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0. Introduction

A major theme in the study of function theory on bounded domains in C" is the
study of the “boundary values” of holomorphic functions on the Bergman-Shilov
boundary. Often, the study of boundary values involves defining a suitable class of
real valued “harmonic” functions. Ideally, such a class should:

(1) Contain all real and imaginary parts of bounded holomorphic functions.

(2) Be describable as “Poisson integrals” over the Bergman-Shilov boundary
against a real kernel (the “Poisson” kernel).

(3) Be invariant under all bi-holomorphisms of the domain.

(4) Be describable as the nullspace Hy of a degenerate-elliptic system £ of
second order differential operators. (We refer to Hy as the space of L-
harmonic functions. )

In the literature, at least two classes of harmonic functions and their boundary
behavior have been investigated: the A-harmonic functions, where A is the Laplace-
Beltrami operator and the Poisson-Szego integrals of functions on the Bergman-
Shilov boundary, as defined in [H] and [K]. Neither of these classes is entirely
satisfactory in that in general, the A-harmonic functions fail the second condition
and the Poisson-Szegd integrals fail the fourth. ([BV]).

In this work, we study several different classes of functions which satisfy some
(possibly weakened) form of the above conditions in the context of bounded homoge-
neous domains in C*. The study of this class of domains is already both interesting
and challenging in that, in general, for such domains, the Bergman-Shilov boundary
is much smaller than the topological boundary and the topological boundary is not
smooth. (c.f. [S1] and [S2]).

We make heavy use of the fact that any such domain is realizable as a Siegel
domain of type I or II. Explicitly, let ¥V C R™ be an open, convex cone which does
not contain straight lines. We assume that the cone V is homogeneous, i.e. there
is an algebraic subgroup S of Gl(n,R) which acts transitively on V via the usual
representation of Gl(n) on R™. (We denote this representation by n.) S may be
taken to be a triangular subgroup which acts simply transitively on V. Suppose
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further that we are given a complex vector space Z and a Hermitian symmetric,
bi-linear mapping K : Z x Z — C". We shall assume that

(a)K(z,2z) €Vioral z € Z
(0) K(=,

The Siegel domain D associated with this data is defined as

z) =0 implies z = 0

D={(z1,22) € ZxC": 329 — K(21,21) € V}.

The domain is said to be type I or II, depending upon whether or not Z is non-
trivial.

The Bergman-Shilov boundary B of D is defined as
B={(z1,22) € ZxC" :Qz = K(z1,21)}.

Suppose further that we are given a complex linear algebraic representation o of

S in Z such that
K(o(s)z,0(s)w) = p(s)K(z,w) for all z,w € Z.
The group S acts on D by
(0.1) (2, ) = (o(5)2, pls ).
We let R™ act on D by translation:
(0.2) r(z,w) = (z,w +x), * € R™
Finally, we let Z act by
(0.3) zo(z,w) = (2 + 20,0 + 20 K(z,20) + 1K (20, 20))-

These actions generate a completely solvable group G which acts simply transi-
tively on D. The action of the group G extends to B and the nilpotent group N
generated by transformations (0.2) and (0.3) acts simply transitively on B.

Every bounded homogeneous domain in C" is biholomorphic to a homogeneous
Siegel domain on which the group G described above acts simply transitively. This
group plays a fundamental role in our theory.

In fact, in [D] and [DH]|, a general class of solvable lie groups which includes G
were studied. These results apply to the space of bounded L-harmonic functions
for a single, second order, degenerate-elliptic, G-invariant operator L which also
satisfies the Hormander condition. Following Furstenberg, Guivarc’h and Raugi,
it was shown how to associate with every such operator, a class of boundaries
and, on each boundary, a Poisson kernel Py. It is also proved that every bounded

' The importance of the group G' was noticed by Koranyi and Stein almost thirty years ago
in their study of the Hardy spaces HP (D) cf. e.g. [KS1] and [KS2]. Later the group G and its
representations played a fundamental role in the work of Rossi and Vergne, [RV1], [RV2].



L-harmonic is the integral over the maximal boundary of a function against the
corresponding Poisson kernel. Using these results, we prove the following, which is
one of the main results of the current work:

Let L be a G-invariant, real, second order operator which satisfies the Hormander
condition and annihilates holomorphic functions on a homogeneous Siegel domain
D. The Shilov-Bergman boundary B 1s one of the boundaries associated with L.
Let Py, be the corresponding Poisson kernel on B. Then every bounded holomorphic
function F' on D is the Poisson integral F = Pr(f) of the boundary values f of F
on D.

Moreover,

For every homogeneous Siegel domain there exists an operator L as above for
which the mazimal boundary s B.

In fact, for a given homogeneous domain there are many such operators.

Taken together, the above results imply that the space of L-harmonic functions
satisfy conditions (1)-(4) stated above, except that in condition (3), invariance un-
der the full automorphism group of the domain is replaced by the weaker condition
of invariance under the transitive group G. On the other hand, condition (4) is
strengthened—harmonicity is defined in terms of the nullspace of a single differen-
tial operator. This may be viewed as a characterization of the Bergman-Shilov
boundary by means of a differential operator suggested by E. M. Stein many years
ago.

If the operator L were invariant under all of Aut (D), then of course the stronger
form of condition (3) would follow. It general, however, it seems that the algebra
of Aut (D)-invariant differential operators may be just the algebra generated by
A, the Laplace-Beltrami operator for the Bergman metric on D. In general, the
A-harmonic, bounded functions are not reproducible from their boundary values
on the Bergman-Shilov boundary, except if D is a product of balls. Thus, it seems
that in order to retain condition (3), we are forced to consider invariant systems
of differential operators. In this work, following an idea suggested to us by Nolan
Wallach, we define a canonical system H.JK (the Hua system) in terms of a con-
traction of 99 against the curvature tensor. Qur main result concerning this system
is:

For every homogeneous Siegel domain, there exists a canonical system which we
call the Hua system and denote HJK. The space of HJK harmonic functions
Hysx is Aut (D)-invariant and every bounded function F in Hy jx is @ Poisson
integral P s(f) of a bounded function f on B.

For the Poisson kernel Py i one can take the Poisson kernel Py, on B corre-
sponding to any G-invariant operator L which is subelliptic and is a linear combi-
nation of the elements of the system HJK . In particular, we may use the Laplace-
Beltrama operator A as L.

Therefore,

Every bounded, HJK -harmonic function s the integral over the Bergman-Shilov
boundary of a uniquely determained bounded function against the Poisson kernel for

A.



In the case that D is a Hermitian symmetric tube domain, our HJK system
is the one which Johnson and Koranyi [JK], generalizing earlier work by Hua [H,
defined. However, the kernel Py jx is equal to the standard Poisson-Szego kernel
Ps on B (cf. [H] and [K]) iff D is a Hermitian-symmetric tube domain.

It might appear that the Laplace-Beltrami operator plays a special role in this
theory. This, in fact, is not the case. It is possible to define a whole class of elliptic,
second order, differential operators for which our results hold. In fact, there are
cases where A does not provide the sharpest results. Explicitly, we show that

For the tube domain over the cone of real, positive definite n X n matrices there
exists a single G-invariant elliptic second order differential operator A' such that
the functions in Har are precisely the Poisson-Szego integrals of bounded functions
on the Bergman-Shilov boundary. The operator A' is a linear combination of the
"diagonal” elements of HJK.

For n = 2 Malliavin and Korényi [KM] (cf. also [J1] and [J2]) exhibited a system
L of two G-invariant operators for which H, consists of Poison-Szego integrals of
L functions on the Bergman-Shilov boundary.

For an arbitrary symmetric domain Berline and Vergne [BV] exhibited a third
order Aut (D)-invariant system £ for which H, consists of Poison-Szegé integrals of
L= functions on the Bergman-Shilov boundary. In [D] and [DH] some probabilistic
tools are used so restriction to the second order degenerate elliptic operators is
necessary. This also explains why we are unable to go beyond second order systems
in the present paper.

Our proofs are inductive, relying both on the characterization of bounded ho-
mogeneous domains as Siegel domains of type I and II due to [PS], as well as the
structure theory of homogeneous cones due to [V]. We also, of course, use the results

of [DH].

Section 1. The Hua Operators

In this section, we define the Hua operators in general and compute them in the
context of a bounded homogeneous domain.

Let D be a Kéhlerian manifold and let T be the (real) tangent bundle for D.
(We shall not need to indicate its dependence on D in our notation.) We assume
that the reader is familiar with the basic properties of Kéahlerian manifolds and
their Riemannian connection. (See e.g. [He]). Let

Tc — TlO D TOl

be the decomposition of T, into holomorphic and anti-holomorphic vector fields.
(T. is, of course, the complex tangent bundle.) We have a similar decomposition
Tc* — (T*)lo D (T*)Ol
where (T*)" is the annihilator of TV in T*. Hence, (T*)% is the dual space of T,
We define an operator 99 : C*°(D) — , ((T*)!° @ (T*)°!) in local holomorphic
coordinates by
0 f

aaf - 827821

dz; ® d?j
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(It is easily seen that this is independent of the choice of coordinates.)
Now, let g be the Riemannian structure for D and let V denote the corresponding
Riemannian connection. For a C'* function f we define a 2-tensor by
VAX,Y)= (XY — vxY)f
Then, on a Kéahlerian manifold we have the following:

(1.1) Lemma. For all f € C>®(D), d0f = v2f|T'" x T

Proof This follows immediately from the above formula for V2 f and the obser-
vation that for all 2 and j,

vszi =0 and VZJZi =0

where Z; = —. (See the material below formula (12), p. 292 in |He]).
here Z; aa See th ial below f 1 in [H
~J

A usual, we define the curvature operator by
R(X,)Y)=VxVy —VyVx — Vixy]
where X and Y are complex vector fields. We interpret R as a End (7., T.) valued
two form on D. (We extend V to T, by complex linearity.) We also extend ¢ to

the complex tangent bundle by complex linearity. We shall let H be the Hermitian
form on T, defined by

H(Z,W) = %g(Z,W).

Let {Ey,...,E,} C T' be a local orthonormal frame for T'° (orthonormal with
respect to H). For f € C>(D), we define

(1.2) HIK(f)=-) 00f(E:,E;)R(E, E;)|T"
It is easily seen that this is independent of the orthonormal frame.
It is clear that H.JK annihilates holomorphic functions. The next lemma will
establish that H.JK is real in the sense defined in the introduction.
(1.3) Lemma. For all Z and W in , (T°') and all f € C*(D),
HHIK(f)Z,W)=H(Z,HIK(f)W).
Proof This follows from formula (1.2) along with the observations that, for all
U,V,Zand W in , (T.),
H(RUV)Z,W)=H(Z RV, U)W).

5



and, for all Z and W €, (TOl),

0f(W,Z)=00f(Z,W).0

The next proposition establishes that every Hua-harmonic function is in the
kernel of A, where A is the Laplace-Beltrami operator.

(1.4) Proposition. For all f € C>(D),

Tr HIK(f) = A(f).

Proof We note first that for all Z and W in 70!

Tr R (Z,W)|T = —r, (Z,W).

where r is the Ricci curvature. (This formula follows easily from formula (5), p289
of [He] along with the identity R;Cij* = Rfl]‘* = —Rfj*l where the notation is as in
[He], loc. cit.)

From Proposition 3.6, p.300 of [He|, along with formula (1.2) above, we see that
(1.5) Tr HIK(f)=2) 00f(E; E;)H(E;, E;) =2 90f(E:,E)).

On the other hand, it is known that Af is the contraction of VZf ([O], p. 86.)
It is easily seen from Lemma (1.1) that this is exactly the quantity on the right. O

Our next goal is to compute a formula for HJK in the case that D is a bounded
homogeneous domain. Thus, in view of [PS] and [V] we may assume that there
is a connected, simply connected Lie group G which acts simply transitively on D
and that this action is real analytic in the G-variable and is holomorphic in the D
variable. We let x, be a fixed base point in D.

Let G denote the Lie algebra of G. In general, we shall adopt the convention
that upper case Roman letters will be used to denote Lie groups and that the
corresponding upper case script letter will automatically denote the corresponding
Lie algebra.

The complex tangent space (7.),, may be identified with G, and G-invariant
vector fields on D with left-invariant vector fields on G. The set of elements X in
G. which annihilate holomorphic functions at x, is denoted by P. Clearly P is a
complex subalgebra of G.. Since left translation preserves holomorphic functions, a
vector field X € P is a section of the bundle T°'. We let Q@ = P. The vector fields
valued in Q define the sections of the bundle 79,

Note that since T, = T'% @ T°! we have

gc:P@Q



Let mg be the projection to Q along P. For each Z € P, we define an operator
M(Z): Q— Qby

(1.6) M(Z)(X) = mq([Z, X]).

To compute the H.JK operator, we must compute the connection. Notice that
for X €, (T'), Z €, (T°), and f any (local) holomorphic function

VzX(f) =VxZ(f) +[X, Z]f = [X, Z]f

since the torsion is zero and the conection preserves holomorphic type. It follows
that

(L.7) v2X(f) = 7([X, Z])(f)

where 7 is the projection to T along T°! in T.. Hence VzX(f) = n([X,Z]). In
particular, for Z € P, X € Q we have

VzX =M(Z)X).
Since the connection is real, we may also state that
VxZ = M(X)(2),

where

M(X)Z =M(X)Z.

We will also need to know the connection on other types of forms. Since the
Riemannian structure is invariant, the form ¢ is defined by a scalar product ¢ on
G and H is defined, as above, by a Hermitian scalar product (still called H) on G..
For Z € Q, define an operator M*(Z): Q — Q by the identity

HM*(Z)X,Y)=H(X,M(Z)Y)
where X and Y range over Q. Thus, M*(Z) is the adjoint in H of M(Z).
(1.8) Proposition. Let Z and X be elements of Q. Then
VzX =-M*(Z)X).

Proof On a Kahler manifold, the connection preserves holomorphic types. There-

fore, VzX is of type (1,0). Furthermore,

VzX = V7X

We compute:

ZH(X,Y)=H(VzX,Y)+ H(X,V5Y).
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for Y €, (T'). But for X, Y G-invariant, ZH(X,Y ) = 0, and so
H(VX,Y) = —H(X,v5Y) = —H(X,M(Z)Y) = —H(M*(Z)X,Y).0

Again, since the connection is real, we may write

VzX =V;X = -M*(2)X

where M*(Z)y = M*(Z)X

Next, we compute the curvature. Our result is:

(1.9) Theorem. For X and Z i Q and W € P, the form R defined below is

the curvature tensor at the identity e of G.

R(Z. W)X = —[M*(Z)M(W) = M(W)M*(Z) + M*(M(W)Z) + M(M(Z)W)]X

Proof Tt follows easily that at ¢
(VzVw = VwVz)X =(—M"(Z)M(W)+ M(W)M*(Z))X
Also,
(Z,W]=VzW —-VwZ=M2IZ)W —-MW)Z

It follows that at e
R(ZWH)X = (=M (Z)YMW)+ MW)M*(Z)— M(M(Z)W) - M*(M(W)Z)X.
This proves our formula.

Section 2. Hua operators on type I Domains

The Siegel domain of type I associated with a homogeneous regular cone V (as
described in the introduction) is the domain in C" defined by

E=R"+V.

i.e. for such domains the space Z is trivial. Let S an algebraic subgroup S of
Gl(n,R) which acts transitively on V via the usual action of Gl(n) on R™. It is
a result of [V] that S may be taken to be a triangular subgroup which acts simply
transitively on V. We may also assume that S contains ¢I for all # € RT. We shall
let ¢ € V be a fixed base point.

The group S acts on & by matrix multiplication. We let M = R”™ thought
of as a commutative Lie algebra. The corresponding Lie group M is R™ under
addition. This group acts on £ by translation. These two actions generate a simply
transitive subgroup G of the automorphism group of €. The group G is the semi-
direct product G = M x4 S where the S action on M is matrix multiplication. We
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shall identify M and § with the corresponding subalgebras of G and hence, M and
S with subgroups of G.

Let p be the representation of S on R" defined by letting .S act on R" by matrix
multiplication. We shall also let p denote the action of the Lie algebra & on R”
obtained by differentiating p. Since S acts simply transitively, the mapping o of &
into R™ defined by

K(X) = p(X)e

is a vector space isomorphism. We extend p and & to S. by complex linearity. Then
we have the following;:

(2.1) Lemma. P = {(«(Y),:Y)|Y € S.}.

Proof We consider &€ C R™ x R™. Then the tangent space at ¢c is R™ x R™. The
tangent space is also identified with G = M x4 S. The identification is defined by
mapping (X,Y) € G into (X, k(Y")) € R” x R™. Under this identification, the space
defined in the statement of the lemma maps onto the Cauchy-Riemann operators,
proving the lemma.[]

It follows that the complex structure on the tangent space is defined by the
mapping J : (k(X),Y) = (—x(Y), X).

There i1s an algebraic description of the general homogeneous cone which is due
to Vindberg which we shall require. We define a product A on § by the equality

XAY = &7 (p(X)p(Y )e)
Since p 1s a Lie algebra representation, it is easily seen that for all X and Y in &,
XAY —YAX = [X,Y].

The operation just introduced is useful in describing the operator M introduced

above. Let X = (ik(B),B) € Q and Z = (—ik(A), A) € P. Then

12, X] =(ip(A)r(B) + ip( B)r(A),[4, B])
—(ip(A)r(B), AAB) — (=ip(B)(A), BAA)

In view of (1.7) it follows that
(2.2) M(Z)X = (ir(AAB), AAB).

Our next goal is to explicitly compute the operator M*(Z)X for Z € Q,. For
this, we shall also require an algebraic description of the Riemannian structure of
the domain. Assume, for the moment, that the Riemannian structure in question
is that derived from the Bergman metric. Since this structure is G-invariant, it
is defined by a scalar product ¢ on the Lie algebra G. Koszul ([Kl], Formula 4.5)
proved the existence of a functional § € G* such that this scalar product is given

by
(2.3) 9(X.Y) = B([JX,Y]).
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This functional has a very simple description in terms of the “normal decomposi-
tion” of S, which will be explained after Proposition (2.6). Since ¢ is J-invariant,

(2.4) BTX, JY]) = =p([J* X, Y]) = B([X,Y])

We shall not explicitly use any other information concerning 5 other than the fact
that formula (2.3) defines a J-invariant, positive-definite, scalar product. Proving
our results in this generality seems necessary in order to carry out the inductive
portion of the proof (see Section 6).

Notice that for all A and B in &

g((O, B)? (07 A)) = 5([(_53(3)7 0)7 (07 A)]) = 6((’€(AAB)7 0)) = f(AAB),
where £ € §* is defined by
£(A) = B((k(A),0)).

Note that one consequence of the above is that the expression
(4,B) = §(AAB)

defines a scalar product on S.
Using formula (2.4) and the fact that M is abelian, it is easily seen that 3 is
zero on [S,S]. Moreover M and S are orthogonal. This easily implies:

(2.5) Lemma. For X = (ix(A), A) and Z = (ir(B), B),

H(Z.X) = £(AAB).

To describe M*., we shall require the ‘dual’ product on §. We define a product
‘0" on § by the equality
(AAB,C) = (B, AOC).

This product is, in fact, the ‘A’ product on § induced from the dual cone, although
we shall not require this fact.

Now, let X = (ik(A),A) € Q and Z = (1k(B),B) € Q. Then we have the

following proposition which follows easily from formula (2.2).

(2.6) Proposition. M*(Z)X = (ix(BOA), BOA).

To obtain more precise results, we shall need to use the structure theory of clans
due to Vindberg. Let r be the rank of S. (The dimension of the maximal torus in
S.) Vindberg proves (Proposition 8, p.374) that S has a ‘normal decomposition’.
This means that there is a direct sum decomposition

S=d Z Si]‘

1<i<j<r

10



where

(2.7)  For each 1 < ¢ < r, §;; is spanned by a single element e;; such that
eiiNej; = €.

(2.8) Forl1<i<j<k,

Si]‘AS]‘k C S;r and
SjkASik + SikASjk C Sl‘j.

(2.9) SijAS={0}ifj #kandj #L
(2.10) Let ¢ < j and let s;; € S;;. Then

1

eii S =550 = STVANCH:
siA\ej; =5;5.
(2.11)  The functional £ is zero on S;; for ¢ < j, and by definition, {(e;;) =
g(ei;, e5;). Therefore 3 is zero on Zi<j o(Si;) x S.
We refer to the above properties as the ‘properties of the normal decomposi-
tion’. In fact (2.11) can be derived easily from (2.7)-(2.10), the orthogonality of

the decomposition § = M x § and the invariance of ¢ under J. To understand the
meaning of (2.7)-(2.11), it helps to keep the following example in mind.

(2.12) Example: 1 Let X be the set of n x n, real, symmetric matrices and
let YV C A be the cone of positive definite matrices. The group S of all invertible
upper-triangular matrices with positive diagonal acts simply transitively on V by
means of the representation p defined by

p(S)X = SXS".
The differentiated representation of S then is given by
p(A)X = AX + X A"
We choose ¢ = I as our base point. Then
k(A)=p(A)] =A+ Al
It B€S, then BAA is defined by
BAA = x"YHp(BYA+ AY) = H(B(A+ A" + (A + AHBY).
The space S;; are just the space of matrices which are non-zero only in the (7, )
position. The elements e;; are the diagonal matrices which have 1/2 in the (¢,7)

entry and all other entries zero. The functional £ may be taken to be the trace.
The properties for the normal decomposition are easily verified in this case.

We shall also need information on how [ interacts with the normal decomposi-
tion. This is most easily stated in terms of the spaces

11



Tij = Sr—jr—i

The following is a simple consequence of the observation that the normal decom-
position is an orthogonal decomposition.

(2.13) Proposition. The operation O satisfies the properties of the normal
decomposition with respect to the spaces T;;.

One requirement for the boundary theory which we utilize is a detailed knowl-
edge of the root structure of G. This too is readily obtained from the normal
decomposition. Let A C S be the span of the ¢;; and let

N=> 8

1<j

Then N is the unipotent radical for § and A is the maximal torus for both § and
for G. Let A € A*. Then ) is said to be a root if there are non-zero X such that
forall D € A,

[D, X] = AD)X.

Such X are called root vectors. We shall let M, and N denote, respectively, the
spaces of the root vectors for A in M and in . The set of all roots will be denoted
R.

Let {A\1,A2,..., A} C A* be the dual basis to the ¢;; basis. We shall leave the

following to the reader:

(2.14) Proposition. Let: < j. If S;; # 0, then both (A\; + A;)/2 and (A; —
Aj)/2 are roots. The corresponding root spaces are, respectively, o(S;;) C M and
Si]‘ C S.

Now we shall introduce some notation. Let ¢; = £(e;;). Also, for ¢ < j, we let
d;; be the dimension of §;;. We choose a basis e% for &;; such that

(eds er) = Oq,Ci-

This basis turns out to be more convenient than an orthonormal basis due to the
following:

(2.15) Lemma. For ¢ < j,

e ) ..
eijAeij = 0a~Cii-

«

Proof Since S;; is one dimensional, eijAer = ce;; for some scalar ¢. Furthermore

cei = E(ef;Aefy) = (€, ¢);) = cida -

This proves the lemma.[]
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Next, we shall require an orthonormal basis for Q. For this, we define, for all
1<,

(2.16) Ef; :(Yi?—l—v—lX%)/\/c_i
where

Yi5 =(0,¢€5)

X7 =(r(ef;),0).
(If i = j, we interpret @ = 1 and e = e;;) It follows easily from Lemmas (2.5) and
(2.15) that the Ef; define an orthonormal basis for Q.

Considered as vector fields on &, the elements £ form an orthonormal frame
field for T'°. We may therefore compute the HJK operators from formula (1.2).
Actually, it turns out that we only require the ‘strongly diagonal’ HJK operators.
These are the operators defined by

(2.17) HIK,.f=HHJK(f)Enm,Enm)-
Our main result of this section is the following:

(2.18) Theorem.

A + 2 dim
HIK, =c (A, — Y — > =Yy

where dp, =Y

m<j dmj; and

Am= Y )P (X000 + Y e (V)7 + (X057,

1<m,a m<j,«

Proof From Lemma (1.1) and Theorem (1.9),

HIK(f)m =3 fo5,050
where

a o =08
Cz‘jifl =— H(R(E}}, Ey))Emm, Enm)

1y
=8 -« * o *
=H(M(E ) Emm, M(E;)Enm) — HM*(E2)Em, M*(E) Enm)
(2.19)

@ =0 * =08 @
+ H(M(M(E)Ey) Emms Emm) + H(M*(M(E ) E5 ) Enm, Enm ).

and

f%,’fl = [FijElfl - M(Eij)Elfl]f
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The sum is over all indecies with 1 <7 < j <r, 1 <a <d;;, 1 <k <[ <r and
1< p<du.

Our first observation is that if (¢,7,a) # (k,I, ), then C?j:fl = 0. In fact,
each term in formula (2.19) is zero. (This follows from the normal decomposition
properties, Propositions (2.6), (2.14) and the observation that the S;; spaces are
mutually orthogonal.)

Next, we shall record a series of formulae which the reader may readily verify.
We set

Zi = Eyi/ei = ¢ (Y +V=1X4).

For i < j
M(Fa )E _ 6Jam Eoz
* «a 6i,m e
o1
M(E;)E7 :\/—EE“ = Z;
—a 61 m
MOM(ESES) B =2 Epi
Cm
—a 61 m
M (M(EL)ES) B =22 Ep
Cm
It follows that for ¢ < j
o, 1 1
Cilij = ;(f?ygm — Oim +20i,m) = ;(51‘,”& +8im)
and
(2.20) fiy = (BGEG = Zo)f.

We sum the terms with indecies (m, j), 7 > m and (¢,m), ¢ < m separately. Note
also that for each pair (¢, j ) there are d;; possible values of a. Note also that d;; = 1.
We get

e BT K = A — 22 (Vo V1K) = 3 S5 4+ VX
Cm : C;
r<m
where d,,, = Em<j dpm; and

Ap= > EiEj+ > E,.E.
<m,a m<j,a

From Lemma (1.3), HJK,,(f) = HJK,,(f). Thus, HJK,, is a real operator.

Taking real parts proves the desired formula.[]

14



Our proof of our main theorem will be an inductive argument based upon the fact
that every bounded, homogeneous domain may be built up from a lower dimensional
domain. To explain this, we introduce two subalgebras of §. We define,

2<i<j<d

Clearly, S14 1s a Lie ideal in & and S-1 is a complimentary Lie subalgebra. We
define subspaces of R™ by

Ml* = K(Sl*) and M>1 = /€(8>1).

Then, M, is § invariant under p. We identify M~ with the quotient R™/M,.
The image Vs in M~ of the cone V is a cone which is homogeneous under

S/S1x = Ss1. (See [V].) It follows that
Gs1=M>1551 CG
acts simply transitively on the tube domain over Vsi. We use the functional
fs1 = B|Gs1 to define the Riemannian structure on Gsy. Let HJKs; be the
corresponding Hua system for G'~1.
We shall identify G with the quotient G /Gy, where
Gl* == Ml*Sl*-

Note that G« 1s normal in G. This identification allows us to consider functions
on GG~ as functions on G which are constant on cosets of G,. Under these identi-

fications, the strongly diagonal Hua operators on G reduce to those on G~; in the
sense of the lemma below. This lemma is a direct consequence of Theorem (2.18).

(2.21) Lemma. Let HJ K~ be the Hua system for G~y under the Riemannian
structure defined above. Then, for all f € C°(G) which are constant on Gy cosets,

(HIKs1)mf =HJKpi1(f)
for allr >m >2. 0

Section 3. Hua Operators on Type II Domains

Let D be a Siegel domain of type II as described in the introduction (nontrivial
Z). The group G generated by the actions (0.1), (0.2), (0.3) may be algebraically
described as follows. Let ¢ = SK. We let M = Z x R™ with the Lie structure

[(21,%1), (22,12)] = (0,4¢(z1, 22)).

15



The corresponding group is M with the product
(z1,t1) - (22,t2) = (21 + 22, t1 +t2 + 26(z1, 22)).

However, following our convention of denoting Lie groups by upper case Roman
letters, we shall denote this space by M when it is considered as a group. This
matches with the notation for tube domains, which correspond to the case Z = 0.
From now on M will be understood in this larger sense.

Let G = M xS where s(z,t)s™! = (0(s)z, p(s)t). Then, G is a completely solv-
able group which acts simply transitively on D. The corresponding identification

of G with D is defined by
(3.1) ((z,1),8) = (z,t +ip(s)e+iK(z,z2)).

We shall let T = R™ x4 S C G. Note that T is the group of the Type I domain
E =R"+41V. The Lie algebra of T will be denoted by 7.

We identify the tangent space of D at ic with G. Let J : G — G define the
complex structure. From formula (3.1), it is easily seen that J : 7 — 7 and on this
set acts as described below Lemma (2.1). It also follows from formula (3.1) that on
Z, J is just multiplication by ¢. Next, we assume that the Riemannian structure
may be defined by a formula such as formula (2.3) above where 5 € G* . Notice
that then 3|7 defines a Riemannian structure for 7.

As before, we shall also let o denote the representation of § in Z obtained
by differentiating o. Since (by assumption) o is algebraic, we know that o(.A)
is diagonalizable over R. Thus, we may decompose Z into a direct sum of root
spaces for A under o. Let {7, 72,..., 7} be the set of root functionals in A*. The
following is well known. We include the proof for sake of completeness.

(3.2) Lemma. Let \; be as above Proposition (2.14) Then

{Tl,TQ,...,Tk} - {/\1/27/\2/277/\r/2}

Proof Let Z € Z be a root vector for A under o corresponding to the root
functional 7 € A*. Then, U = K(Z, Z) is a non-zero root vector for p corresponding
to 27. It follows from Proposition (2.14) that 7 = (A; + A;)/4 for some choice
of 1+ < 5. We need to show that necessarily, :« = j. Suppose that ¢ < j. Let
X =x7HU) € S;;. Then for all A € A,

o(A)o(X)Z =o([A, X])Z + 0(X)o(A)Z =~v(A)o(X)Z

where 5 .
v = (/\Z — /\]‘)/2 + 7= 1/\1 — 1/\]

We know from the previous paragraph that such a functional cannot be a root for
o. Hence 0(X)Z = 0. But then p(X)U = 0. We obtain our contradiction by noting
that then XAX =« (p(X)p(X)c) = k1 (p(X)U) = 0, proving that X = U =0
and hence that Z = 0. O

16



From now on R, M, N defined before Proposition (2.14) will be understood in
this more general situation i.e. when M = ZHR"™. We assume that our Riemannian
structure is defined via a functional § € G* as in formula (2.3) above.

(3.3) Corollary. The functional 3 is zero on Z.
Proof Let A€ Aand Z € Z. Then JA € o(S). Hence
B([A. Z]) = B([JA, ] Z]) = 0.

Our corollary follows since, from Lemma (3.2), Ad A maps Z onto Z.00

We let Z; denote the root space corresponding to \;/2 in Z. Then

Z:ZZ

Furthermore, in £,
(3.4) [Zi, 25] € Mij.

(Recall that M;; = k(Si;)).
The subalgebra Q is the set of all elements

X —-v-1JX

where X € G.. For each i, we define Q; to be the set of all elements X — /—1JX

as above where X € (Z;).. For any pair of indecies (7, j), we define Q,;; to be the
set of such elements where X € (M;;).. Clearly, the spaces Q;; and Q; together
span Q. Furthermore, the space

Qr = ZQi]‘

is the algebra which we called Q in the last section relative to the domain €. Let
fi be the complex dimension of Q. o
For any subscript «, we define P, = Q4. Then, from formula (3.4),

(3.5) [Qi, Pi] € (Mij)e = Pij + Qij-
Indeed, let X € Q;, Y € Q;. Then

H(X,Y)= 5o(X.¥) = SA(IX.T]) =0

One immediate conclusion is that the spaces Q; are mutually H-orthogonal, because
3 is zero on M,; for @ < j.

We choose a basis for Q consisting of

(a) The basis Ef; for Qr defined in formula (2.16).

(b) An H-orthonormal basis 79 = X3 —/=1Y for each Z; where 1 < a < f;

and X;y and Y}a are real.

17



It 1s clear that this defines an orthonormal basis for @. We shall use this basis to
compute the Hua operators. Again, though, we are only interested in the strongly
diagonal Hua operators. These are still defined by formula (2.17). The analogue of
Theorem (2.18) for a Siegel II domain is the following

(3.6) Theorem. Let HIKL be the operator defined as HJK,, in Theorem
(2.18). Then, for the case at hand,

_my

Cm

HIK, =HIKL + ;' (O (X0)* +(Y,5)

«

Proof 1t is clear that from formula (2.19),
HIK, =HJKL+Y firc”

where

3 > 7o * o *
cor =H(M(Z )Epm, M(Z, )Epm)— HM (Z)Epm, M (Zj)Emm)

i,] J

(3.7) + H(M(M(Z)Z ) Erms By + HM*(M(Z ) Z8) By B ).

J 2

and

=120 2] = M(Z7)Z)\ f
To get (3.7) one has to prove that H(R(Ez,fﬂ)
but a tedious calculation based on two facts:

Ervmy Emm) =0, which is an easy

(3.8) M(Z))Eg =0
and
(3.9) M(E;)Z) € (Zk)e.

Indeed, since P is a subalgebra, we have
M(Z)ES = 7olZ) Y5 +iX8] = mo[Z) Y3 —iX2] = 0.

Analogously
ro[B, 7)) = molES, 20) = [ES, 2]),

l]7 1]7 Z]7
which for i J is included in (Z). and for ¢ < j belongs to the root space
i )\ . .
Aim A A , which is zero.
We clalm that C "= 0 unless : = j = m and « = 7. Furthermore, in this case

we get ¢,
To prove this, let X = A—+/—1JA be an element of Q7 where A € A. Then,
JA € M and hence
(X, Z;|=[A—iJA Z;]=[A+iJA, Z;]€P.

18



It follows that
M(X)Z{ and M(Z; )X =0,

In particular, the first term to the right of the equality in formula (3.7) is zero.
Next, from formula (3.5), we note that M(??)Z]a belongs to Q;;. Hence, the
third term on the right in formula (3.7) will be zero unless ¢ = j = m. The same
is true for the fourth term since this term is just the conjugate of the third. The
following lemma clearly finishes the proof of our claim. In fact, this will also finish

the proof of Theorem (3.6).0

(3.10) Lemma.

Proof For the first equality, we note that x(Sy,m) is one dimensional. Hence,
from formula (3.4) there is a complex constant C'®7 such that

(3.11) (Z) . Z2] = C "X .

Computing this constant is simple. If we apply 8 to both sides of the above, we
find that

2H(Z7,, Z) = BT 27, Z,]) = =iC* ey
Thus,
N
cor = g,

Cm

On the other hand, from formula (2.16),

—1/Cm —

Xmm -

The first equality follows by applying 7¢ to formula (3.11).

For the second equality, recall that, by (3.8), M(Zla) is zero on Q7. It follows
that M*(Z)Emm is H-orthogonal to Q7 and hence belongs to Z.. Also

H(M*(Z)Emm, Z) = H(Epm. M(Z)Z).

J ? J

This is zero unless ¢ = j = m, in which case, the first part of the lemma proves our
result.[]

Section 4. Alternative reproducing kernels for holomorphic functions

In this section we consider G-invariant real second order elliptic degenerate op-
erators L on D, which annihilate holomorphic functions. We are going to apply the
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boundary theory of [DH] in order to show that there are many real kernels on M,
which reproduce holomorphic functions.

Let L be a real (i.e. Lf = Lf) second order operator which annihilates holo-
morphic functions and zg € D a fixed base point. In local coordinates around z

we have
4.1 L=
(4.1) Z ki 8zk 82
. _ . . . . 0
with ¢ji = ;. Therefore writing L in terms of partial derivatives —, S
Yk

obtain an operator with real coefficients, and being elliptic degenerate means that
the second order symbol of L is positive semi-definite.

Since, additionally, L is G-invariant, we may write it in terms of left-invariant
vector fields on G. The identification (3.1) of G with D defines global coordinates

0
for G. Let X} be the left-invariant vector field on G which equals . at e in these
2k

coordinates. In view of Lemma (1.1) we have
L=) crj(Xi;— g, X)) =D enj (X — M(Xp) X)),

where We choose a basis of Q as in the previous section. Let {E%}, 1< <3<,
1 <« < d;; be the basis for Q7 and {Z]q}, 1<j <k 1<a<f;, the basis for Z.
Therefore,

L=) CYUELE,—MEZDE)+Y CH(Z; 20 - M(Z7)z))
(4.2)
+ Y CHUEGZ] — ME)Z]) + ) Cn(Zy By — M(Z))EY)).

The condition Lf = Lf implies that L belongs to the enveloping algebra of G i.e
can be written as

L=Y" 4. +)2 4+
for some Yy, ...V € G.

For the rest of the paper we assume that L satisfies the Hormander condition i.e
(4.3) Vi,....Vm generate G as a Lie algebra

The same condition is satisfied by m4(L), where w4(L) is the image of L under the
canonical homomorphism 7 : S — A = G/MN, i.e m4(L) is elliptic. Since the
second order part of m4(L) is equal to

Z COmYsYss =Y CijYuly)

i,5=1 i,5=1
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we have

(4.4) Cioe = Ciiii > 0.

2, 17

In order to determine the Poisson boundary for L we need to know the A-
component Yy of the first order part of L. For this, we compute the contribution
of each term in (4.2). In view of (3.8) and (3.9), M(Z?)Ekl =0 and M(EZ)Z,? €
(Zk)c. Hence

H(M(E;)Z],Epnm) =0
and

H(M(Z;)Z], Epm) = 0.

Moreover M(??)Zf € Q;; and by Lemma (3.10)

o
M(Z 7P = b
( ? ) 7 /_Ci

By orthogonality of P and Q, Lemma (3.10) and (2.2)

H(M(E)E}), Enm) = E(V5 AV ) AY ),

which, in view of the properties of A, is nonzero if and only if a = 3,1 =k, j =1
and m = 2. Then, we have,

M(E;,)ES = fE
Therefore
(4.5) L=1Ly-Y,,
where

0= HY e Y

>«

We claim that for every 1 <¢ <r

(4.6) ZCW+ZC

>«

Since L has a nonnegative second order symbol, L f(x¢) > 0 for f having minimum
at xg. Let, in local coordinates around zg, f =| z; |>. Then in the notation of (4.1)

0 0
Lf(:lio)—cﬂa_a |Z]|_c]]

7]

Hence C; C’a “ > 0 and so, (4.4) implies (4.6).

], l]’
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The following proposition sums up our considerations

(4.7) Proposition. A G-invariant, real, second order operator L on D, which
annihilates holomorphic functions and satisfies the Hormander condition, can be
written in the form

(48) L= LO - Z memm7
m=1
where by, > 0 and Ly s a left-invariant second order operator with the first order

part contained in M G N.O

Notice that both the Laplace-Beltrami operator A and the ‘diagonal Laplacian’

Ading = »_ HIKp,

belong to the class of the operators described in Proposition (4.7). The first state-
ment follows from formula (1.5) and for the second from (2.17) and Lemma (1.3).

The vector Y, will play a special role in our discussion. We wish to apply the
boundary theory of [DH] to operators described in Proposition (4.7). We let RT
denote the set of roots A such that

AMY,) >0

and R~ = R\ R*. (This set corresponds to A;(L) on p.8 of [DH]). Note that our
Y, is —Z, in the notation of [DH].)

It is important to notice that BT is non-empty. In fact, it is clear from Propo-
sition (2.14) that for all ¢+ < j such that S;; # 0,

(\i +1X;)/2 € RT.

Also
\;/2 € RT.

The root spaces corresponding to these functionals span M. We let

N= Y N
AERT
and
N~ = Z M.
AER™

In the notation of [DH], loc. ¢it., No(L) = N~ and N7(L) = M & N T. Note that
both N'* are subalgebras of S.

Since

S=NtN"A
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the homogeneous space B = G/N~ A is identifiable with the nilpotent Lie group
MNT. We refer to B as the maximal boundary for L. With this identification M
is contained in it. Let dz be Haar measure on M NT. According to the main result
of [DH], there exists a bounded, positive, C'*° function P on B such that

(4.9)
/P(:z;)d:z; =1.

(4.10) For all L functions f on B, the function

- /B f(gz)P(x)dz

satisfles LF = 0. (Here, # — ga denotes the action of G on the coset space
G/N™A.)

(4.11) If F is a bounded solution to LF = 0, then there is a unique L* function
f on B which expresses F' as above. This function is called the boundary
value of F.

Finally we have

(4.12) Proposition. There is a choice of constants in (4.2) such that the maz-
imal boundary for L 1s M. In particular, the Poisson kernel for such L reproduces

holomorphic functions in the sense of (4.9)-(4.11).

Proof We consider L of the form

L=Y Cuu(ELES — )+ ZC“ 2728~ M(Z)ZP),
which is clearly elliptic if all C’f; Z and C are greater then 0. Hence we have to
find positive C’l] Z and Cl’la such that
(4.13) (i = A)(¥o) =

_C_z Z Cir zk+ZCi,i Z Cik, Jk+ZCJ,J
k>, «@ k>j,«

for 1 < j, which is very easy. Assume we can satisfy (4.13) for ¢ < iy and all
J > 1. To get (4.13) for ¢ = ip and j > iy we increase Cﬁ:’ik and C’ﬁ"ja sufficiently,
which does not change positivity of (A; — A;)(Yp) for ¢ < 4. O

It turns out that all L from Proposition (4.7) give rise to reproducing kernels on
M, although their maximal boundaries may be larger. For that we have to explain
the idea of a boundary for L and consider not only the maximal boundary but also
the smaller ones. We shall say that a subalgebra A of A is homogeneous if it is
normalized by A. For any such algebra, there is an A-invariant subspace A'! of N/
such that

N=N"a N,

23



Let N° D N~ be some homogeneous subalgebra of A'. Then, according to [DH],
Theorem (4.7), the homogeneous space B = G/N"A is a boundary for L. This
means that there is a probability measure P on G/N°A such that the functions

(4.14) Fa)= | o e P, € LGN )

are L-harmonic. P is closely related to P.

Clearly M = G/S is a boundary for L. Let Py be the corresponding Poisson
kernel. We are going to prove that Py; reproduces bounded holomorphic functions.
This is not totally obvious unless B = G/S and Py = P.

The boundary B can be realised as MN!, N! = exp V!, with an appropriate
action of G. Indeed, the mapping

(4.15) MN' x N° 3 (21,29) — 2120 € MN

is a diffeomorphism between MN' x N° and MN and so, every x € MN can be
written in a unique way as

xr=x129, T E MNl,l‘o e N°.
We have a well defined projection 7y, : MN — MN?!, given by
7TMN1($) = 2.

In this terms (4.14) becomes
@16 F)= [ S g, fe IROINY)

and  — my;n1(ga) is the action of G on MN! corresponding to the action  — ga

in B = G/N°A realization.

(4.15) follows from a more general fact. One can obtain this kind of decom-
position of a connected and simply connected nilpotent Lie group as far as the
assumptions of the following lemma are satisfied.

(4.17) Lemma. Let a nilpotent Lie algebra N' = N7 &Ny be a sum of two linear
subspaces N1 and Ny. Assume that we can find a basis Ey,...,E, of N such that
every E; belongs either to N1 or to Ny and, in coordinates x = exp(x By + ... +
v Ey), the multiplication in N = exp N is given by

(xy)l =z +yi + Ti(xlv sy Li—1,5 Y1, "'7yi—1)
with T; € C>®(N) independent of x4, ..., @y Yiy ooy Yn. Then
exp Ny X exp Ny 3 (21,29) — x170 € N
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18 a diffeomorphism. [

For the proof of Lemma (4.17), which by all means is standard, see e.g. the
preliminaries of [DH]. Although Lemma (4.17) is not formulated there in the above
form, the proof is essentially the same as the proof of Lemmas (1.21), (1.22), (1.25)
there. In every such situation we are going to consider the corresponding projections
mh and 7%.

In view of Lemma (4.17) we can decompose N1 as

Nt = N'NZ,

where N? = exp Ny and A5 = VT NNC. Notice that N? is a subgroup. Moreover,
in view of (4.16) we have

(4.18) P(x) = /]\72 P(zy)dy, x €& MN'.

Indeed, identifying f € Cp(MN') with a continuous bounded function on MN
constant on the right cosets of N°, we have

Floy= [ fmaaens(gmn) Pleydedy

(4.19)

= [ gy Plan)dady = |

MNT

f(FMNl(gl‘))</

P(:z;y)dy) dz.
N2

On the other hand,

Fla)= [ frun(ga) Pla)is

which proves (4.18). In particular,

(4.20) Py(x) = / P(zy)dy, «€ M.
N+
Now we are ready to formulate the main result of this section
(4.21) Theorem. Let L, Ly be G-invariant (not necessarily distinct), real,
second order operators on D, which annihilate holomorphic functions and satisfy
the Hormander condition. Assume that the maximal boundary for Ly 1s M. Let

Py be the L-Powsson kernel on M, and F a bounded function, which 1s at the same
time L and Ly harmonic. Then there is f € L>(M) such that

(4.22) Flo)= [ fimulge))Puie)de,
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In particular, bounded holomorphic functions are reproducible from their boundary
values on M via the kernel Pys.

Remark. The last chapter of the paper will be devoted to the proof of an
analogous theorem with the Hua diagonal operators playing the role of L;. This
involves somewhat more work because, except for the case of the tube over the cone
of symmetric real r x r matrices (see the next section), it is not known whether
or not there is a linear combination of Hua diagonal operators which satisfies the
hypotheses of L.

For the proof of both theorems we need a technical lemma, which will be formu-
lated and proved below. Before that we must introduce some notation. Elements
of Cy(B) are defined by right N~ -invariant continuous functions on M N, while
elements of C’b(B) are defined by right N°-invariant functions. We say that an
element of Cy(B) ‘reduces’ to B if it is defined by a right N%-invariant function on
MN. In this case, as in (4.19), we may write

Fla)= [ fras(ge) (o) ds
(4.23) - /MNW F(mars (gnws) Py va ) oy

= /MN1 flmarnn (g:z;l))]s(xl )dxy.

Let Y € A. We say that Y is contractive on G if ad Y has only non-negative
eigenvalues. In this case, we let Ay be the span of the positive eigenspaces in
M+ N and ./\/31/ be the centralizer of Y in M 4+ A". Note that ./\/30/ 1s an ideal in
M+ N.

(4.24) Lemma. Let F be a bounded, L-harmonic function. Assume that the
L-boundary value f is continuous on the mazimal boundary B = MN™T. LetY € A
be contractive. Then

lim F((exptY)g)= Fy(g)

t——oc0

converges uniformly on compact sets in G and defines an L-harmonic function with
continuous boundary function fy. Both Fy and fy are constant on right cosets of
NY in G and in MN respectively. Additionally, fy and f agree on Ny N MNT.
If f reduces to G/AN®, then fy will reduce to GJ/AN', where N' is the subgroup
generated by Ny and N°.

Proof Given g € G, we write

g = anyny
relative to the decomposition G = ANy NY.. ( The assumptions of Lemma (4.17)

are clearly satisfied because Ny, N together contain all of the eigenspaces of
ad Y.) We define

g(t) = (exptY)g(exp —tY).
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Then
g(t) = anynS-(t)

Let
I' =Ny NMNT and I = Ny " MNT.

Notice that also 71, 7° are composed of the whole eigenspaces and so
MN*t =TI

Then

(4.25) FlexptY) = / ( ; f(xle(t))P(xle)dxl> dz®.

Il
When t — —oo then 2°(t) — e and (4.25) converges to
(4.26) fzY)P(2b) dat,
Il
where
P(zh) :/ P(x'2%)da®.
IO
More generally, for g € G,

Fl(exp tY )g) = Flan}n$-(t)(exp 1))

_ /I 1 ( B f(7rMN+(an%/noy(t)xlxo(t)))P(xle)d:z;1> da".

Ast — —oo0, n(t) — e, 2°(t) — e and we see that

(4.27) Fy(g)= . f(7rMN+(an%/x1))]5(xl)dxl = . f(7r11(an%/:1;1))]5(:1;1)d:1;1.

The convergence of the limit as well as the fact that Fy is constant on right cosets
of N follows.
Each of the functions ¢ — F((exptY)g) is L-harmonic since L is left invariant.
Our limit will converge in the C$° topology due to the hypoellipicity of L [B].
From formula (4.26) and formula (4.27), fy is the function on MN defined by

fr(ata’nT) = f(a')
for all ' € I', 2° € I° and n~ € N, so the agreement of fy and f is proved.
Both functions will be considered as functions on M N constant on N~ right cosets.
Writing * € M N as
r=z2"2"n" 2lel', 2®cI’ n~eN",
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for y € Ny- we have

fy(ata®n"y) = fy(a'2®n"y(n" ) tn7)
= fy(x'2®n"y(n™)™) = f(2') = fy(a'2n7),
which proves that fy is right NV invariant as a function on M N. Finally, suppose

that f is constant on right cosets of N° where N is a homogeneous subgroup of
N. Since N° is homogeneous, we see that

N =(N"N(MNTHN° A NT)=(N°nIHN°NnI)N° NN

Now since Ny is a normal subgroup of N and fy is right N{- and N~ invariant,
for y € N°, we have

1

fy(ayasy) = fy(zyyy "2 y) = fy(zyy).

Now decomposing y as
y=y'y'y" ylell,y el y el

we obtaln
Fr(ayy) = fy(ayy') = flayy') = frayal).

We see that fy is constant on all N° right cosets. Since fy is also constant on Ny-
cosets, we see that it is constant on N' cosets, proving the lemma.[]

Proof of Theorem (4.21). Let

Y:ZYM.

Then N;l/ = S and Ng/ = M. Let F be a bounded L and L; harmonic function
with continuous L-boundary value f on MNT (M NT being the maximal boundary
for L). Hence Fy is an Ly-harmonic function which is constant on cosets of M in
G. Therefore Fy may be considered as a function on S harmonic with respect to
ms(Ly), which by (4.9)-(4.11) and (4.13) has a trivial maximal boundary and so
Fy is constant. Lemma (4.24) then says that fy is constant and so f is constant
on N{ = S. Applying the same argument to left translates of F' shows that f is
constant on right cosets of S. Indeed, let F(g) = F(g1g). Then by (4.16) (with
N! = N7T) the boundary value f of F satisfies

(4.28) f(z) = flrayrn+(g1x)), € MNT,

But when both f, f are considered as N~ right invariant functions on N, (4.28)
becomes

f(z) = f(g1z), =€ MN.

Therefore, by (4.23), f reduces to M. This proves Theorem (4.21) in the case where
the boundary value is continuous.
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Actually, the general case of Theorem (4.21) also follows. If F' is an arbitrary
L and L;-harmonic function and ¢ € C°(MNT) then the convolution Fy(g) =
¢* F(g) = [;n+ ¢(x)F(271g) de is L, Ly-harmonic with continuous boundary
value ¢ * f. (See Lemma (4.9) of [DH].) Hence, ¢ * f treated as a function on
MN is constant on S-cosets. Letting ¢ range over an approximate identity proves

Theorem (4.21).00

Section 5. Tube domain over the cone of symmetric positive definite r X r
matrices.

In this section let D be the tube domain over the cone of symmetric positive
definite r x r matrices. By A we denote the Laplace-Beltrami operator on D. For
a sequence of strictly positive numbers a = (ay, ..., ay, ) let

L* = z’”: amHJK

m=1

be a linear combination of strongly diagonal Hua operators. We are going to prove
that the operators L® having M as the maximal boundary play a special role on D
—they characterize the classical Poisson-Szego integrals from the Shilov boundary.
This means that a bounded function is a Poisson-Szego integral if and only if it 1s L#-
harmonic. Unfortunately this nice characterization is not true for other symmetric
tube domains because then there are no L® having M as the maximal boundary.
We begin by proving the existence of L® which have the M as their maximal

boundary. In the case of the cone of symmetric, positive definite, X r matrices,
1

¢j = 5, d;j =1 and dy, = r —m, and so the strongly diagonal Hua operators have
the form .
H K =458 = (42 = m)¥om = 3 Vi),
<m
(5.1) Lemma. There is a choice of ay,...,a, such that the mazimal boundary
for L® 1s M.

Proof Let Y = —>"" _ an((r +2—m)Yym + Ei<m Yii). We need ay,...,a,
such that

(5.2) (A=) (Y)>0 fori<y.
We start with A; — A, « < r. Then

(/\z - /\r)(Y) - _(/\z - /\r)(QGTYrr + arlfi + Z amlfz) = ay — Z A -
<m<r <m<r

Whenever ap, < %=, m = 1,...,r — 1, (5.2) is true. Assume we can satisfy (5.2) for
J > m. We have

A=A )(¥) = (= 3 Vit Yo )—am((r42-m) Y +Y)= Y aYimai(r+2-i)Y)
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= U (r+2—m)—apy — Z aj—ai(r+2—1i) = ap(r+1—m)— Z a;—ai(r+2—1).

<j<m 1<g<m

Clearly making a;, ¢ < j < m small enough we can satisfy (5.2) for j = m.O

Remark. The above lemma is not true for other symmetric tube domains i.e.

when d;; = 2,4,8.

Let P]\%[ be the A-Poisson kernel on M while P§; be L®-Poisson kernel on M.

The main theorem of this section is

(5.3) Theorem. Let L? be as above with the mazimal boundary being M. For
a bounded function F the following are equivalent

(5.4) There is f € L°(M) such that F(g / f(mar(gx))Piy(x) dx

(5.5) L*F =0.
Moreover, for all such L® the kernel P2 is equal to P5;.

Remark. The proof relays heavily on the Johnson-Koranyi result [JK] saying
that for a bounded F', (5.4) is equivalent to be Hua harmonic.

Proof Implication (5.4)—(5.5) follows directly from the result of Johnson-Koranyi
mentioned above. For the converse we first prove that P2 = P§;. For a function

feC(M) let
(5.6) P3i f(g / F(ra(g)Piy () da.

Since P§; f is L®-harmonic, in view of Theorem (3.8) of [DH] there is h € L>(M)
such that

(57) Piifle) = Pi(a) = [ blms(ga)Pii(o) do.
M
Convolving (5.6) and (5.7) from the left by ¢ € C.(M) we have

Pii(6+ f)(g) = Piy(6x h)(g).
Indeed,
PM o g / / oy yﬁM(gx))Pﬁ(x) dydx

:/qu( P& Fyg) dy—/ oy~ )Py h(yg) dy = Py(¢+ h)(g).
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Let now g(t) = expt > Y;;. Letting t — —oo we see that
65 f(e) = b+ h(e),
This proves f = h and
(5.8) Pi; = P3y.
Now if L*F = 0 holds for a bounded function F then by Theorem (3.8) [DH]
F=Pyf

for an f € L*>(M), which, in view of (5.8), implies (5.4).00

Section 6. Hua harmonic functions

The main result of this section is the following

(6.1) Theorem. Let F be a bounded function on G annihilated by strongly

diagonal Hua operators and harmonic with respect to an operator L satisfying the
assumptions of Proposition (4.7). Then there is f € L°(M) such that

(6:2) Flg)= [ fimutge)Pue) de,
where Pus 1s the L-Poisson kernel on M.

Remark. Clearly, we could use Agiag as L in (6.1). In this case, any F' which
is annihilated by the Hua system is automatically annihilated by L since Agjag
is the sum of the strongly diagonal Hua operators. Thus, we produce a single
Poisson kernel which is capable of representing Hua harmonic functions. We find
the more general formulation of Proposition (6.3) remarkable, however, in that the
maximal boundary of L would typically be considerably larger than M. The above
proposition says that just being Hua harmonic forces the L-boundary function to
reduce to a smaller boundary.

To prove Theorem (6.1) we need the following proposition:
(6.3) Proposition. Suppose that a bounded function F is annihilated by the
strongly diagonal Hua operators and, together with its L-boundary function f, 1s

constant on cosets of M in G. Then F 1s a constant function.

Once Proposition (6.3) has been proved, then Theorem (6.1) will follow as in the
proof of Theorem (4.21).

To prove Proposition (6.3), we let f be the (continuous) L-boundary function
for F. By assumption, F' and f are now constant on cosets of M. Effectively, we

may ignore M and consider all the functions and the operators as functions and
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operators on S. This means that F' is mg(L)-harmonic and instead of the Hua
operators A,,, m = 1,....r we have

_ e by dmt fm 2 din,
FS(Am) = cml( Z ¢ 1(1/;m)2+ Z cml(ij)z_c#Ymm_Z . Y'”)
1<m,a m<j,« m <m !

Therefore, now our goal is to prove

(6.4) Proposition. Suppose that bounded w(L)-harmonic function F us anni-
hilated by 7(Ay), m=1,...,r. Then F s constant.

To prove Proposition (6.4) we have to formulate Lemma (4.24) in a more gen-
eral situation. Let S = NA be a semi-direct product of a connected and simply
connected nilpotent Lie group N and the group A = R” with a diagonal action of
Aon N. Let £ = yf + ...+ y; + Vo be a left-invariant operator on S satisfying the
Hoérmander condition with the maximal boundary N/N ™ identified, as in section
4, with NT, NT = EA€R+N>\, N~ =3 \er- Ny. Let Y € A. We say that Y is
contractive on S if ad Y has only non-negative eigenvalues as an automorphism
of N. We let /Y be the span of the positive eigenspaces in A" and N be the
centralizer of Y in . In this setting Lemma (4.24) is true and we formulate it here
again for the readers convenience.

(6.5) Lemma. Let F be a bounded, L-harmonic function on S. Assume that
the L-boundary value f is continuous on the mazimal boundary NT. LetY € A be
contractive. Then

lim F((exptY)g)= Fy(g)

t——oc0

converges uniformly on compact sets in S and defines an L-harmonic function with
continuous boundary function fy. Both Fy and fy are constant on right cosets of
NY in S and in N respectively. Additionally, fy and f agree on Ny N NT. If f
reduces to N/N°, then fy will reduce to S/N', where N' is the subgroup generated
by NV and N°.O

Still in the above general setting, we have.

(6.6) Lemma. Let N/N° be a boundary for L identified, as in section 4, with
N1 being a complement to N° in the sense of N = N'N°. Assume that

F(s) = . f(mni(sz)) P(x) de

and Y € A+ N centralize N'. Then F is constant under right translation by
exptY for allt € R.

Proof The proof is immediate, because
ayi(sexptYa) =myi(szexptY) = myi(sa).0
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Let NT be the maximal boundary for 7(L) and F' a bounded
7(L)-harmonic function. Its boundary function f defined originally on N7t is
extended to N by

(6.7) flata™) = f(a™)

and considered as a function on N.
We assume by induction that Proposition (6.4) is known for all domains of rank
less than r.

(6.8) Lemma. The function f is constant on cosets of N~q in S, where Nsq =
Ss1 NN

Proof We apply Lemma (6.5) with ¥ = Y7;. Then Ny is exactly Ns; and Ny-
is Nix = S1. N N. The function Fy is annihilated by 7s(A,), m = 1,...,r and
is constant on cosets of Ny, in S. From Lemma (2.21), Fy is annihilated by the
image under wg of strongly diagonal H.J K~ operators, and hence, by induction,
is constant. Lemma (6.5) now shows that f is constant on Ns;. By the same
argument, all left translates of f are also constant on cosets of N5 (as in the proof
of Theorem (4.21)), proving the lemma.O

Now, we shall introduce r + 1 sets of functions. We define
Fry1={.F:2 €N}
and
Fr_|_1 = {ffl' € N}

Clearly F 4 is the set of boundary values of functions from F,;; considered as
functions on N. Indeed, if

F(s) = - Flan+(sy™)P(y™) dy™

then

F(as) = - Flan+(esy®)P(y™) dy*

so f'(y*) = f(mn+(zy™) is the boundary function of ,F on NT. Extending f' to
N, by (6.7) we have

Py y™) = flene(zy™)) = Fley™) = flayTy7)

so fl'=, f.

We then define

(6.9) Fr = {aFy : Fi(s) = lim Fypi((exp tYir)s), Fit1 € Frpa ),

for 1 <k <r. We shall prove shortly that these limits converge in the C'2° topology
on G. Granted this, F} is a set of L-harmonic (and Hua harmonic) functions on G
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which is also invariant under left translation. Let Fy denote the set of L boundary
values of functions from Fj. Then F} 1s also invariant unde the left action of G.

First we prove existence of the limits in (6.9). For k = r, the limit exists in
C° from Lemma (6.5) (applied to —Y;,). It is constant on cosets of the normal
subgroup N, = exp N;., where

Ne= )" Sir

1<e<r

The same is satisfied by the elements of F,.. Note that —Y(,_1)(,_1) is contractive
on N/N,. Therefore Lemma (6.5) applied to S/N, proves the existence of F,_;.

Let
Ne= ) S
1<y,k<j
and
Ni = exp N}.

Ni 1s a normal subgroup of N. It similarly follows by induction applied to the
quotient group S/Ng41 that the limit in (6.9) exists in CZ° for all k and elements
of Fj are constant on cosets of the normal subgroup Ni. Furthermore, the same
holds for boundary functions from Fj. Moreover, suppose that F} € Fi and that
Fj41 is related to Fy, as in (6.9) and that the corresponding boundary functions are
fr and fr1q respectively. Then fy equals friq on Nop = exp N<g, where

Neav= > Sy

1<i<j<k

From Lemma (6.8), fi is also constant on cosets of Ns;.
Proposition (6.4) clearly follows from the following:

(6.10) Lemma. Each Fj, € Fy is constant for 3 <k <r+1.

Proof Our proof will be inductive. For F3 € Fj, since F3 is constant on cosets
of N3 we have:

(6.11)
- _ - a2 i F24
0=ciHIK(F3) = 27"V +e7' ) (V%) — 107f1y11)1?3
1
(6.12)
dy+2+ 1 di2

0= cy HIK(F3) = (2¢; 'V +e7' ) (V%) —

«

Yoo — —Y11)F3
C1

C2

Both 7 Yii and Yj;, i > 3, centralize Ncs. Hence, by Lemma (6.6), for ¢ > 3,

Yiif3 =0

34



Hence,

Y11F3 = _Y22F3-

We substitute this relation into formula (6.12) and subtract the result from formula
(6.11), getting

d1‘|‘2‘|‘f1—d12_|_d2‘|'2‘|‘f2

C1 C2

(2(01_1 - Cz_l)lel —(

)Yll)F;; = 0.
If ¢; = ¢g, then Y11 F3 = 0. (Note that d; > dq2.) In particular,

(VA + ) (V) +Yi)F =0,

Then according to [DH] the maximal boundary for Y3 + 3 _(Y73)? + Y11 on S/N;
is trivial, so F3 is constant on N3 and, hence, on 5.
If ¢1 # ¢q, then we conclude that there is a nonzero constant p such that

(Y11 +pY11)F =0

(Note that d1+2t{1_d12 + d2+022+f2 > 0). Hence, solving a simple differential equation
we see that there are constants 7 and n such that for all s € S.

F3(g(exptYyy)) = (1 +ne ") F3(g).

Boundedness forces n = 0 and, hence, Y11 F3 = 0. We see as above that Fj is
constant.

Now, suppose by induction that we have shown that each F} € Fy is constant.
It follows that each fr € Fy is constant on N.;. But since Fi, Fy are closed under
left translations, fry; is constant on right cosets of N.j. Thus, the boundary
function fr4y for Fiyi reduces to N/N' where N' is some homogeneous subgroup
containing Ns1, Ncy and Ngi. We may choose a homogeneous compliment to A’
contained in

Nik.

From Lemma (6.6),
Y Fipr = 0

for any Y € Nsy + N + Niaq, which centralizes Nyg. In particular,
YijFry1 =0

forall 1 <¢ < j <k, j# 1. The above formula is also true for k+1 < 7 <r since
Fj41 is constant on cosets of Ng4q. For 1 < ¢ < k, the equation ¢;HJK;(Fy41) =0
says exactly that

dl‘
1 —1 E Y.a)2 Y NFris = 0.
(6.13) (c; (Yi) o 11)Fk11 =0
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For ¢« = k we obtain:

o dit++fet2 dig

(6.14) (2c,;1Yk2k + Z e (Y S)? Yir — —Y11)Fig1 =0
C1

1<i<k,a Ck
As before, (> Yii)Fr+1 = 0. Hence
YiiFrp1 = —YirFryr.

Then, from formula (6.13) and formula (6.14), Fj41 is annihilated by the operator:

C1 Ck

) ) vy dit fet+2 di,
(6.15) 2 VA et ) | lk)2+(#’“+%—2é)m
<k

«

Finally, from HJK;, we see that Fj1 is also annihilated by

di+ fL+2

C1

(6.16) 27 VY H et Y (V) - Vi1.

«

Subtracting (6.16) from (6.15) we see that

dp + fr+2 d di;, di+fi+2

Ck C1 i<k C1 C1

(6.17) (2(cy ' —ep VP +( Y11)Frgq =0

Moreover, since dy > ), di;, the coefficient by Y3, in (6.17) is strictly positive.
As in the Fj case, it follows that Fj41 is constant on right cosets of the group

whose lie algebra is generated by Y7; and Y. Since this function is also constant

on right cosets of N', we see that fri1, and hence Fj41 is constant, as desired.[]

This finishes the proof of Proposition (6.4) and hence of Theorem (6.1).
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