Numbers, proof and ‘all that jazz’.

There is a fundamental difference between mathematics and other

A “law” will remain a lavxf, only so long as it is not contradicted by
experimental evidence. Newtonian physics was accepted as valid until

however, until it is absolutely certain that it can never fail. Achieving
this kind of certainty requires constructing a logical argument showing
the law’s validity—i.e. constructing a proof.

There is, however, a problem w
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we know to be true on which to base our proofs.
So what can we assume known and what must be proved? Before

the time of Euclid. the answer to this anestion was nersonal and sub-
the time oI uclid, the answer to this question was personal and sub
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jective. You were allowed to assume anything that you could bully your
listener into believing. If I could get you to agree that all integers are
even (which is false) I could use it to prove all sorts of other wonderful
(and equally false) things. This often led to many mistakes, so much
so that it was very difficult to know what was true and what was not.

Euclid solved this problem for geometry by stating an explicit col-
lection of “self evident” properties (called axioms) which were assumed
without proof. Furthermore, the axioms are the only properties that
were to be assumed without proof. All other properties must be proved
using either the axioms or their consequences.

Since the time of Euclid, lists of axioms for many fields of mathe-
matics, such as set theory, logic, and numbers have been compiled. In
these notes, we present one of the standard lists of axioms for the real
numbers, which are the numbers used in calculus. Thus, we are stating

ot
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“up front " those properties that we are allowed to assume Without

In principle, every number fact we use should be proved using only
our axioms. In fact, in these notes, we usually adopt a much looser
Standard As the readel Wﬂl see, provmg evelythmg duectly from the

Before stating the number axioms, we state some properties of
equality. These are not number axioms since they apply to things
other than numbers, e.g. triangles, circles, functions, chairs, etc. They
are really axioms of logic. We take these properties as glven and do

a(b+c¢) = ab+ ac
which justifies factoring a out of ab + ac.
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EQ2: (Reflexive) If a = b, then b = a.
EQ3: (Transitive) If a = b and b = ¢, then a = c.

The Field Axioms for the Real Numbers
Axioms for Addition

AQ: (Existence of Addition) Addition is a well defined process
which takes pairs of real numbers a and b and produces from
then one single real number a + b.

A1: (Associativity) If a, b, and ¢ are real numbers, then

a+(b+c)=(a+0b)+ec.

A2: (Additive Identity) There is a real number 0 such that for
all real numbers a

a+0=a.
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a+ (—a)=0.
A4: (Commutativity) If @ and b are any real numbers, then

a+b=>b+a.

Axioms for Multiplication

MO: (Existence of Multiplication) Multiplication is a well de-

produces from then one single real number ab.
M1: (Associativity) If a, b, and ¢ are any real numbers, then

)
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M4: (Commutativity) If @ and b are any real numbers, then

ab = ba.

Other Laws

D: (Distributive) For all real numbers a, b, and ¢,
a(b+c¢) = ab+ ac.
Z: (Non-triviality) 0 # 1

Notice that the axioms mention neither subtraction nor division.
This is because they may be expressed using addition and multiplica-

tion:

DEFINITION 1. Let a and b be numbers. We define

a—b=a+ (—b)

a —1
gza;b (b#£0)
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Solution: We begin by adding —5 to both sides of the equality. Axiom

Next we would like to divide both sides by 3. This is the same
as multiplying by 37%, which exists due to (M3), and multiplication
preserves the equality due to (MO). Hence:

371(3x) =377 (MO), (M3)
(37'3)r=37'7 (M1)
lz =377  (M1), (M3), (M4)

T=3 (M4), (M4), Definition 1, (M2)

REMARK. We needed to use (M4) (Commutativity) in the third
step because the (M3) tells us only that 337! = 1, and not that 3713 =
1. We needed (M4) in the last step because (M2) tells us only that
31 = 3. We also needed it to say 3717 = g because Definition 1 tells

us only that 737! = .
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We can check that our solution is correct. Suppose that z = %,

require dehnlng 5, 7, and 12 This all can be done, but it is tedlous
Some of the exercises discuss this further. We will typically allow “from
authmetlc as a Justlﬁcatlon for most simple numeric calculations. In
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cannot justify d_*(\dx) = x as a “number fact”.

Many familiar number properties do not appear in our axiom list.
This is because they can be proved from the axioms. The following
list contains some of the more common ones. These properties are
not axioms: they are consequences of the axioms. We will leave
most of the proofs to you.

THEOREM 1. Let a, b, and ¢ be real numbers. Then

C1: (a+b)c = ac+ be.

C2: 0a=0

C3: —a=(-1)a.

C4: —(ab) = (—a)b = a(-D).

C5: —(—a) =a.

C6: Ifa #0+#b, then (ab)™! = a b1
C7: (a')™' =a.
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Q.
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[a} 4+ i

at0.a=1-at0-a (M2), (M4)
=(1+0)a (C1)
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2x+1_

L

3

Solution: Suppose that z satisfies our equality. From the definition
of fractions, this is equivalent with

(2z+ 1)zt =3
Our solution proceeds as follows:
(2r+ Dz Hx =3z  (MO0)
(2z+ 1)(z7tz) =3z (M1)
(2z 4+ 1)1 =3z (M3), (M4)
20 +1=3z (M2)

Next, we would like to cancel 3z by adding —3x to both sides of the
equation. If we do something to one side of an equality, we must do
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exactly the same thing to the other side. Thus, we add —3x to the
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Conversely, if © =1,

2r+1 2-1-1

1

1

L i

showing that x = 1 does indeed solve the equality.

Clearly, putting in every step can be quite tedious, even in a simple
calculation as in Example 3. Fortunately, it is not essential that you
develop great skill at doing more complicated examples. The point
here is only to stress that all of the computations done in elementary
algebra can all be justified using only the axtoms for the real numbers.

The next example demonstrates the necessity for checking the so-
lution.

EXAMPLE 4. Find all solutions to the following equality
r=+2—=x

You need not indicate all of your steps.

1Examplc 6 demonstrates how to prove such “number facts”.
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r=v2—=x
?=2—x
P r—2=
(x—1)(z+2)=
Hence, our solution appears to be x =1 and ©z = —2

V2—z=Vi=2+#uz.

Hence the only solution is x = 1.

Remark: The symbol /a, by definition, is the positive square root.
Hence v4 = 2, not 42.
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addition of triples by
a+b+ec={(a+b)+c
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You will prove in the exercises that
(a+b+c)+d=(a+b)+(c+d)=a+ (b+c+d)

Hence, the sum is the same no matter how we group the terms.
Similar comments apply to adding n» numbers.

DEFINITION 2. If a1, a9, ...,a, are n numbers, then we define
ai+as+--+a, =@ +a+-+a,-1) +a,.

This is a recursive definition, in that it defines the sum n numbers,
assuming that we already know how to sum n — 1 numbers. Thus, for
example, it defines

a+b+c+d+e=(a+b+c+d) +e
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THEOREM 2. The sum and product of n numbers are independent
of both the order and the grouping of the terms.

tr

ution: Assume that x satisfes the given equall V. icii
dr—9+(—2)+9=2—-2+(—2)+9 (A0)
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dz+ (-1)z+0=0+7 (A3), (C3)
(A (1YY, (A (Y
(4+(—1i)je =7 (AZ), (C1)
Qe 7
dL — |
The solution now proceeds exactly as at the end of Example 1 on page 8.

Theorem 2 allows us to prove some number facts that the reader
learned in grade school. We define

=141
=2+1
4=3+1
=4+1

The set N of natural numbers is, by definition, the numbers ob-
tainable by adding 1 to itself any number of times. Thus,

N=1{1,234,...}
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EXAMPLE 6. Prove that
(a) 2.-2=4

2.2=(14+1)(1+1) Def. of 2

= (M2), (M4)
=—(1+2)+2 ( )
= —1 + (( 2) +2) (Al)
:_LTU ‘.!‘L“t.h !—113,‘
=—-1 (A2)
EXAMPLE 7. Prove that for real numbers ¢ and b

Solution:

(a+b)?=(a+b){a+b) =ala+b)+bla+b) (C1)
=a*+ab+ba+b (D)
=a*+ab+ab+b (M4)
=a® + 1(ab) + 1(ab) +b* (M2), (M4)
=a*+(1+1ab+b* (C1)
=a’+2ab+b> Def. of 2

Exercises:
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(3) The work below proves the f(;llowing equality. Copy the proof
onto your paper, giving reasons for each step. When using
(A1), state

= (

rz 4 zw) + (yz + yw)

. 7

et x, y, z be real numbers. In the notes we defined
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r+yt+z=(r+y)+z

There are 6 different orders in which we could sum 3 numbers,
all of which, of course, yield the same answer. As an illustra-
tion of this, use the axioms and the above definition to prove
the following equalities. DO NOT USE Theorem 2.
(&) z+y+z=z+x+v.
(b) z+y+z=z24+y+x

(5) Let z, y, z, and w be real numbers. Use (A1) and the defini-
tions to prove the following equalities. In each case state what
expression is being substituted for a, b, and ¢ in (Al). DO
NOT USE Theorem 2.

v+ W+z+w) =(x+y)+(z+w)
=(z+y+2)+w
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Remark: This exercise proves that the sum of four numbers

(6) Let Z, Y, 2, w, and u be real numbers. Use (A1) and the result
of Exercise 5 to prove the following equalities. In each case

state what expression is being substituted for a, b, and ¢ in
(A1). DO NOT USE Theorem 2.

t+y+z+rw+u)=(x+y)+ (z+w+u

L7 i ¥ B 2 i S O S C A I ¥ £

=(z+y+z+w)+u

equ;xtions (2)? How about in the fourth equat10n7
(11) Reason as in Example 6 to prove the following number facts.
(a) 2+2=4

(b) 2-3 =6 Hint: From Example 6 on page 14, 2-2 = 4.
(e 34 = 1
\vj o0 TR *
/Ay 9 =4 2
() O — 3 — —4
710N / \ o . . TR
(12) (a) Prove property (C1)
(b) Let ¢ and d be real numbers. Suppose ¢+ d = 0. Use the
nnnnnnn 4+ vt that ~— A Hipd. QRlern ~ 0 A — N fAre -~
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in a step-by-step manner.

(c) Use the result proved in (b) along with the axioms and
property (C2) to prove (C3). Hint: a + (—1)a = (1)a +
(—=1)a.

(d) Use the result proved in (b) along with the axioms to
prove (C5). Hint: (—a)+a =7.

(e) Use the result proved in (b) along with the axioms and
property (C2) to prove the first equality in (C4). Hint:
ab+ (—a)b =7

(13) Let ¢ and d be real numbers.

(a) Suppose e¢d = 1. Use the axioms to prove that d = ¢~
Hint: First explain why ¢ # 0. Then solve ¢d = 1 for d in
a step-by-step manner.

1
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(c) Use the result proved in (a) along with the axioms to
prove (C7). Hint: a ta =7.

(14) If we wish to solve z? + 3z 4+ 2 = 0, we factor, finding that

(x+ 1)(x +2) = 0; hence z = —1 or x = —2. This is based

on the property that if @ and b are numbers and ab = 0, then

assume a 7& 0 and solve for b

o

axioms and propeltles (Cl) (CS)topjovewthej followmg
(a) ab™! = (aa’)(ba’)

(b) ab™' +cd ' = (ad + be)(bd) ™!

() (ab™)(ed™) = (ac)(bd)™"

famlhar law of fractlons erte each in fractlonal form



