, the payment is greater than the interest and

P (1) = 200 − (.062658569)B(0) = 47.27265944

which may be solved for B(0) yielding B(0) = 2, 437.45 which is the original amount
of the loan.

For a loan at a discount, the interest is greater than or equal to the payment
so

P (1) = (.062658569)B(0) − 200 = 47.27265944

which yields B(0) = 3, 946.35.

If each payment on a loan at interest rate i is C = iP where P is the principal,
then the balance after each payment is P . Thus, we will need to pay P at the term
of the loan. To get the money to pay this final payment, we could make regular
deposits into an account at, perhaps, a different rate of interest, say j. Such an
account is called a sinking fund since as its value grows, the amount we need pay out
of our pocket to make the final payment on our loan sinks. Typically the payments
to the sinking fund will be made simultaneously with the payments on the original
loan.

Example 36. I borrow $350,000 from a bank at 5.5% compounded monthly
which I will repay in 13 years by making monthly payments into a sinking fund
owned by the bank that earns interest at 4.4%, compounded monthly. What are
my total monthly payments? What is the bank’s annual effective rate of return on
its investment?

Solution. Our payments C into the sinking fund must total to $350,000.
Hence, for i = .044/12,

Cs13·12|i = 350000
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which can be solved for C. In reality, however, we use the BAII setting [2nd][P/Y]12[ENTER],
[CE/C], 5.5[I/Y],13[2nd][xP/Y][N], 0[PV],-350000[FV],[CPT][PMT]. Our monthly
payment into the sinking fund is $1,666,76.

We also must pay the monthly interest on the $350,000 which is

(.055/12)350000 = 1604.17

making our total payment

1666, 76 + 1604.17 = 3270.93

To find the bank’s rate of return, we note that the bank pays out $350,000 and
receives 13 · 12 = 156 payments of $3,270.93. The future value of he income must
equal the future value of the outgo. Hence, the monthly ROR is found by solving

s156|j3270.93 − 350000(1 + j)156 = 0

for j. We would still, however, need to convert to annual compounding by setting

1 + k = (1 + j)12

since an annual rate of return was requested.
On the BAII, we set [2nd][P/Y]12[ENTER] , [CE/C] , 156[N], -350000[PV],

3270.93 [PMT], 0[FV], [CPT][I/Y]. We find i = 5.84% annual ROR. This, however,
is a nominal rate, compounded monthly. To convert to a yearly rate, we compute

(1+ [RCL][I/Y]/(100*12))[yx]12 = 1.006090

for a 6.1% annual ROR. This is also our annual effective interest rate on the loan.

In general, if you borrow P at rate i per repayment period and pay into a
sinking fund which earns rate j, then the payment into the sinking fund is

C = P/sN |j

where N is the total number of payments. Thus, the total payment is

(32)

Ctot = iP + P/sN |j

=
isN |j + 1

sN |j

P

Suppose i = j. Then the numerator becomes

jsN |j + 1 = (1 + j)N − 1 + 1 = (1 + j)N

so equation (32) is equivalent with

CsN |j = (1 + j)NP.

From equation (27), it follows that C is also the payment required to pay off P in
N years using the amortization method. Thus, if the rate of interest on the sinking
fun equals that on the loan, the sinking fund method of repayment is equivalent with
the amortization method.
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7. Bonds

It is, of course, not common for an individual to take out a loan at a discount:
the final payment is rarely more than the original loan. It is, however, common
in the bond market. A coupon bond 1 is a type of security, typically sold by
a company or a governmental unit, which in the simplest case, pays out a fixed
sum (the coupon) at regular periods (typically quarterly or semi annually) for a
predetermined number of years (the term). At the end of the term, the bond
is said to have reached maturity at which time the holder receives an additional,
predetermined payment, called the redemption value or par value of the bond. Thus,
an $8,000 par value, 5 year bond with $200 quarterly coupons, would generate $200
for 20 quarters, together with a final payment of $8,000.

Bond are bought to yield a particular rate of return. If we want a return rate
of i, then the price of the bond is the present value of all of the expected payments
at rate i.

Bonds also carry a face value. Typically the face value equals the redemption
value, although these values would differ if, say, the bond were redeemed prior to
maturity. The bond is said to be “redeemed at par” if the redemption value equals
the face value. Often the coupon is stated as a percentage of the face value F . This
percentage is unrelated to the yield rate and is used only in determining the value
of the coupon.

Example 37. Determine the price of the $8,000 bond mentioned above if it is
purchased to yield 6%, compounded quarterly.

Solution. Let i = .06/4. The present value of all of the payments is

200a20|i + (1 + i)−208000 = 6469.55

which is the price of the bond. On the BA II Plus, we would first set xP/Y = 4.
Then N = 5, I/Y = 6, PMT = −200, FV = 8000 and then press [CMP][PV].

Bonds are in essence loans made by the purchaser to the seller. The purchase
price is the amount of the loan. The yield rate is the interest rate of the loan
and coupons are the payments on the loan. The redemption value is just a final
payment. Thus, the following questions have the same answer:

Loan Question: How much could I borrow at 5% interest, compounded quarterly,
if I am willing to pay $150 twice a year for 7 years, together with a final payment
of $5000?

Bond Question: What is the purchase price of an 7 year par value $5,000
bond with quarterly coupons of $150 purchased to yield a 5% return, compounded
quarterly?

Since bonds are loans, we may use the loan terminology and formulas to discuss
bonds. Thus, we can, for example, discuss the balance of the bond, the principal
adjustment, and whether the bond was bought at a premium or at a discount.
Specifically, it will be at a discount if the redemption value is greater than or
equal to the purchase price. We can also use amortization tables for bonds, with

1There are also accumulation bonds which are bonds where the interest on the bond is

reinvested at the same rate as the principal and is returned to the customer only when the bond

is redeemed. Hence, an accumulation bond is analyzable as a fixed sum invested at a fixed rate

of compound interest for a fixed time period.
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the columns appropriately relabeled. The exercises go into these points in greater
detail.

Exercises

(1) What is the amount you can borrow on January 15, 2001 if you are willing
to pay $1250 on the 15th of each month, starting February 15, 2001 with
the final payment on July 15, 2013 if the interest rate is 6% compounded
monthly?

(2) What is the amount of each payment if you borrow $18000 on a 60 month
auto loan that is charging 10.8% (compounded monthly)?

(3) What is the amount of each monthly payment on a 15 year mortgage that
charges 8.4% (compounded monthly) if the purchaser needs to borrow
$149,500?

(4) What is the amount of each monthly payment on a 30 year mortgage that
charges 8.4% (compounded monthly) if the purchaser needs to borrow
$149,500? (Compare with previous problem.)

(5) Bob Roarman will sell you a slightly used car for $7,500 cash or you can
buy the same car for 60 payments of only $159 each (made at the end of
each month). What rate of interest is Bob charging?

8. Continuous Processes

We have seen that for a given nominal yearly rate i, compounding monthly
produces higher yields than yearly compounding. Compounding daily produces
even higher yields. We can even compound every second. There is, however, a
point at which the rate of compounding makes little difference. Specifically, if we
compound n times a year at the nominal rate i, then P grows to

(1 +
i

n
)nP

Using L’Hopital’s rule (see Exercise ??) it can be shown that

lim
n→∞

(1 +
i

n
)nP = eiP

Hence if we compound continuously at nominal rate i, the effective rate of return
is j where

1 + j = ei.

Thus, for example continuous compounding at nominal rate 3.3% produces an ef-
fective rate of

1 + j = e.033 = 1.033550539

for an effective rate of 3.355%. On the other hand, daily compounding yields

1 + j = (1 +
.033

360
)360 = 1.033549100

which produces more or less the same ROR.
It is also possible to imagine depositing money continuously. Suppose that our

company earns C dollars per year, spread out evenly throughout the year. At the
end of each day, we deposit the day’s income into an account that earns interest at
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an annual effective rate of i. Thus, each deposit is C/360 dollars. (Recall that by
our convention, a year has 360 days.) The daily interest rate is defined by

1 + j = (1 + i)1/360.

Hence, after n years, our amount function is

A(n) =
(1 + j)360n − 1

j

C

360

=
(1 + i)n − 1

j

C

360

= isn|i
1

360j
C

= isn|i
1/360

(1 + i)1/360 − 1
C

We could, in theory, deposit our income at the end of every second, in which
A(n) would be given by the same formula, except that 360 would be replaced by
the number of seconds in a year. In general, if we deposit our profits m times a
year, our amount is

(33) Am(n) = isn|i
1/m

(1 + i)1/m − 1
C

As m tends to ∞, 1/m tends to zero. From L’Hopital’s rule

lim
x→0

x

(1 + i)x − 1
=

1

ln(1 + i)
=

1

δ

where δ is the force of interest.
Hence, taking the limit as m tends to infinity in formula 33 motivates the

following definition.

Definition 10. Depositing funds continuously at C per compounding period
into an account that yields interest rate i per compounding period accumulates to

A(n) = sn|iC

after n compounding periods where

(34) ss|i =
i

δ
sn|i

and where δ = ln(1 + i) is the force of interest.

Remark. We do not require that n be an integer in formula 34.

Example 38. If you invest $ P at the end of each month for 18 years in an
account that earns 7.1% interest, compounded monthly, your sums will accumulate
to $250,000. How much would you have accumulated if you had been depositing
continuously at the rate of $ P per month?

Solution. We adopt the month as our basic unit of time. Let i = .071/12.
The given tells us that

s240|iP = 250000
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Hence, the answer is

s240|iP =
i

δ
s240|iP

=
i

δ
250000 = (1.003038647)250000 = 250759.6618

9. Depreciation Methods

When a company buys an asset, say a computer, the value of the asset of course
declines over time. This loss of value can at times be considered as a business
expense; hence as a tax deduction. Or if a company is to be sold, the value of all of
its assets must be determined. In both cases it becomes necessary to compute the
loss in value (the depreciation) of the asset. There are many ways of computing
depreciation which may yield very different answers. The choice of a particular
depreciation technique is often dependent on its intended use. For tax purposes, one
might, for example, want to choose a technique that depreciated the equipment as
quickly as possible to get the write off as soon as possible. When selling a company,
one might want to choose a technique that depreciated the equipment more slowly
in order to create a larger valuation of assets. All of the depreciation techniques we
discuss begin with an initial value A of the asset, a time interval [0, n] over which
the depreciation occurs, and a final value S, the salvage value, of the asset. For
convenience, we will think of n as representing years although it could, of course,
represent any of the other common units of time e.g. days, months, quarters, etc.
The goal is to assign a value B(t), the book value, to the asset for all t in the given
time interval. One is also interested in the depreciation charge D(t), which is the
amount the asset depreciated over the year ending at time t. Mathematically

D(t) = B(t − 1) − B(t).

We think of D(t) as representing that part of the cost of using the asset over the
year which is attributable to depreciation.

The simplest depreciation technique is the straight line method under which
the book value is assumed to decrease linearly from A to S over the stated time
interval. Thus

(35) B(t) = A − A − S

n
t

In this case, the depreciation charges are constant since

(36)

D(t) = B(t − 1) − B(t)

= A − A − S

n
(t − 1) − (A − A − S

n
t)

=
A − S

n

Example 39. A laptop computer bought in Jan. 2000 for $4500 is depreciated
over a 5 year period assuming the straight line method and a salvage value of $1000.
What is its book value in Jan. 2003? What was the depreciation charge for 2003?

Solution. . From equation (35)

B(t) = 4500 − 4500 − 1000

5
t

= 4500 − 700t
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Thus, the book value on Jan. 1, 2003 is

B(3) = 4500 − 2100 = 2400.

The depreciation charge for 2003 is B(2) − B(3) = 700.

After the straight line method, the next simplest depreciation technique is the
constant percentage (compound discount, declining balance) method. Under this
method, the value of the asset is assumed to decline by a fixed fraction d each year,
reaching its salvage value after n years. Mathematically, this is equivalent with
investing A into an account that earns compound interest at rate i = −d where
d > 0. Thus, under this method

B(t) = (1 − d)tA

where d is determined by the equation

S = (1 − d)nA

The number d is referred to as the rate of discount for the asset.

Example 40. Redo Example 39 using the declining balance method.

Solution. . The rate of discount is determined by the equation

(1 − d)54500 = 1000

which implies

1 − d = (
1

4.5
)

1
5 = .74

Thus, the book value on Jan. 1, 2003 is

B(3) = (.74)34500 = 1825.09.

The depreciation charge for 2003 is

B(2) − B(3) = 640.53.

A somewhat more natural depreciation method is the sinking fund method.
The idea is that we imagine investing a fixed sum of money into an account (called
the sinking fund) at the end of each year that will be used to replace the asset at
the end of the depreciation period. The sinking fund must accumulate to A− S at
the end of the depreciation period since we will, presumably, get the salvage value
S when we sell the asset. Hence, our annual payment into the sinking fund will be

(37) C =
A − S

sn|i

where n is the number of years over which the asset is depreciated and i is the
assumed interest rate. The book value of the asset at the end of a given year is the
difference between A and the current balance of the sinking fund. Hence

B(k) =
A − C

sk|i

.

Example 41. Redo Example 39 using the sinking fund method. Assume that
the sinking fund earns 6% interest per year.
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Solution. . The sinking fund must accumulate to A− S = 3500 in five years
at 6% interest per year. Hence, the monthly payments are

P = 3500/s20|.06

which compute on the BAII by setting FV=-3500, PV=0, P/Y=1, I/I=.06, N=5,
an CPT PMT, getting PMT=585.74. The book value B(3) is

B(3) = 4500 − 585.74

s3|.06

.

To compute this on the BAII, we simply change the value of N to 3 and ask the BAII
to compute FV getting -1976.66 which we add to 4500, finding B(3) = 2523.34.

The depreciation charge for 2003 is

B(2) − B(3) = 697.63.

As mentioned above, under the sinking fund method, the book value at time t
is

B(t) = A − Bs(t)

where Bs(t) is the amount in the sinking fund at time t. The depreciation charge
is then

D(t) = Bs(t) − Bs(t − 1).

Hence, the depreciation charge is exactly the principal adjustment for the sinking
fund. Thus, from formula (27)

D(t) = (1 + i)t−1|i(A − S) − C|.
It follows that the depreciation charge increases exponentially as t increases. Hence,
the greatest depreciation occurs in the later years.

Often, it is possible to take depreciation as a tax write-off. In such cases,
it might be desirable to have the largest depreciation occur at the beginning, on
the principle that it is advantageous to get the write-off sooner rather than later.
Our final depreciation method accomplishes this goal by assuming the depreciation
charge D(t) decreases by a fixed amount C each year-i.e.

(38) D(t + 1) = D(t) − C.

We also assume that
C = D(n)

so that according to formula (??), the depreciation charge in the (n + 1)st year is
0. The unique function satisfying these two conditions is

(39) D(t) = (n + 1 − t)C.

The book value B(m) in year m is the original value of the asset minus the total
of the depreciation charges to date. Hence

(40) B(m) = A − (D(1) + D(2) + · · · + D(m))

Since B(n) = S, we see that

(41)
A − S = D(1) + D(2) + · · · + D(n)

= (n + (n − 1) + · · · + 1)C = SnC

where

(42) Sn = 1 + 2 + · · · + n = n(n + 1)2
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Hence

C =
A − S

Sn

It follows from the first formula in (41), together with equation (39), that

A − (D(1) + D(2) + · · · + D(m)) = S + D(m + 1) + D(m + 2) + · · · + D(n)

= S + (n − m + (n − m − 1) + · · · + 1)C

= S + Sn−mC

where Sm is as in equation (??). Hence, from formulas (40) and (42),

(43) B(m) = S +
Sn−mSn

(
A − S)

This depreciation method is called the Sum of the digits method because Sm

is the sum of the digits from 1 to m. It is also called the ”method of 78” because,
from formula (??), the sum of the digits from 1 to 12 is 78.

Example 42. Redo Example 39 using the sum of the digits method.

Solution. . From formulas (??) and (??)

B(m) = 1000 +
S5−m

S5
(4500 − 1000)

= 1000 +
(5 − m)(5 − m + 1)

2 · 15
3500

Thus,

B(3) = 1700.

The depreciation charge in year 3 is

D(3) = B(2) − B(3) = 2400 − 1700 = 700.

10. Capitalization Costs

Imagine that you are managing a factory that produces squidgets. You would
like to determine the cost of operating each squidget machine for a year. We will
assume that the cost does not change from year to year. Thus we are ignoring
factors such as inflation and changes in the machine’s productivity as it ages.

Suppose that the original purchase price for the asset was A. In the first year
of operation, we lose the interest on A which is iA where we assume that A was
invested at rate i per year. The asset also depreciates. Using the sinking fund
method of depreciation, the depreciation expense is the payment into the sinking
fund which is given by formula (37). Finally, there are fixed costs such as labor,
utilities, maintenance, etc. Hence, the total cost C of running the machine for one
year is

(44) C = Ai + S − Asn|j + M

where i is the interest rate on the funds used to purchase the asset, n is the number
of years over which the asset is depreciated, j is the interest rate on the sinking
fund use to replace the asset, S is the salvage value of the asset and M is the fixed
cost of operation.
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It is natural to assume that i = j in which case this formula simplifies as follows

C = Ai + A − Ssn|i + M = Aisn|i + Asn|i − Ssn|i + M

= A((1 + i)n − 1) + Asn|i − Ssn|i + M

= A(1 + i)nsn|i − Ssn|i + M

= Aan|i − Ssn|i + M

This equation has a simple interpretation. It says that

C = P − Q + M

where
A = Pan|i
S = Qsn|i

The payments P represent the present value of the asset A spread equally over
the life of the asset. Similarly, the payments Q represent the future salvage value
of the asset, spread out over the life of the asset. P − Q is then the difference
between one years share of the original cost of the asset and one year’s share of the
replacement value of the asset. Operating costs are often used to compare the price
of two competing assets being considered for purchase. In this case, one typically
compares the cost per unit output.

Example 43. For $2,500 we can buy a computer which will last for 5 years
and has a salvage value of $1,000. For $3,500 we can buy a computer that is 20%
faster, lasts for 6 years and has the same salvage value. Both computers have the
same maintenance expense. At a 7% interest rate, which computer represents the
better value?

Solution. Since both computers have the same maintenance expense M , we
may assume that the annual maintenance expense is 0. Hence, from formula (50),
the annual cost of the kth computer is Ck where C1 = 2500a 5—.07 - 1000 s5—.07
= 609.73 - 173.89 = 435.84 C2 = 3500a 6—.07 - 1000 s6—.07 = 734.29 - 139.80
= 594.49 However, the second computer is 20% faster. Hence, its annual cost per
unit output is 594.49/1.2 = 495.41. The first computer is still the better deal.


