Justify all answers. A correct answer without supporting justification is worth NO credit!

1. Find the characteristic polynomial $p(\lambda)$ for A where

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 3 & 0 \\
0 & 7 & 0 \\
1 & 0 & 2
\end{array}\right] \quad A-\lambda I=\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & 0 & 0 \\
0 & \lambda & 1 \\
0 & 3 & 0 \\
1 & 7-\lambda & 0 \\
1 & 0 & 2-\lambda
\end{array}\right] \\
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2 \cdots \lambda & 3 & 0 \\
0 & 7-\lambda & 0 \\
1 & 0 & 2-\lambda
\end{array}\right| \\
=(2-\lambda)[(7-\lambda)(2-\lambda)]-3(0)+0 \\
=(2-\lambda)^{2}(7-\lambda) \\
\therefore P(\lambda)=(2-\lambda)^{2}(7 \cdots \lambda)
\end{gathered}
$$

2. Given that the characteristic polynomial for the matrix A below is $p(\lambda)=-(\lambda-3)^{2}(\lambda-4)$, find a basis for the $\lambda=3$ eigenspace. 6 pts.

$$
\begin{aligned}
& p(\lambda)=0 \\
& \therefore \lambda=3 \text { es } 4 \\
& {\left[\begin{array}{rrr}
-1 & -2 & 2 \\
0 & 3 & 0 \\
-10 & -5 & 8
\end{array}\right] \quad x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& A x=\lambda x \\
& \lambda=3 \\
& \therefore(A-3 I) X=0 \\
& \therefore\left[\begin{array}{cccc}
-4 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 \\
-10 & -5 & 5 & 0
\end{array}\right] \Leftarrow \begin{array}{c}
\text { Augmented } \\
\text { matier }
\end{array} \\
& {\left[\begin{array}{cccc}
2 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
2 & 1 & -1 & 0
\end{array}\right] \quad \begin{array}{l}
R_{1}^{\prime}=R_{1} /-2 \\
R_{3}^{\prime}=R_{3} /-5
\end{array}} \\
& \therefore\left[\begin{array}{cccc}
x & y & z & \\
2 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad r_{3}: a_{3}-R_{1} \\
& \text { let } y=s ; z=L \\
& 2 x+y-z=0 \text { [s and } t \text { are abitra } \\
& \therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
t-s \\
2 \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
1 / 2 \\
0 \\
1
\end{array}\right] \\
& \therefore \text { Eigen ventres: }\left[\begin{array}{c}
-1 / 2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 / 2 \\
0 \\
1
\end{array}\right] \\
& \text { paris: }\left\{\left[\begin{array}{c}
-1 / 2 \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{c}
1 / 2 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

3. Let

$$
A=\left[\begin{array}{rrr}
-2 & -1 & -1 \\
2 & -5 & -2 \\
1 & -1 & -4
\end{array}\right]
$$

(a) Verify that the vectors X, Y, and Z are eigenvectors for A where 6 pts.

$$
\begin{aligned}
& X=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right], Y=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], Z=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& A X=\left[\begin{array}{ccc}
-2 & -1 & -1 \\
2 & -5 & -2
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 \\
3
\end{array}\right]=-3\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=\lambda_{1} x \quad \lambda_{1}=-3 \\
& A Y=\left[\begin{array}{ccc}
-2 & -1 & -1 \\
2 & -5 & -2 \\
1 & -1 & -4
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-10 \\
-5
\end{array}\right]=-5\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\lambda_{2} y \quad \lambda_{2}=-5 \\
& A Z=\left[\begin{array}{ccc}
-2 & -1 & -1 \\
2 & -5 & -2 \\
1 & -1 & -4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-3 \\
0
\end{array}\right]=-3\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\lambda_{3} 2 \quad \lambda_{2}=-3 \\
& \begin{array}{r}
\therefore \quad x, y, 2 \text { are eigenvectors with eigenvalue. } \\
-3-5,-3 \text { respectively }
\end{array} \\
& -3,-5,-3 \text { respectively. }
\end{aligned}
$$

(b) Find an eigenvector W for A that has one positive and two negafive entries. (Note: 0 is neither positive nor negative!) - 2 pts.

$$
\begin{aligned}
& w=-x-2 z=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-2 \\
-2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-3 \\
1
\end{array}\right] \\
& \text { w, } x \text { and } z \text { have eigenvalue }=-3
\end{aligned}
$$

4. Suppose that A is a square matrix with characteristic polynomial $p(\lambda)=$ $\lambda^{2}(\lambda+2)^{3}\left(\lambda^{2}-4\right)^{4}$.
(a) Is A invertible? Why? $(A-x y)$; from the data give ${ }^{3} p t s$.

(b) What are the possible dimensions for the $\lambda=-2$ eigenspace of A? Be careful! Look closely at $p(\lambda)$.

$$
\begin{array}{cr}
\lambda^{2}-4=0 & (x+2)^{3}=0 \\
\lambda^{2}=4 & \therefore \lambda=-2 \\
x= \pm 2 &
\end{array}
$$

$\left(\lambda^{2}-4\right)^{4}=[(\lambda+2)(\lambda-2)]^{4}=(\lambda+2)^{4}(\lambda-2)^{4}$
\therefore Dimensions for $\lambda=2$ can be:

$$
1,2,3,4,5,6,7
$$

5. Let

$$
A=\left[\begin{array}{rrr}
-2 & 12 & -2 \\
-3 & 9 & 0 \\
-3 & 4 & 5
\end{array}\right]
$$

It is given that X_{1}, X_{2}, and X_{3} are eigenvectors for A corresponding respectively to the eigenvalues 3,4 , and 5 where

$$
X_{1}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right] X_{2}=\left[\begin{array}{l}
5 \\
3 \\
3
\end{array}\right] \quad X_{3}=\left[\begin{array}{l}
4 \\
3 \\
4
\end{array}\right]
$$

Find an explicit diagonal matrix D and an explicit invertible matrix Q such that $A=Q D Q^{-1}$. Do not compute Q^{-1}. 6 pts.

$$
\begin{aligned}
& x_{1}, x_{2} \text {, ass eigen wectra; ; thus } \\
& Q=\left[\begin{array}{lll}
2 & 5 & 4 \\
1 & 3 & 3 \\
1 & 3 & 4
\end{array}\right] \\
& \text { they are indspendsint. } \theta \text { has } \\
& \text { rank } x_{1}, x_{2}, x_{3}: O \text { is a } \\
& \text { because dit } \$ \neq 0 \\
& D=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 5
\end{array}\right]
\end{aligned}
$$

6. Let A be as in Problem 5. Find explicit matrices B and C such that $A=\left(B C B^{-1}\right)^{3}$. All that is asked for is B and C. Do not compute B^{-1} or $B C B^{-1}$.

4 pts
$A=B C B^{-1} B C B^{-1} B C B^{-1}=B C C C B^{-1}\left(B B^{-1}=I\right)$
$\therefore A=B C^{3} B^{-1}$

$$
B=Q=\left[\begin{array}{lll}
2 & 5 & 4 \\
1 & 3 & 3 \\
1 & 3 & 4
\end{array}\right]
$$

$$
\begin{aligned}
& c^{3}=D \\
& C=\sqrt[3]{D}
\end{aligned}=\left[\begin{array}{rrr}
\sqrt[2]{3} & 0 & 0 \\
0 & \sqrt[3]{4} & 0 \\
0 & 0 & \sqrt[2]{5}
\end{array}\right]
$$

7. Find all values of a, b, and c for which the matrix A below is diagonalizable.

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{llll}
3 & a & b & 0 \\
0 & 3 & 0 & c \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] \\
\quad P(\lambda) & =\operatorname{det}(\lambda-\lambda I)
\end{array}\right]\left|\begin{array}{cccc}
3-\lambda & a & b & 0 \\
0 & 3-\lambda & 0 & c \\
0 & 0 & 2-\lambda & 0 \\
0 & 0 & 0 & 2 \cdots \lambda
\end{array}\right|
$$

when $\lambda=3$

$$
A-3 I=\left[\begin{array}{cccc}
0 & 0 & b & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

rank of $A-3 I$ is always 3 . if $a \neq 0$
\therefore we will only get one esgenvectue from this. Fa A to be diagoralizable it needs two eigenvectors frons $\lambda=3$ and lout of $A-3 T$ snout have bean 2. since multiplicity is 2. \therefore we let $a=0$; they rank of $A=3$ is 2

To check; Pos $A=2$

$$
\begin{aligned}
& \text { To check; } \quad \text { po }
\end{aligned} \boldsymbol{A = 2} \begin{array}{ll}
A-2 I=\left[\begin{array}{llll}
1 & a & 0 & 0 \\
0 & 1 & 0 & c \\
0 & 0 & 0 & 0 \\
0 & 0
\end{array}\right] \quad A=0 ; A-2 I=\left[\begin{array}{llll}
1 & 0 & b & 0 \\
0 & 1 & 0 & e \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text {. }
\end{array}
$$

\therefore rank of mahix A-2t is 2 and we get two origen vectors aud that is what ur used sine multiplicity is g

$$
a=0
$$

However b and e an have any volume to make A diagouadizable. number.
8. Suppose that A is an $n \times n$ invertible matrix. Prove that if λ is an eigenvalue for A then λ^{-1} is an eigenvalue for A^{-1}.

$$
\begin{aligned}
& A X=\lambda X \quad \text { (given) } \\
& A^{-1} A X=A^{-1} \lambda X \quad\left(A^{-1}\right. \text { exists) } \\
& I X=\lambda A^{-1} X \quad\left(A A^{-1}=I \text {; } \lambda\right. \text { is a scalar) } \\
& X=\lambda A^{-1} X \\
& A^{-1} X=\frac{1}{\lambda} X=\lambda^{-1} X \quad \lambda \neq 0 ? \quad \text { ? } \\
\therefore & A^{-1} X=\lambda^{-1} X \\
\therefore & A^{-4} \text { has an eigenvalue } \lambda^{-1}
\end{aligned}
$$

9. We use the ordered basis $\mathcal{B}=\left\{[1,1]^{t},[1,3]^{t}\right\}$ to define coordinates for \mathbb{R}^{2}. Find the \mathcal{B} coordinate vector for $X=[3,4]^{t}$.

$$
\begin{aligned}
& P_{6}=\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right] \\
& {\left[\begin{array}{ll|ll}
1 & 1 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
0 & 2 & -1 & 1
\end{array}\right] R_{2}{ }^{\prime}=R_{2}-R_{1}} \\
& =\left[\begin{array}{ccccc}
1 & 1 & 1 & 0 & 1 / 2
\end{array}\right]=\left[\begin{array}{cc}
1 / 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 3 / 2 \\
0 & 1 & -1 / 2 \\
0 & 1 & -1 / 2 \\
0 & 1 / 2
\end{array}\right] \\
& 21=28-22 \\
& \therefore \quad P_{B}^{-1}=\frac{1}{2}\left[\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right] \\
& \therefore C_{B}=\frac{1}{2}\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
& c_{B} X=X^{\prime} \quad \text { whence } x^{\prime} \text { is twas } p \text { coosdinotevectet, } \\
& \therefore x^{\prime}=\left[\begin{array}{l}
6 / 2 \\
1 / 2
\end{array}\right] .
\end{aligned}
$$

10. Let \mathcal{P}_{2} be the space of all polynomial functions of the form $a x^{2}+b x+c$ where $a, b, c \in \mathbb{R}$. Let $L: \mathcal{P}_{2} \mapsto \mathcal{P}_{2}$ be the linear transformation defined by

$$
L(y)=2 y^{\prime}+y
$$

We use the standard ordered basis $\mathcal{B}=\left\{1, x, x^{2}\right\}$ for both the domain and target space of L. Find the matrix M that represents L in these bases.

$$
\begin{aligned}
& B=\left[1, x \cdot x^{2}\right\} \\
& L(y)=2 y^{\prime}+y \\
& \therefore L(1)=2 x 0+1=1 \\
& L(x)=2 x 1+x=2+x \\
& L\left(x^{2}\right)=2 \cdot 2 x+x^{2}=4 x+x^{2} \\
& \therefore M=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

11. Let all information be as in problem 10 except that we now use the standard ordered basis $\mathcal{B}_{1}=\left\{1, x, x^{2}\right\}$ for the domain and the ordered basis $\mathcal{B}_{2}=\left\{1,(x+3)^{2},(x+3)\right\}$ for the target space of L. Find the matrix M that represents L in these bases.

$$
\begin{aligned}
& B=\left\{1, x, x^{2}\right\} \\
& L(y)=2 y^{\prime}+y \\
& L(1)=2 x 0+1=1 \\
& L(x)=2 x 1+x=2+x=-1+(x+3) \\
& L\left(x^{2}\right)=2 \cdot 2 x+x^{2}=4 x+x^{2} \\
& =(x+3)^{2}-2(x+3)-3 \\
& \therefore M=\left[\begin{array}{ccc}
1 & -1 & -3 \\
0 & 0 & 1 \\
0 & 1 & -2
\end{array}\right]=0
\end{aligned}
$$

Grading Error: The answer is correct.
12. Show that the set \mathcal{B} formed by the following vectors is an orthogonal basis for \mathbb{R}^{3}.

$$
\begin{aligned}
& \mathcal{B}=\left\{[1,1,-1]^{t},[1,-2,-1]^{t},[1,0,1]^{t}\right\} \\
& \left.\left.x_{1}=[1,1,-1]^{t}, x_{2}=[1,-2,-1]^{t}, x_{3}\right], 0,1\right]^{t} \\
& x_{1} \cdot x_{2}=1-2+1=0 \\
& x_{1} \cdot x_{2}=1+0-1=0 \\
& x_{2} \cdot x_{3}=1+\infty=1=0
\end{aligned}
$$

Since the dot pescutcle te estes, the vectren are orthogonal. And since the vectors ar independent. B is the basis foe ${ }^{3}$
$\because B$ as an ochogrual basis.
13. Order the basis \mathcal{B} from problem 12 as listed in that problem.
(Theorem 6.4 on p. 312)
(a) Use orthogonality to find the \mathcal{B} coordinate vector for $X=[x, y, z]^{t}$. Other methods will not give credit.

$$
\begin{aligned}
& x_{1}^{\prime}=\frac{x_{1}}{P_{1} \cdot P_{1}} \\
& x_{1}^{\prime}=\frac{[x, y,]^{t} \cdot[1,1,-1]^{t}}{[1,1,-1]^{t} \cdot[1,1,-1]^{t}} \frac{x+y-2}{1+1+1} \\
& x_{2}^{\prime}=\frac{x \cdot P_{2}}{P_{2} \cdot P_{2}} \\
& x^{\prime}=\left[x, y, 2^{b} \cdot[1,=2, \cdots]^{t}\right. \\
& \begin{array}{l}
{[1,-2,} \\
\frac{y+P_{3}}{P_{3}, Q_{3}}
\end{array} \\
& x_{3}=[x, y+]^{4} \cdot[, 0,]^{1}=\frac{x+z}{1+1}=\frac{x+2}{2} \\
& \therefore x=\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{3} \\
x_{3}
\end{array}\right]:\left[\begin{array}{c}
x+y-2 \\
\frac{x}{3} \\
\frac{2 y-z}{6} \\
\frac{x+z}{2}
\end{array}\right]
\end{aligned}
$$

(b) Use the answer to problem 13a to find the coordinate matrix $C_{\mathcal{B}}$ for the basis. Other methods will not give credit.

$$
\begin{aligned}
& x^{\prime}=\left[\begin{array}{l}
x_{1}, \\
x_{2}, \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x+y-2 \\
\frac{3}{3} \\
x-\frac{2}{6} \\
\frac{x+z}{2}
\end{array}\right] \\
& =\left[\begin{array}{rrr}
1 / 2 & 1 / 3 & -1 / 3 \\
y & -7 / 3 & -1 / 2 \\
y & 0 & / 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
2
\end{array}\right] . \\
& x=C B x \\
& \therefore C_{B}=\left[\begin{array}{ccc}
12 & 13 & -y 3 \\
16 & -1 / 3 & -1 / 2 \\
12 & 0 & 1 / 2
\end{array}\right]
\end{aligned}
$$

14. We want to apply the Gram-Schmidt process to the following ordered basis \mathcal{B} of \mathbb{R}^{3} to produce an orthogonal basis $\mathcal{P}=\left\{P_{1}, P_{2}, P_{3}\right\}$ of \mathbb{R}^{3}.

$$
\mathcal{B}=\left\{[1,2,3]^{t},[0,1,1]^{t},[1,1,1]^{t}\right\}
$$

(a) Compute the first two Gram-Schmidt basis elements P_{1} and $P_{2} . \quad 3$ pts.

$$
\begin{aligned}
& p_{1}=x_{1}=[1,2,3]^{t} \\
& y_{i}=\frac{x_{2} \cdot p_{1}}{p_{1} P_{1}}=\frac{0+2+3}{1+4+9}[1,2,3]=\frac{5}{14}, 3,3 t^{t} \\
& P_{2}=X_{2}-X_{2}=\left[-\frac{5}{14}, 1-\frac{10}{14}, 1-\frac{15}{14}\right]^{t} \\
& =\frac{d}{14}[5,4,-1]^{t} \\
& \therefore p_{1}=[1,2,3]^{t} \\
& P_{2}: \frac{1}{14}[-5,4,-1]^{1}
\end{aligned}
$$

$$
x_{3}=[1,1,1]^{4}
$$

(b) Assume that your answer to part 14a was $P_{1}=[1,-1,1]^{t}$ and $P_{2}=[1,1,0]^{t}$ (which is not correct). What would you obtain for P_{3} if you continue to follow the Gram-Schmidt process using these incorrect answers?

$$
\begin{aligned}
& V_{3}=\frac{x_{2} P_{1}}{P_{1} \cdot P_{1}}+\frac{y_{3} P_{2}}{P_{2} \cdot P_{2}} P_{2} \\
& V_{3}=\frac{1-1+1}{1+1+1}[1,-1,1]+\frac{1+1+0}{1+1+0}[1,0]^{t} \\
& =\frac{1}{2}[1, \cdots 1,1]^{4}+[1,1,0]^{t} \\
& =\left[4, \frac{2}{3}, \frac{1}{3}\right]^{1} \\
& \therefore p_{3}=x_{3}-y_{3}=[1,1,1]^{t}-\frac{1}{3}[4,2,1,]^{1} \\
& =[\cos / 3,1 / 3,2 / 2]^{1 .} \\
& P_{3}=\frac{1}{3}[-1,1,2]
\end{aligned}
$$

Theorem 6.4 on p. 312^{6}
15. Prove the following theorem, which is part of Theorem -4 on p. 318, which you were supposed to learn for this test.

Theorem 1. Let $\mathcal{B}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ be an ordered orthogonal basis for \mathbb{R}^{n} and let $X \in \mathbb{R}^{n}$. Then

$$
\begin{equation*}
X=x_{1}^{\prime} P_{1}+x_{2}^{\prime} P_{2}+\cdots+x_{n}^{\prime} P_{n} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{i}^{\prime}=\frac{X \cdot P_{i}}{P_{i} \cdot P_{i}} \tag{2}
\end{equation*}
$$

$x=x_{1}^{\prime}+x_{2}^{\prime} p_{2}+x^{\prime} P_{n}$ wi, exist? -1
Multiply roth sides by p:

$$
\therefore \quad x \cdot p_{1}=x_{1}^{\prime} p_{1} \cdot p_{i}+x_{2}^{\prime} p_{2} \cdot p_{1}+\ldots, x_{n}^{\prime} n^{\circ} p_{\text {, }}
$$

$$
\text { since } p_{1} \text { at ottusgend west, }
$$

$$
P_{0} \cdot P_{i}=0 ; \quad P_{n}+P_{i}=0
$$

$\therefore \quad x \cdot p=x_{1} p_{1} p,+p+0 \ldots 4+8$

$$
x: 0, x_{i}^{\prime} p=p
$$

$$
\therefore x_{1}^{\prime}=\frac{x \cdot P_{1}}{P_{1} \cdot p_{1}}
$$

Gencon cost
\therefore If $x=x_{i}^{\prime} p_{1}+\ldots . .+x_{i}^{\prime} p_{i}+\ldots+x_{1}^{\prime} p_{n}$
Munplying both sides cog P_{i}
$\therefore x_{i}=0+x_{1}^{p_{i}} p_{i}+0 \ldots+0$.

$$
\begin{array}{r}
\therefore \quad x \cdot P_{i}=x_{i}^{\prime} P_{i} P_{i} \\
\quad \quad x_{i}^{\prime}=\frac{x_{i} P_{i}}{P_{i} P_{i}}
\end{array}
$$

