1. a) \(u = \frac{52.54}{50} = 1.0508 \)
 b) \(d = \frac{43.86}{50} = 0.8772 \)
 c) \(u \cdot d = e^{(r-s)k \pm d_k} (r-s)(h-\delta_0k) = e^{2(r-s)k} = e^{2(r-s)(\delta_0)} = (1.1708)^2(0.8772) \)
 \(r = \frac{0.0400}{(r-s)k} \)
 \[e^{-0.08(0.25)} = 0.9201 \]
 \(e^{-0.06(0.25)} = 0.9404 \)
 \(C = e^{-0.08(0.25)} \left[\begin{array}{c} 0.3(0.96)^3(93.1) + 0.7(0.96)^3(16.8) \end{array} \right] = 10.3025 \)
 \(\Delta(94.1) e^{-0.3152(0.25)} + B e^{-0.08(0.25)} = 16.8 \)
 \(\Delta(90.4) e^{-0.3152(0.25)} + B e^{-0.06(0.25)} = 0 \)
 \(28.7112 \Delta = 16.8 \) \(\Rightarrow \) \(\Delta = \frac{16.8}{28.7112} \Rightarrow \Delta = 0.5851 \Rightarrow \Delta S = 51.4920 \)
 \(\Rightarrow B = -43.9129 \) (i.e., we borrow 43,912.9)
 d) Early exercise value = 88 - 80 = 8 \(\sqrt{\text{value of call if held}} = \Delta S + B = 8.5791 \)
 \(\Rightarrow \) Early exercise would occur

2. a) \(F_{0,t} = 100 - 5 e^{-0.08(0.5)} = 95.1961 \) \(\Rightarrow \sigma_p = \frac{\text{Std of } F_{0,t}}{F_{0,t}} = \frac{2}{95.1961} = 0.02101 \)
 b) \(u = e^{(0.08)(0.25) + 0.2101} = 1.1332 \)
 c) \(d = e^{(0.08)(0.25) - 0.2101} = 0.9185 \)
 d) \(F_{0,t} = 95.1961 \)
 e) \(F_u = 95.1961(1.1332)^4 = 107.8767 \)
 f) \(S_u = F_u + PV(d) = 107.8767 + 5 e^{-0.08(0.25)} = 112.7777 \)

3. Convexity requirement:
 \(\frac{20 - x}{50 - 50} \geq \frac{x - 5}{x - 5} \Rightarrow \frac{20 - x}{20} \geq \frac{x - 5}{10} \)
 \(\Rightarrow 200 - 10x \geq 20x - 100 \Rightarrow 300 \geq 30x \Rightarrow x \geq 10 \)
 Thus, an arbitrage opportunity exists if \(x > 10 \)

4. Convexity violated:
 \(\frac{35 - 10}{50 - 30} \leq \frac{40 - 35}{60 - 50} \Rightarrow 1.25 \leq .5 \) Convexity is violated

5. Thus, the arbitrage is to buy 1 30-strike put, buy 2 60-strike puts, and sell 3 50-strike puts.
6. No-arbitrage requirement: \(x - 25 \leq 50 - 20 \Rightarrow x \leq 55 \)

Thus, there is an arbitrage opportunity if \(x > 55 \). In such a case, the arbitrage would be to buy the 20-strike put and sell the 50-strike put.

7. \(\rho_1 = 0.04 \), \(\rho_2 = 0.02 \), \(x_0 = 101 \frac{Y}{b} \)

 - \(\rho \)-denominated call: right to exchange \(\$1 \) for \(100 \) \(Y \) at \(t = \frac{1}{2} \) (price is \(\frac{d}{\beta} \))

 - \(\rho \)-denominated put: right to exchange \(\$1 \) for \(125 \) \(Y \) at \(t = \frac{1}{2} \) (price is \(\frac{c}{\beta} \))

\[\Rightarrow E = (1.25)(101) x = 126.25 \times \frac{Y}{b} \]

8. \(\sigma = 0.12 \), \(u = e^{(0.02 - 0.04)(\frac{1}{2}) \times \frac{\sigma^2}{2}} + 0.12(\frac{\sigma^2}{2}) = 1.0170 \)

9. \(C - P = (S - PV(div)) - PV(K) \Rightarrow 6.50 - P = 74.20 - 1.1 e^{-0.06(\frac{1}{2})} - 1.1 e^{-0.07(\frac{1}{2})} - 70 e^{-0.08(\frac{1}{2})} \)

\[\Rightarrow P = 2.3823 \text{, the theoretical price of the put} \]

Thus, the arbitrage is to sell the put for 2.50 and synthetically create the put, which costs 2.3823 for a risk-free profit of 0.1177.

10. \(0.114 - 0.098 = x_0 e^{-0.06(\frac{1}{2})} - 0.94 e^{-0.07(\frac{1}{2})} \Rightarrow x_0 = \frac{0.9518}{\epsilon} \)