1. Purdue Life sells an annuity that pays $\$ 5,000$ at the end of the year for 30 years. Assuming that they can invest funds at $8 \% / y e a r$, what is the least they should charge for this annuity-i.e. what is the present value of the payments? Hint: How much would you have at the end of year 30 if you invested $\$ 5,000$ per year at 8% ? The answer will be the present value of this number.
$>\mathrm{i}:=.08$;

$$
\begin{equation*}
\mathrm{i}:=0.08 \tag{1}
\end{equation*}
$$

In 30 years you have:

$$
\begin{align*}
& >\mathrm{A}:=\frac{5000 \cdot\left((1+\mathrm{i})^{30}-1\right)}{\mathrm{i}} \\
& \quad \mathrm{~A}:=5.66416055510^{5} \tag{2}
\end{align*}
$$

The PV of A is:

$$
>\mathrm{PV}:=(1+\mathrm{i})^{-30} \cdot \mathrm{~A} ; \quad \mathrm{PV}:=56288.91671
$$

[$>$
2. I borrow $\$ 100,000$ which I pay off at a rate of $\$ 100 /$ month, paid at the end of the month. At 5\% interest compounded monthly, how many months will it take to pay off the loan?

After n months, you owe:

$$
\begin{align*}
& >\mathrm{i}:=\frac{.05}{12} ; \\
& >\operatorname{Pn}:=(1+\mathrm{i})^{\mathrm{n}} \cdot 100000 ; \tag{4}\\
& \operatorname{Pn}:=1000001.004166667^{\mathrm{n}} \\
& >\mathrm{Bn}:=\frac{100 \cdot\left((1+\mathrm{i})^{\mathrm{n}}-1\right)}{\mathrm{i}} ; \tag{5}\\
& \mathrm{Bn}:=24000.000001 .004166667^{\mathrm{n}}-24000.00000
\end{align*}
$$

! >
We want to solve $(1+\mathrm{i})^{\mathrm{n}} \cdot 100000-\frac{100 \cdot\left((1+\mathrm{i})^{\mathrm{n}}-1\right)}{\mathrm{i}}=0$.
Let $\mathrm{x}=(1+\mathrm{i})^{\mathrm{n}}$

$$
\begin{array}{r}
>\text { solve }\left(\mathrm{x} \cdot 100000-\frac{100}{\mathrm{i}}(\mathrm{x}-1)=0, \mathrm{x}\right) ; \\
-0.3157894737 \tag{7}
\end{array}
$$

Nonsense! You will never pay off the loan!
I considered this problam as EXTRA CREDIT (5 pts).
3. I borrow $\$ 20,000$ at 6% interest which I pay off in three annual installments, $\$ 6,000$ at the end of the first year, $\$ 7,000$ at the end of the second year, and a final payment at the end of the third year. What should the amount of the final payment be?

You owe:

$$
\begin{align*}
&>\mathrm{i}:=.06 ; \mathrm{P}:=(1+\mathrm{i})^{3} \cdot 20000 ; \\
& \mathrm{i}:=0.06 \\
& \mathrm{P}:=23820.32000 \tag{8}
\end{align*}
$$

Your payments have reduced your debt by:
$>\mathrm{B}:=6000 \cdot(1+\mathrm{i})^{2}+7000 \cdot(1+\mathrm{i})$;

$$
\begin{equation*}
B:=14161.6000 \tag{9}
\end{equation*}
$$

The final payment is:
$>\mathrm{P}-\mathrm{B}$;
9658.72000

Alternate solution:

The present value of all payments must equal the amount of the loan. The PV of the firat two payments is
$>\mathrm{PV}:=6000 \cdot(1+\mathrm{i})^{-1}+7000 \cdot(1+\mathrm{i})^{-2}$;

$$
\begin{equation*}
\text { PV := } 11890.35244 \tag{11}
\end{equation*}
$$

Hence the PV of the last payment is
$>$ PV3 := 20000 - PV;

$$
\begin{equation*}
\text { PV3 := } 8109.64756 \tag{12}
\end{equation*}
$$

Hence the last payment is:
$>(1+\mathrm{i})^{3} \cdot 8109.64756$;

$$
\begin{equation*}
9658.719998 \tag{13}
\end{equation*}
$$

[>
This works because

$$
\begin{aligned}
& (1+i)^{3} \cdot(20000- \\
& \left.6000 \cdot(1+i)^{-1}+7000 \cdot(1+i)^{-2}\right)=(1+i)^{3} \cdot 20000-6000 \cdot(1+i)^{2} \\
& \quad+7000 \cdot(1+i)
\end{aligned}
$$ General fact: In a loan

Amount of loan $=\mathrm{PV}$ (All payments)

