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Introduction

Let X = G/K be a homogeneous Riemannian manifold where G is the identity
component of its isometry group. A C∞ function F on X is strongly harmonic if it
is annihilated by every element of DG(X), the algebra of all G-invariant differential
operators without constant term. One of the most beautiful results in the harmonic
analysis of symmetric spaces is the Helgason Conjecture, which states that on a
Riemannian symmetric space of non-compact type, a function is strongly harmonic
if and only if it is the Poisson integral of a hyperfunction over the Furstenberg
boundary G/Po where Po is a minimal parabolic subgroup. (See [He], [KKMOOT].)
One of the more remarkable aspects of this theorem is its generality; one obtains a
complete description of all solutions to the system of invariant differential operators
on X without imposing any boundary conditions or growth conditions.

If X is a Hermitian symmetric space, then one is typically interested in complex
function theory, in which case one is interested in functions whose boundary val-
ues are supported on the Shilov boundary rather than the Furstenberg boundary.
(The Shilov boundary is G/P where P is a certain maximal parabolic containing
Po.) In this case, it turns out that the algebra of G invariant differential opera-
tors is not necessarily the most appropriate one for defining harmonicity. Johnson
and Korányi [JK], generalizing earlier work of Hua [Hu], Korányi-Stein [KS], and
Korányi-Malliavin [KM], introduced an invariant system of second order differen-
tial operators (the HJK system) defined on any Hermitian symmetric space. In
[DHP2], we noted that this system could be defined entirely in terms of the geo-
metric structure of X as

HJK (f) = −
∑
O2f(Zi, Zj)R(Zi, Zj)|T 01

where O denotes covariant differentiation, R is the curvature operator, T 01 is the
bundle of anti-holomorphic tangent vectors, and Zi is a local frame field for T 10

that is orthonormal with respect to the canonical Hermitian scalar product H on
T 10. (It is easily seen that HJK does not depend on the choice of the Zi.) Thus,
HJK maps C∞(D) into sections of HomC(T

01, T 01). (See [DHP2] for more details.)
A C∞ function f is said to be Hua-harmonic if HJK (f) = 0.

In [JK] the following results were proved in the Hermitian symmetric case:

(a) All Hua-harmonic functions are harmonic.
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(b) The boundary hyperfunctions are constant on right cosets of P and hence
project to hyperfunctions on the Shilov boundary.

(c) Every Hua-harmonic function on X is the Poisson integral of its boundary
hyperfunction over the Shilov boundary.

(d) If X is tube-type then Poisson integrals of hyperfunctions are harmonic.1

Thus, in the tube case, these results yield a complete description of all solutions
to the Hua system, while in the non-tube case, we lack only a characterization
of those hyperfunctions on the Shilov boundary whose Poisson integrals are Hua-
harmonic.

Since the Hua system is meaningful for any Kähler manifold X , it seems natural
to ask to what extent these results are valid out side of the symmetric case. One
might, for example, consider homogeneous Kähler manifolds. There is a structure
theory for such manifolds that was proved in special cases by by Vindberg and
Gindikin [VG] and in general by Dorfmeister and Nakajima [DN] that states that
every such manifold admits a holomorphic fibration whose base is a bounded ho-
mogeneous domain in Cn, and whose fiber is the product of a flat, homogeneous
Kähler manifold and a compact, simply connected, homogeneous, Kähler manifold.
It follows that one should first consider generalizations to the class of bounded
homogeneous domains in Cn.

This problem was considered in [DHP2] and [PK]. In both of these works, how-
ever, extremely restrictive growth conditions were imposed on the solutions: in
[DHP2] the solutions were required to be bounded and in [PK] an H2 type condi-
tion was imposed.

The technical difficulties involved in eliminating these growth assumptions at
first seem daunting. In the non-symmetric case, K can be quite small. Thus,
arguments which are based on concepts such as K-finiteness and bi-K invariance
tend not to generalize. Entirely new proofs must be discovered.

The most problematic issues, however, come from the the boundary. In general,
G may have no non-trivial boundaries in the sense of Furstenberg. Hence, it is not
at all clear how to even define the Furstenberg boundary. The Shilov boundary
is, of course, meaningful. However, in the symmetric case, the Shilov boundary is
a homogeneous space for K; hence a manifold. In the solvable case it is almost
certainly false that the Shilov boundary is a manifold. All that is known is that
there is a nilpotent subgroup N of G, of nilpotence degree at most 2, which acts
on the Shilov boundary in such a way that there is a dense, open orbit which
we call the principal open subset. The principal open subset is well understood
and easily described. Its compliment in the Shilov boundary is, to our knowledge,
completely unstudied outside of the symmetric case. This does not cause difficulties
for bounded or H2 solutions since the corresponding boundary hyperfunctions are
functions and we only need to know them a.e. Understanding general unbounded
solutions seems to require being able to describe their boundary values on this
potentially singular and poorly understood set. In fact, it is not at all clear how to
define the notion of a hyperfunction (or even a distribution) on the Shilov boundary,
much less the boundary hyperfunction for a solution.

1Statement (d) is false in the general Hermitian symmetric case ([BV]).
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There are, however, two works of E. van den Ban and H. Schlichtkrull ([BS1]
and [BS2]) and a work of N. Wallach [Wa] which provide some hope of at least
understanding the solutions with distributional boundary values. To describe these
results, let τ(x) be the Riemannian distance in X from x to the base point xo = eK.
A result of Oshima and Sekiguci [OS] says that the boundary hyperfunction of a
harmonic function F is a distribution if and only if there are positive constants A
and r (depending on F ) such that

|F (x)| ≤ Aerτ(x) (0.1)

for all x ∈ X . In [BS1], using ideas from [Wa], it was shown that any harmonic func-
tion satisfying (0.1) has an “asymptotic expansion” as x approaches the Furstenberg
boundary where the coefficients are distributions on this boundary. The boundary
distribution occurs as one of the coefficients in this expansion. Actually, in [BS1],
a finite set of these coefficients were singled out as boundary distributions. It was
then shown how to choose one particular boundary distribution whose Poisson in-
tegral is F , providing a new proof of the Oshima-Sekaguci theorem. (Wallach also
obtained a new proof of the same theorem using his asymptotic expansions.)

In [BS2] it was shown that F is uniquely determined by the restrictions of its
boundary distributions to any open subset of the boundary. In this case, however,
one needs all of the boundary functions, not just the particular one mentioned
above.

Thus, in the non-symmetric case, one might hope to

(1) Prove the existence of a distribution asymptotic expansion for Hua-harmonic
functions satisfying (0.1) as x approaches the principal open subset of the
Shilov boundary.

(2) Choose a particular finite subset of the coefficients to be the boundary
distributions which uniquely determine the solution.

(3) Describe the inverse of the boundary map. (The “Poisson transformation.”)
(4) Describe the image of the boundary map.

In this work we carry out the first three steps of above program and make
progress on the fourth. Specifically, in the general case it is still possible to write
G = ANLK where A is an R split algebraic torus, NL is a unipotent aubgroup
normalized by A, K is a maximal compact subgroup. (See Section 3 for details.)
Then L = ANL acts simply-transitively on D, allowing us to identify D with L. As
an algebraic variety,

L = NL × (R+)d ⊂ NL ×Rd

where d is the rank of X . Under this identification, NL is contained in the topolog-
ical boundary of ANL. We use NL as a substitute for the Furstenberg boundary.
In the semi-simple case this amounts to restricting to a dense, open, subset of the
Furstenberg boundary.

We prove that any Hua harmonic function that satisfies (0.1) has an asymptotic
expansion as a → 0 with coefficients from the space of Schwartz distributions on
NL. We then single out a set of at most 2d of these coefficients which serve as
the boundary values and show that the boundary values uniquely determine the
solution. Finally, we give an inductive construction, based on our work [P1], of a
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Poisson transformation that “reconstructs” F from its boundary values. (See the
remark following the proof of Proposition (3.23)).

Actually, all of the above statements hold, with “Schwartz distribution” replaced
by “distribution” under the weaker assumption that for all compact sets K ⊂ NL,
there is a constant CK such that

sup
n∈K
|F (na)| ≤ CKe

rτ(a) (0.2)

for all a ∈ A, except that in this case our construction of the Poisson kernel does
not work since there seems to be no way of definining the integrals we require.

We also prove a version of the Johnson-Korányi result relating to the projection
of the boundary distribution to the Shilov boundary. The Johnson-Korányi result
that in the semi-simple tube case, the Hua harmonic functions are Poisson integrals
of hyperfunctions over the Shilov boundary follows. (Theorem (3.41).)

Concerning the fourth step, as mentioned above, the description of the space of
boundary values for the Hua system is unknown, even for a Hermitian-symmetric
domain of non-tube type. (The Johnson-Korányi result shows that in the tube case,
the space of boundary values is just the space of all hyperfunctions on the Shilov
boundary.) In [BV], Berline and Vergne conjectured that this space could be char-
acterized as null space of a “tangential” Hua system, although, to our knowledge,
this conjecture has never been resolved.

However, in the symmetric case, it is possible it describe the boundary values
for the “H2

HJK ” functions–which are Hua harmonic functions satisfying an H2 like
condition. (See Section 3 below.) In [BBDHPT], the current author, together
with Bonami, Buraczewski, Damek, Hulanicki, and Trojan, showed that for a non-
tube type Hermitian symmetric domain, the H2

HJK harmonic functions are pluri-
harmonic–i.e. they are complex linear combination of the real and imaginary parts
of H2 functions. Theorem (5.4) states that this same result holds in the non-
symmetric case, at least for domains that are sufficiently non-tube like (Definition
(2.21)).

The ability to generalize this result to the non-symmetric case is, we feel, a sig-
nificant accomplishment. The symmetric space proof utilized the symmetry of the
domain in many ways, but most significantly in its use of the full force of Johnson-
Korányi theorem for tube domains. Explicitly, it required knowing that Poisson
integrals are Hua-harmonic. It is a result of [PK] that this result is equivalent with
the symmetry of the domain. One seems to require entirely new techniques (such
as asymptotic expansions) to avoid its use in the general case.

We should also mention that our section on asymptotic expansions is quite gen-
eral. The proofs, while inspired by those in [BS] and [BS2], which were, in turn,
inspired by those in [Wa], are in actuality, quite different (and somewhat less in-
volved) since we do not have as much algebraic machinery at our disposal. It is
our expectation that this theory will have far reaching implications in many other
contexts. It has already found application in [PU]. We expect it to play a major
role in understanding the Helgeson program for other systems of equartions and
other boundaries as well.
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Remarks on notation Throughout this work, we will usually denote Lie groups
by upper case Roman letters, in which case the corresponding Lie algebra will au-
tomatically be denoted by the corresponding upper case script letter. The main
exceptions to this rule will be abelian Lie groups which will be identified with their
Lie algebras. We also use “C” to denote a generic constant which may change from
line to line.

Section 1: Asymptotic Expansions

Let V be a Fréchet space over C and let C = C∞((−∞, 0],V), given the topology
of uniform convergence on compact subsets of functions and their derivatives. For
r ∈ R, let Cor be the set of F ∈ C such that

{e−rtF (t) | t ∈ (−∞, 0]}

is bounded in V. Let ‖·‖m, m = 1, 2, . . . be a family of continuous semi-norms on V
that defines its topology. We equip Cor with the topology defined by the semi-norms

‖F‖r,m = sup
t∈(−∞,0]

e−rt‖F (t)‖m

‖F‖k,n,m = sup
−k≤t≤0

‖F (n)(t)‖m
(1.1)

where k ∈ N and
n ∈ No = N ∪ {0}

We let
Cr = ∩s<rCos

given the inverse limit topology. It is easily seen that Cr is a Fréchet space. The
space Cr is used since, unlike Cor , it is closed under multiplication by polynomials.
Let F and G belong to C.

We say that
F ∼r G

if F −G ∈ Cr. Note that F ∼r G implies that F ∼s G for all s < r.

Let I ⊂ C be finite. An exponential polynomial with exponents from I is a sum

F (t) =
∑
α∈I

nα∑
n=0

eα·ttnFα,n (1.2)

where Fα ∈ V and nα ∈ No. In this case, we set

Fα(t) =

nα∑
n=0

tnFα,n
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which is (by definition) a V valued polynomial. We also consider the case where
I ⊂ C is countably infinite, in which case (1.2) is considered as a formal sum which
we refer to it as an exponential series.

Definition 1.3: Let F ∈ C and let F̌ be an exponential series as in (1.2). We
say that G ∼ F̌ if

(a) for all r ∈ R, there is a finite subset I(r) ⊂ I such that G ∼r Fr where

Fr(t) =
∑
α∈I(r)

eαtFα(t) (1.4)

and
(b) I = ∪rI(r).

In this case, we say that F̌ is an asymptotic expansion for F .

Remark: In formula (1.4), any term corresponding to an index α with re α ≥ r
belongs to Cr and may be omitted. Thus, we may, and will, take I(r) to be contained
in the set of α ∈ I where re α < r.

We note the following lemma, which is a simple consequence of Lemma 3.3 of
[BS].

Lemma 1.5. If the function from (1.2) belongs to Cr, then Fα(t) = 0 for all
re α < r and all t ∈ R.

Lemma 1.6. Suppose G ∼ F̃ as in Definition (1.3), where all of the Fα(t) for
α ∈ I, are non-zero. Then I(r) = {α ∈ I | re α < r}. In particular, the set of
such α is finite.

Proof Let r < s. Then F ∼r F̌r and F ∼r F̌s. Hence Dr = F̌r − F̌s ∈ Cr. Then
Dr is an exponential polynomial with index set

(I(r) ∪ I(s)) \ (I(r) ∩ I(s))

Lemma (1.5) shows that this set is disjoint from re α < r, implying that it is
disjoint from I(r). Hence I(r) ⊂ I(s). It then follows that I(s) \ I(r) is disjoint
from { re α < r}. Hence {α ∈ I | re α < r} ∩ I ⊂ I(r), which proves our
lemma. �

Corollary 1.7. Let F ∈ C. Suppose that for each r ∈ R, there is an exponential
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polynomial Sr such that F ∼r Sr. Then there is an exponential series F̌ such that
F ∼ F̌ .

Proof Each Sr may be written

Sr(t) =
∑
α∈I(r)

eαtSrα(t)

where I(r) is a finite subset of C such that Srα(t) 6= 0 for all α ∈ I(r). As before, we
may assume that for all α ∈ I(r), re α ≤ r. Then from the proof of Lemma (1.6),
for r < s, I(r) ⊂ I(s). Lemma (1.5) then implies that Srα(t) = Ssα(t) for α ∈ I(r).

Our corollary now follows: we let I be the union of the I(r) and let

Fα(t) = Srα(t)

where r is chosen so that α ∈ I(r). The previous remarks show that this is inde-
pendent of the choice of r. �

The following is left to the reader. The minimum exists due to Corollary (1.6).

Proposition 1.8. Suppose that F ∈ C has an asymptotic expansion with exponents
I. Then F ∈ Cr where

r = min{ re α | α ∈ I, Fα 6= 0}

Furthermore, suppose that there is a unique α ∈ I with re α = r and that for this
α, Fα is independent of t. Then

lim
t→−∞

e−αtF (t) = Fα.

We consider a differential equation on C of the form

F ′(t) = (Q0 +Q(t))F (t) +G(t) (1.9)

where G ∈ C,

Q(t) =
d∑
i=1

eβitQi,

1 ≤ β1 ≤ β2 ≤ · · · ≤ βd, (1.10)
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and the Qk are continuous linear operators on V. We also assume that Q0 is finitely
triangularizable, meaning that

(a) There is a direct sum decomposition

V =

q∑
i=1

Vi (1.11)

where the Vi are closed subspaces of V invariant under Q0.
(b) For each i there is an αi ∈ C and an integer ni such that

(Q0 − αiI)ni
∣∣
Vi = 0.

(c) αi 6= αj for i 6= j.

For the set of exponents we use I = {αi}+ Io where

Io = {
∑
j

βjkj | kj ∈ No}.

The first main result of this section is the following:

Theorem 1.12. Let F ∈ Cr satisfy (1.9). Assume that G has an asymptotic
expansion with exponents from I ′ . Then F has an asymptotic expansion with
exponents from I ′′ = ({αi} ∪ I ′) + I0.

Proof From Corollary (1.7) it suffices to prove that for all n ∈ N, there is an
exponential polynomial Sn(t) with exponents from I ′′ such that

F (t)− Sn(t) ∈ Cr+n.

We reason by induction on n. Let

P (t) =
∑
i

e(βi−1)tQi

so that Q(t) = etP (t). Note βi − 1 ≥ 0 for all i.

We apply the method of Picard iteration to (1.9). Explicitly, (1.9) implies that

F (t) = etQ0F (0)−
∫ 0

t

e(t−s)Q0esP (s)F (s) ds−
∫ 0

t

e(t−s)Q0G(s) ds. (1.13)

We begin with the term on the far right. Let

G(t) = RGu (t) +G(t)u



ASYMPTOTIC EXPANSIONS 9

where u > max{r + 1, re αi}, RGu ∈ Cu, and

G(t)u =
∑

α∈I′(u)

Gα(t)eαt (1.14)

is an exponential polynomial.

Let Bi = (Q0 − αiI)
∣∣
Vi . On Vi

etQ0 = eαitAi(t) (1.15)

where

Ai(t) = etBi =

ni∑
j=0

Bji
tj

j!
.

It follows that the integrals in the following equality converge where the superscript
indicates the ith component in the decomposition (1.11).∫ 0

t

e(t−s)Q0(RGu )i(s) ds = eαitAi(t)G
i
o −

∫ t

−∞
eαi(t−s)Ai(s− t)(RGu )i(s) ds (1.16)

where

Gio =

∫ 0

−∞
e−sαiAi(s)(R

G
u )i(s) ds.

The second term on the right in (1.16) is easily seen to belong to Cu and the Gio
term will become part of S1. Note that its exponents belong to I ⊂ I ′′.

On the other hand, replacing G(s) in (1.13) with Gα(s)ieαs from (1.14) produces
a term of the form

eαitHi(s)e
(−αi+α)s

∣∣s=t
s=0

where Hi is a V valued polynomial. Both terms are exponential polynomials with
exponents from I ′′ which become part of S1.

Next we consider the second term on the right in (1.13). Its ith component is

−
∫ 0

t

e(t−s)αiesAi(t− s)(P (s)F (s))i ds

=

ni∑
k=0

ni∑
j=0

tkeαit
∫ 0

t

sje(1−αi)sCk,j(P (s)F (s))i ds

(1.17)

where the Ck,j are continuous operators on Vi.

Since s→ P (s)F (s) belongs to Cr, it follows that for each v < r and each m ∈ No
there is a constant Mv,m such that

‖Ck,j(P (s)F (s))i‖m ≤Mv,me
vs (1.18)

for all s < 0. Hence, (1.17) is bounded in ‖ · ‖m by

C(|t|N + 1)(e(v+1)t + et( re αi))
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where C and N are positive constants. It follows that the left side of (1.17) belongs
to Cr+1 if re αi ≥ r + 1.

On the other hand, if re αi < r+1, then we may express the right side of (1.17)
as

eαitHi(t) +

∫ t

−∞
e(t−s)αiesAi(t− s)(P (s)F (s))i ds

where

Hi(t) = −
∫ 0

−∞
es(−αi+1)Ai(t− s)(P (s)F (s))i ds.

(Note that the integrals converge in the topology of V since we may choose v >
re αi − 1 in (1.18).) The Hi term is an exponential polynomial which becomes
part of S1 and the other term belongs to Cr+1. It now follows that there does
indeed exist an exponential polynomial S1(t) with exponents from I ′′ such that
F (t)− S1(t) ∈ Cr+1.

Next suppose by induction that we have proved the existence of an exponential
polynomial Sn such that Rn = F − Sn ∈ Cr+n for some n. We provisionally define

Sn+1(t) = etQ0F (0)−
∫ 0

t

e(t−s)Q0esP (s)Sn(s) ds−
∫ 0

t

e(t−s)Q0G(s)u ds (1.19)

where u is greater than both r + n + 1 and re αi for all i. Then from (inteq)
F − Sn+1 = Rn+1 where

Rn+1(t) = −
∫ 0

t

e(t−s)Q0esP (s)Rn(s) ds+

∫ 0

t

e(t−s)Q0RGu (s) ds.

Now, we project onto Vi as before and split the argument into two cases, depend-
ing on whether or not re αi ≥ r + n+ 1. An argument virtually identical to that
done above shows that in each case, Rn+1 is the sum of an exponential polynomial,
which becomes part of Sn+1, and an element of Cr+1. We leave the details to the
reader. �

From this point on, until we begin discussing multi-variable expansions, we as-
sume that F ∈ Cr satisfies (1.9) where G = 0 so I ′′ = {αi}+ Io.

Proposition 1.20. For all n ∈ No F (n) ∈ Cr and

F (n) ∼
∑
α∈I

eαtFnα (t)

where

Fnα (t) = e−αt
dn

dtn
(eαtFα)(t).

Proof
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Let Ṽr be the space of all elements F ∈ Cr for which F (n) ∈ Cr for all n ∈ No,
topologized via the semi-norms

F → ‖F (n)‖s,m

where m ∈ N, n ∈ No, ‖ · ‖s,m is as in (1.1), and s < r. It is easily seen that Ṽr is
a Fréchet space.

Now, let F ∈ Cr satisfy (1.9). Pointwise multiplication by the Qi and by eβit

define continuous mappings of Cr into itself. Hence, from (1.9), F ′ ∈ Cr. It then
follows by differentiation of (1.9) and induction that F (n) ∈ Cr for all n. Hence,

F ∈ Ṽr.

For F ∈ Ṽr, let M(F ) be the mapping of (−∞, 0] into Ṽr defined by

M(F )(t) : s→ F (t+ s) (1.21)

for t ∈ (−∞, 0]. It is easily seen that in fact M(F ) ∈ Cr(Ṽ). Furthermore, if F
satisfies (1.9), then

M(F )′(t) = Q0M(F )(t) +
d∑
i=1

eβitQ̃iM(F )(t)

where
Q̃i = eβisQi.

It follows from Theorem (1.12) that M(F ) has an asymptotic expansion as a Ṽ
valued map. It is easily seen that if F ’s asymptotic expansion is as in (1.2), then

M(F )(t) ∼
∑
α∈I

eαteαsM(Fα)(t).

Since
d

ds
is continuous on Ṽ, it follows that

M(F )(n)(t) ∼
∑
α∈I

eαt
dn

d sn
(eαsM(Fα)) (t).

Our result follows by letting t = 0 in the above formula. �

It follows from Proposition (1.20) and Lemma (1.5), that we may formally sub-
stitute F ’s asymptotic expansion (1.2) into (1.9) and equate coefficients of eαt for
α ∈ I. We find that for α ∈ I,

F ′α(t) + αFα(t) = Q0Fα(t) +

m∑
i=1

∑
β∈I,β+βi=α

QiFβ(t). (1.22)

We put a partial ordering on I by saying that γ � α if γ − α ∈ Io.
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Definition 1.23: Let F ∼ F̌ as in (1.2). We say that Fα(t) is a leading term
and α a leading exponent if α is minimal in I under � with respect to the property
that Fα(t) 6= 0.

From the definition of I, for all α ∈ I, there is an i such that α � αi. Since the
set of αi is finite, it follows that each α dominates a leading exponent.

Let α be a leading exponent. Then (1.22) implies that

F ′α(t) + αFα(t) = Q0Fα(t). (1.24)

Since Q0 is finitely triangularizable, the solution to this differential equation is

Fα(t) = e(Q0−αI)tFα(0).

Hence, Fα(0) uniquely determines Fα(t). Since Fα(t) is a polynomial, there is an
N such that

0 = F (N)
α (0) = (Q0 − αI)NFα(0).

Hence, α = αi for some i and Fα(0) ∈ Vi. Thus all of the leading exponents come
from the αi. It also follows that if Q0 is diagonalizable, then the Fα(t) are constant
for all leading exponents α. In fact we have the following:

Proposition 1.25. The asymptotic expansion of F is uniquely determined by the
elements Fαi(0).

Proof According to the above discussion, the given data is sufficient to determine
the leading terms. If there is an α such that Fα(t) is not determined, then there is
a minimal such α. But then (1.22) shows that Fα(t) satisfies a differential equation
of the form

(
d

dt
+ (Q0 − αI))Fα(t) = G(t)

where G is known. Since α is not one of the αi, the differential operator on the left
side of this equality has no kernel in the space of V valued polynomials, showing
that Fα is uniquely determined. �

Definition 1.26: Let F satisfy (1.9). Then the set of terms in the asymptotic
expansion of the form Fαi(0) is referred to as the set of boundary values for F and
is denoted BV(F ).

It should be noted that if αi is a leading exponent, then Fαi(0) is a non-zero
boundary value but not conversely–not all non-zero boundary values Fαi(0) need
be leading terms. They will be leading terms if either (a) αi is minimal with respect
to the partial ordering on I or (b) αi � αj implies Fαj (t) = 0.
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In the next section we will need to consider asymptotic expansions in several
variables. Let

V(d) = C∞((−∞, 0]d,V)

with the topology of uniform convergence of functions and their derivatives on
compact subsets of (−∞, 0]d. For F ∈ V(d), we define F̃ ∈ C∞((−∞, 0],V(d− 1))
by

F̃ (t1)(t2, . . . , td) = F (t1, t2, . . . , td). (1.27)

We define Cr(d) ⊂ V(d) inductively by

Cr(d) = Cr((−∞, 0], Cr(d− 1)).

We define multiple asymptotic expansions inductively as follows:

Definition 1.28: Let F ∈ Cr(d). We say that F has a d-variable asymptotic
expansion if

(a) F̃ has a Cr(d− 1) valued asymptotic expansion

F̃ (t1) ∼
∑
α1∈I1

nα1∑
0

tn1 e
α1t1Gα1,n

where I1 ⊂ C.
(b) Each Gα1,n has a d− 1-variable, V valued asymptotic expansion

Gα1,n(t) ∼
∑

α∈I(α1)

∑
|N|≤n(α)

tNeα·tFα

where t ∈ (−∞, 0]d−1 and, for each α1 ∈ I1, I(α1) ⊂ Cn−1.

In this case we write

F (t) ∼
∑
α∈I

∑
|N|≤m(α)

tneα·tFα,n

=
∑
α∈I

eα·tFα(t)
(1.29)

where
I = {(α1, . . . , αd) ∈ Cd | (α2, . . . , αd) ∈ I(α1)},

m(α) = max{nα1
, n(α2, . . . , αn)}.

Let α, β ∈ I. We say that α ∈ I is minimal if re α < re β in the lexicographic
ordering, for all β ∈ I, β 6= α. If I is the index set for an asymptotic expansion
and I ∈ Rd then I always has a minimal element, although I might not have a
minimal element in general. The following proposition follows from induction on
Proposition (1.8).
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Proposition 1.30. Let F have an asymptotic expansion as in (1.29) and let
α = (α1, . . . , αn) be a minimal element of I. Suppose also that Fα is independent
of t. Then

lim
td→−∞

lim
td−1→−∞

. . . lim
t1→−∞

e−α·tF (t) = Fα

where the limit converges in V.

We also note the following, which follows by induction from Lemma (1.6).

Lemma 1.31. Let r ∈ R. The set I(r) of α ∈ I with re αi < r, 1 ≤ i ≤ d, is
finite.

Section 2: Homogeneous Domains

In this section, we discuss those structural features of Siegel domains that we use.
These results are, for the most part, well known. Our basic references are [GPV]
and [Vin], although we will at times refer the reader to some of our papers where
the results are presented in similar notation to our current needs. In particular, the
summary given pn p. 86-91 and p. 94-97 of [DHP2] covers many of the essentials.
The reader should not interpret such references as a claim of originality on our
behalf.

Any bounded, homogeneous domain in Cn (and hence, every Hermitian sym-
metric space of non-compac type) may be realized as a Siegel domain of either type
I or II. Explicitly, let M be a finite dimensional real vector space with dimension
nM and let Ω ⊂ M be an open, convex cone that does not contain straight lines.
The subgroup of Gl(M) that leave Ω invariant is denoted GΩ. We say that Ω is
homogeneous if GΩ acts transitively on Ω via the usual representation of Gl(M)
on M. (We denote this representation by ρ.) In this case, Vindberg showed that
there is a a triangular subgroup S of GΩ that acts simply transitively on Ω. This
subgroup may be assumed to contain the dilation maps

δ(t) : v → tv (2.1)

for all t > 0.

Suppose further that we are given a complex vector space Z and a Hermitian
symmetric, bi-linear mapping BΩ : Z × Z →Mc. We shall assume that

(a)BΩ(z, z) ∈ Ω for all z ∈ Z,
(b)BΩ(z, z) = 0 implies z = 0.

The Siegel domain D associated with this data is defined as

D = {(z1, z2) ∈ Z ×Mc : im z2 −BΩ(z1, z1) ∈ Ω}. (2.2)
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The domain is said to be type I or II, depending upon whether or not Z is trivial.
The terms “tube type” and “type I” are synonyms.

The Bergman-Shilov boundary B of D is defined as

B = {(z1, z2) ∈ Z ×Mc | im z2 = BΩ(z1, z1)}.

This is the principal open subset of the Shilov boundary referred to in the intro-
duction.

Suppose further that we are given a complex linear algebraic representation σ of
S in Z such that

BΩ(σ(s)z, σ(s)w) = ρ(s)BΩ(z, w) for all z, w ∈ Z. (2.3)

The group S then acts on D by

s(z, w) = (σ(s)z, ρ(s)w). (2.4)

We letM act on D by translation:

x(z, w) = (z, w + x), x ∈M. (2.5)

Finally, we let Z act by

z0(z, w) = (z + z0, w + 2iBΩ(z, z0) + iBΩ(z0, z0)). (2.6)

These actions generate a completely solvable group L which acts simply transi-
tively on D. Specifically, the group Nb generated by the actions (2.5) and (2.6) is
isomorphic with Z ×M with the product

(z1, m1)(z0, m0) = (z1 + z0, m1 +m0 + 2 im BΩ(z1, z0)). (2.7)

Then L is the semi-direct product Nb ×s S where the S action on Nb is defined by
formula (2.4).

The above product is the Campbell-Hausdorff product on Nb defined by the Lie
bracket

[(z1, m1), (z0, m0)] = (0, 4 im BΩ(z1, z0)). (2.8)

A Siegel domain that has the structures defined above is referred to as homoge-
neous. It is a fundamental result that every bounded homogeneous domain in Cn
is biholomorphic to a homogeneous Siegel domain. ([GPV]) It is important to note
that D contains a type I domain Do as a closed submanifold which is defined by
z1 = 0. The subgroup

T =MS (2.9)

acts simply transitively on Do.
We will also use a slight variant on the above construction. Suppose that in

addition to the above data we are given a real vector space X and an M valued
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symmetric real-bi-linear form RΩ satisfying conditions (a) and (b) below condition
(2.1). Let D ⊂ Xc × Z ×Mc be the set of points (x+ iy, z, w) such that

im w −RΩ(x, x)−BΩ(z, z) ∈ Ω. (2.10)

Such domains are bi-holomorphic with Siegel II domains. To see this, extend RΩ

to an Mc-valued, Hermitian-linear, mapping RcΩ on Z ′ = Xc. Let φ be the bi-
holomorphism of Z ′ × Z ×Mc into itself defined by

φ(z′, z, w) = (z′, z, 2w − iRcΩ(z′, z′)).

Then, as the reader can check, φ transforms D onto the Siegel II domain defined
by Ω, Z ′ × Z, and RcΩ +BΩ.

Let co ∈ Ω be a fixed base point. We use bo = (0, ico) ∈ D as the base point for
D. The map g → g · bo identifies L and D. We also identify L with the real tangent
space of L at bo.

Let P be the complex subalgebra of Lc corresponding to T 01 and let J : L → L
be the complex structure so that P is the −i eigenspace of J . Then J satisfies the
“J-algebra” identity:

J([X, Y ]− [JX, JY ]) = [JX, Y ] + [X, JY ]. (2.11)

Also
J : Z → Z,
J : S →M,

J :M→ S.

It follows that S and M are isomorphic as linear spaces. In fact, from the
comments following Lemma (2.1) of [DHP2],

JX = −dρ(X)co X ∈ S,
m = dρ(Jm)co m ∈M,

JX = iX X ∈ Z
(2.12)

where ‘i’ is the complex multiplication of Z, ‘dρ’ is the representation of S obtained
by differentiating ρ and co is the base point in Ω.

We shall require a description of an L-invariant Riemannian structure on the
domain. Koszul ([Kl], Formula 4.5) showed that the Bergman structure is defined
by a scalar product of the form

g(X, Y ) = µ([JX, Y ]) (2.13)

where µ is an explicitly described element of M∗ ⊂ L∗. We assume only that
µ ∈M∗ is such that (2.13) defines an L-invariant Kähler structure on D.

Since g is J-invariant,

µ([JX, JY ]) = −µ([J2X, Y ]) = µ([X, Y ])
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The sclar product g is the real part of the Hermitian scalar product on Lc defined
by

gHer(X, Y ) = g(X, Y ) + ig(X, JY ).

We will also make use of the Hermitian scalar product gc on Lc defined by

gc(Z,W ) =
1

2
g(Z,W ) (2.14)

where g is extended to Lc by complex bi-linearity.

In [DHP2], we describe a particular decomposition

S = A+NS

where A is a maximal, R-split torus in S and NS is the unipotent radical of S. The
rank d of D is, by definition, the dimension of A. This splitting has the property
that for all A ∈ A, the operators ad A are symmetric with respect to g on L.
In particular, we may decompose L into a direct sum of joint eigenspaces for the
adjoint action of A.

An element λ ∈ A∗ is said to be a root of A if there is a non-zero element X ∈ L
such that

[A,X ] = λ(A)X

for all A ∈ A. For λ ∈ A∗, the set of X that satisfy the above equation is denoted
Lλ and is referred to as the root space for λ. Then

[Lλ,Lβ] ⊂ Lλ+β . (2.15)

There is an ordered basis λ1, λ2, . . . , λd for A∗ consisting of roots for which the
root space of λi is a one dimensional subspace Mii of M. All of the other roots
are one of the following types

(a) βij = (λi − λj)/2 where i < j,

(b) β̃ij = (λi + λj)/2,
(c) λi/2.

We let ∆S be the set of roots of type (a), ∆M be the set of roots of type (b) and
∆Z be the set of roots of type (c).

The root spaces for roots of types (a), (b), and (c) are belong, respectively, to S,
M and Z and are denoted, respectively, by Sij , Mij and Zi, which is a complex
subspace of Z. We let dij = dji denote the dimension ofMij , which for i < j, is also
the dimension of Sij . We let fi be the dimension (over C) of Zi. In the irreducible
symmetric case, the dij are constant as are the fi, although these dimensions are
not constant in general. In particular, some may be 0.

We define
NS =

∑
1≤i<j≤d

Sij .

The operator J maps each Sij ontoMij . We note for future reference that from
(2.15)

[Zi,Zj] ⊂Mij. (2.16)
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The ordered basis of A that is dual to the basis formed by {λi} is denoted {Ai}
and the span of Ai is denoted Sii. For each i we let Ei = −JAi ∈Mii. Then

[Ai, Ei] = Ei. (2.17)

For each 1 ≤ i ≤ d, we set

µi =< Ei, µ >= g(Ai, Ai) = g(Ei, Ei). (2.18)

The element

E =

r∑
1

Ei

plays a special role:

JE =

r∑
1

Ai.

It follows that
ad JE

∣∣
M = I,

ad JE
∣∣
Z = I/2.

(2.19)

The first equality tells us that JE is the infinitesimal generator of the one parameter
subgroup t→ δ(t). Since

δ(t)co = tco

we see that dρ(JE)co = co. Hence

E = −J(JE) = dρ(JE)co = co.

Thus, E is the base point of Ω. In particular, E ∈ Ω.

It follows from formulas (2.11) and (2.19) that for m ∈M and X ∈ S,

m = [Jm,E],

X = J [X,E].
(2.20)

We say that a permutation σ of the indecies {1, 2, . . . , d} is compatible if

∆S = {(λσ(i) − λσ(j))/2 | |1 ≤ i < j ≤ d}

This is equivalent with saying that for i < j, (λσ(j) − λσ(i))/2 is not a root. If
σ is compatible, then we may replace the sequence λi with λσ(i) in the preceding
discussion. This has the effect of replacing Mij and Sij with Mσ(i)σ(j) and Sij
with Sσ(i)σ(j) respectively.

Definition 2.21: We say that λi is singular if (λi − λj)/2 is not a root for all
j > i. We say that the root sequence is terminated if there is an index dτ such that
the set of singular roots is just {λi | dτ ≤ i ≤ d}. We refer to dτ as the point of
termination. We say that D is non-tube like if dτ = d and λi/2 is a root for all
1 ≤ i ≤ d.
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Lemma 2.22. There is a compatible permutation σ such that {λσ(i)} is termi-
nated.

Proof Our lemma follows from the simple observation that if λi is singular where
i < d, then the permutation that interchanges i and i+ 1 is compatible.

From now on, we assume that the λi are terminated. This has the consequence
that Sij = 0 if dτ ≤ i < j ≤ d.

We define,

S1∗ =
∑
1≤m
S1m,

N1∗ =
∑
1<m

S1m,

M1∗ =
∑
1<m

M1m,

S>1 =
∑
Sij (1 < i ≤ j ≤ r),

M>1 =
∑
Mij (1 < i ≤ j ≤ r),

Z>1 =
∑

2≤i≤f
Zi.

(2.23)

Then S1∗ is a Lie ideal in S and S>1 is a complimentary Lie subalgebra. Also,
M1∗ is ad (S) invariant. We identify M>1 with the quotient M/(RE1 +M1∗).
The image Ω>1 in M>1 of the cone Ω is a cone which is homogeneous under
S/S1∗ = S>1. In fact, Ω is the orbit of c>1 inM>1 under S>1 where

c>1 =

d∑
2

Ei.

The data BΩ

∣∣(Z>1 × Z>1), M>1 and Ω>1 defines a Siegel domain on which

L>1 = (Z>1 ×M>1)×s S>1 ⊂ L

acts simply transitively.

The group

L1∗ = (Z1 ×M1∗)×s S1∗

also acts simply transitively on a Siegel domain. Explicitly, for X, Y ∈ S1∗, there
is a scalar R(X, Y ) such that

[X, [Y,E1]] = R(X, Y )E1.

Similarly, for z, w ∈ Z1,

BΩ(z, w) = BoΩ(z, w)E1
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where BoΩ is a C-valued Hermitian form on Z1. Then L1∗ acts simply transitively
on the Siegel II domain D1∗ ⊂ ((S1∗)c × Z1 × C) defined below formula (2.10) by
these forms. This domain is in fact equivalent with the unit ball in Cd1+f1+1.

We note the following (well known) description of the open S-orbits on M.
Lacking a good reference, we include the proof. Note that it follows that E = EΩ,
yielding yet another notation for the base point co ∈ Ω.

Proposition 2.24. Each open ρ-orbit O inM contains a unique point of the form

EO =
d∑
1

εiEi (2.25)

where εi = ±1.

Proof We reason by induction on the dimension d of A. If d = 1, thenM = R and
S = R+, so the result is clear.

Now suppose that the theorem is true for all ranks less than d.

Now, let O ⊂ M be an open S-orbit and let M ∈ O. We claim first that there
is a unique n ∈ N1∗ such that

ρ(n)M = aE1 +Mo

where Mo ∈M>1 and a ∈ R. To see this, write

M = aE1 +W +Mo (2.26)

where a ∈ R, W ∈M1∗ and Mo ∈M>1.

Let N ∈ N1∗. Then, ad (N) maps M>1 intoM1∗ and M1∗ intoM11. Thus,

ρ(expN)M =aE1 + ad (N)W +
ad (N)2

2
Mo

+ [W + ad (N)Mo] +Mo

(2.27)

where the term in brackets is theM1∗ component of ρ(expN)M . We need to show
that there is a unique N ∈ N1 that makes this term zero. This will be true if
ad (Mo)|N1∗ has rank k where k = dimM1∗ = dimN1∗.

To show this is, note that from the following identity, the set X of all X ∈
M>1 such that rank ( ad (X)|N1∗) = k, is S>1-invariant and is non-empty since it
contains E1.

ad (ρ(s)X) = ρ(s) ad (X)ρ(s−1).

Hence, X is a Zarski-dense, open subset ofM>1 which must, therfore, intersect the
image of O inM>1, which is just the S>1 orbit of Mo. Our claim follows.

Thus, we may assume that W in formula (2.26) is zero. From the inductive
hypothesis, there is a unique s1 ∈ S>1 such that

ρ(s1)Mo =
d∑
2

εiEi
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where εi = ±1. Thus, we may assume that Mo has this form.

Finally, we note that in (2.26), a 6= 0 since otherwise, [A1,Mo] = 0, which
implies that the dimension of the S-orbit of M is less than that ofM. This allows
us to transform Mo into a point of the form stipulated in the proposition using a
unique element of the one-parameter subgroup generated by A1. Our proposition
follows. �

Lemma 2.28. Let O be an open ρ orbit inM and let EO ∈ O be as in Proposition
(2.24). Let dm denote Lebesgue measure onM and let ds be a fixed Haar measure
on S. Then there is a constant CO such that

∫
O
f(m) dm = CO

∫
S

χρ(s)f(ρ(s)EO) ds

for all integrable functions f on O.

Proof Let Λ(f) be the value of the quantity on the left of the above equality. Then,
for all so ∈ S,

Λ(f ◦ ρ(so)) = χρ(s
−1
o )Λ(f).

The quantity on the right side of the above equality satisfies the same invariance
property. It follows from the uniqueness of Haar measure that the left and right
sides are equal up to a multiplicative constant that depends only on the orbit in
question. We normalize ds so that this constant is 1 for Ω. �

Remark: It can be shown that CO is independent of O. We will not, however,
need this fact.

Our main application of the above proposition will be to orbits of ρ’s contragredi-
ant representation, ρ∗ inM∗. The root functionals of A onM∗ are the negatives of
those on A. Hence the corresponding ordered basis for A∗ is −λd,−λd−1, . . . ,−λ1

and the corresponding ordered basis for A is −Ad,−Ad−1, · · · −A1.

We define elements E∗j ∈M∗ by

< Ei, E
∗
j >= δijµi.

We use the element
E∗ =

∑
j

E∗j

as the base point for Ω∗. (It is known that this element belongs to Ω∗.) Given
an open ρ∗ orbit O, the element corresponding to EO in Proposition (2.24) will be
denoted E∗O.
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If Lo is any vector subspace of L, we set

PLo = span C{X + iJX |X ∈ Lo}

Then P splits as
P = PT ⊕ PZ .

Our first use of these constructs will be to prove the following:

Proposition 2.29. The submanifold Do is totally geodesic in D.

Proof Let X and Y be vector fields on D that are tangent to Do on Do. To show
that Do is totally geodesic, it suffices to show that OXY is also tangent to Do. By
homogeneity, it suffices to prove this at the base point bo for left-invariant vector
fields on L.

Let
Z = (X − iJX)/2 and W = (Y − iJY )/2.

Then Z and W belong to Q where

Q = P

Then
OXY = OZ+Z(W +W )

= OZW +OZW +OZW + OZW.
(2.30)

It suffices to show that each of these terms is in Tc.
In [DHP2], we computed a formula for the connection on left-invariant vector

fields on D. To state this formula, let QT and QZ to be, respectively, the conjugates
of PT and PZ . Let πQ be the projection to Q along P. For each Z ∈ Q, we define

an operator M(Z) : Q → Q by

M(Z)(W ) = πQ([Z,W ]).

We also define M∗(Z) : Q → Q by

gc(M
∗(Z)W1,W2) = gc(W1,M(Z)W2).

where W1 and W2 range over Q. These operators extend uniquely to operators
(still denoted M and M∗) which map Lc into itself and satisfy

M(Z)W = M(Z)W,

M∗(Z)W = M∗(Z)W.

The significance of M and M∗ is that they describe the connection. Specifically,
on p. 85, loc. cit., we showed that for Z and W in Q,

OZW = M(Z)W,

OZ(W ) = −M∗(Z)W.
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From formula (2.30), and the observation that the connection is real, the state-
ment that Do is totally geodesic will follow if we can show that for Z ∈ QT , M(Z)
and M∗(Z) both map QT into QT . The first statement follows from the fact
that Tc is a subalgebra and the second follows from the following easily verified
observations, where the orthogonal compliment is with respect to gc in Q.

Q⊥T = QZ ,
[QT ,QZ ] ⊂ Z.

�

Next we compute the Laplace-Beltrami operator ∆D for D. We choose a g-
orthonormal basis Xα

ij for each Mij and let Y αij = JXα
ij be the corresponding

orthogonal basis for Sij , where 1 ≤ α ≤ dij = dim(Mij). We assume that this

basis is chosen so that Xα
ii = µ

−1/2
i Ei. Hence Y αii = µ

−1/2
i Ai.

Similarly, we choose a C-basis Xα
j for Z where 1 ≤ α ≤ fj = dimC(Zj) that is

orthonormal with respect to gHer and let Y αj = JXα
j so that the Xα

j , together with
the Y αj form a real orthonormal basis for Z.

From [O], p. 86, ∆DF is the contraction of O2F . Hence

∆Df = −
∑
α,i≤j

O2f(Xα
ij, X

α
ij) + O2f(Y αij , Y

α
ij )

−
∑
α,i

O2f(Xα
i , X

α
i ) + O2f(Y αi , Y

α
i )

= [Ao −
∑
α,i≤j

(Xα
ij)

2 + (Y αij )
2 −

∑
α,i

(Xα
i )2 + (Y αi )2]f

(2.31)

where
Ao =

∑
α,i≤j

OXαijX
α
ij +OY αijY

α
ij

+
∑
α,i

OXαi X
α
i + OY αi Y

α
i .

Lemma 2.32. The component of ∆D which is tangent to A is

D =
∑
i

µ−1
i (A2

i − (1 + di + fi)Ai) (2.33)

where di =
∑
j>i dij

Proof It is clear from (2.31) that the second order term of ∆ is as stated. To
compute the first order term, we note that since ∆ is formally self adjoint with
respect to the Riemannian volume form, the operator in formula (2.31) must be
formally self adjoint with respect to left invariant Haar measure on L. Let χL be
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the modular function for L. Then the formal adjoint of a left-invariant vector field
X is

X∗ = −X − dχL(X).

It follows from formula (2.31) that

∆D = ∆∗D
= ∆D − 2Ao

− 2
∑
α,i≤j

dχL(Xα
ij)X

α
ij + dχL(Y αij )Y

α
ij − 2

∑
α,i

dχL(Xα
i )Xα

i + dχL(Y αi )Y αi .

Note that there is no constant term since ∆D annihilates constants. Thus, since

dχL is trivial on the nilradical and Yii = µ
−1/2
i Ai, the above equality simplifies to

∆D = ∆D − 2Ao − 2
∑
i

µ−1
i dχL(Ai)Ai.

Our lemma follows since

−dχL(Ai) = Tr ad Ai

=
∑
j<k

djk
λj − λk

2
(Ai) +

∑
j≤k

djk
λj + λk

2
(Ai) +

∑
j

2fj
λj

2
(Ai)

= 1 +
∑
j<k

djkλj(Ai) + fi = 1 + di + fi.

�

Lemma 2.34. Let EP = JE − iE ∈ P. Then

M(EP)Z =

Z (Z ∈ QT )

Z

2
(Z ∈ QZ).

Proof Let Z ∈ QT . Then Z = X − iJX where X ∈ S. Hence

[EP , Z] = [JE − iE,X − iJX]

= [JE − iE,X + iJX]− 2i[JE − iE, JX]

= −2i[JE, JX] mod P
= −2iJX mod P
= (X − iJX)− (X + iJX) mod P
= X − iJX mod P.

Thus, M(EP) is the identity on QT .
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Since M centralizes Z, for Z ∈ QZ ,

M(EP)Z = [EP , Z] = [JE, Z].

Our lemma follows from formula (2.19). �

Corollary 2.35.

R(EP , EP)Z =
− 2Z (Z ∈ QT )

− Z (Z ∈ QH)
.

Proof This follows immediately from the following formula which is a special case of
Theorem (1.9), p. 86 of [DHP2]. (Note that from the previous lemma, M∗(EP) =
M(EP).)

R(EP , EP) = −M∗(EP)M(EP)+M(EP)M∗(EP)−M∗(M(EP)EP)−M(M(EP)EP).

The following result is the main step in the characterization of H2
HJK .

Theorem 2.36. The Laplace-Beltrami operator for Do is a linear combination of
Hua operators on D.

Proof Let ∆o be the differential operator on L defined by

∆of = −gc(HJK (f)EP , EP))

where EP is as above. The identity

gc(R(Z,W)X, Y ) = gc(R(X, Y )Z,W )

shows that
∆of = −

∑
CijO2f(Zi, Zj)

where
Cij = gc(R(EP , EP)Zi, Zj)

and where Zi is an gc-orthonormal basis of P.

If we choose this basis so that {Z1, . . . , Zn} ⊂ QT and {Zn+1 . . . Zd} ⊂ QZ , we
see that

∆of = −
n∑
1

2O2f(Zi, Zi)−
d∑

n+1

O2f(Zi, Zi)

= ∆Dof + ∆Df.
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(Note that from Proposition (2.29) the Do connection is obtained by restriction
from the D connection.) Hence

∆Do = ∆o −∆D.

This proves the lemma since, from Proposition (1.4) of [DHP2], ∆D is a Hua oper-
ator, while ∆o is, by definition, a Hua-operator. �

For later purposes, we will require an explicit description of ∆Do −∆D. From
formulas (2.31) and (2.33) and the analogous formulas for ∆Do , we see that

∆Do −∆D = ∆H −A′o (2.37)

where

∆H =
∑
α,i

(Xα
i )2 + (Y αi )2 (2.38)

and

A′o =
∑
i

fi

µi
Ai. (2.39)

Section 3: Hua Boundary Values

We will apply the results from Section 1 to the eigenvalue problem for the“strongly
diagonal Hua operators” as defined in [DHP2] (Theorems (2.18) and (3.6).) It fol-
lows from (2.10) and (2.16) of [DHP2] that Xii and Yii in [DHP2] equal what we
have called Ei and Ai respectively, while ci = (Ai, Ai) = µi. Then Xα

ij and Y αij in

[DHP2] equal our µ
1/2
i Xα

ij and µ
1/2
i Y αij respectively. The Xα

j and Y αj from [DHP2]
correspond to our elements of the same name.

Thus, in our current notation, in the tube case the strongly diagonal Hua oper-
ators are

HJKT
k = µ−1

k (∆k −
dk + 2

µk
Ak −

∑
i<k

dik

µi
Ai)

where dk =
∑
k<j dkj and

∆k = 2µ−1
k (A2

k + E2
k)+∑

i<k,α

(Y αik)
2 + (Xα

ik)
2 +

∑
k<j,α

(Y αkj)
2 + (Xα

kj)
2. (3.1)

In the general Siegel II case, the diagonal Hua operator are defined by

HJKk = HJKT
k −

fk
µ2
k

Ak + µ−1
k (
∑
α

(Xα
k )2 + (Y αk )2) (3.2)
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where HJKT
m is as in (3.1). We consider the above equalities as defining elements

of A(L) which then act as left invariant differential operators on C∞(L).

Actually, we will need to consider these operators acting on more general spaces
which are most easily described in terms of (right) induced representations. Specif-
ically, suppose that G is a Lie group and Go a closed subgroup. Let πo be a
differentiable representation of Go in a Fréchet space V. Let C∞(G, πo) be the
subspace of C∞(G,V) consisting of those functions F such that

F (gog) = πo(go)F (g)

for all g ∈ G and go ∈ Go. We give C∞(G,V) the topology of uniform convergence
of functions and their derivatives on compact subsets of G and give C∞(G, πo) the
subspace topology.

We define the C∞, right-induced, representation π∞G = ind∞πo = ind∞(Go, G, πo)
of G acting on C∞(G, πo) by

πG(g1)F (g) = F (gg1).

We make use of several simple observations which are well known and easily
checked. First, suppose that Go is normal in G and G1 is a closed subgroup such
that GoG1 = G. Then restriction defines a Fréchet space isomorphisim

C∞(G, πo)→ C∞(G1, πo
∣∣Go ∩G1) (3.3)

which intertwines the G1 actions. Furthermore

πG(g2)F (g) = πo(gg2g
−1)F (g)

for all g2 ∈ G2 and g ∈ G. If X ∈ G2, then

πG(X)F (g) = πo( Ad (g)X)F (g). (3.4)

(We typically use the same symbole to represent the representation of the Lie
algebra obtained by differentiating a representation of the corresponding Lie group.)

Now, suppose that πo is a differentiable representation of NL on V. We identify
A with Rd via the mapping t→ a(t) where fot t = (t1, . . . , td),

a(t) = exp(
∑
i

tiAi).

The isomorphism (3.3) then identifies C∞(L, πo) with C∞(Rd,V). We say that
F ∈ C∞(L, πo) = C∞(Rd,V) is diagonally Hua-harmonic if F is annihilated by the
image of the strongly-diagonal Hua system under πL.

Cases of particular interest are:

(a) πo is the right regular representation of NL in V = C∞(NL). Then πL is
the right regular representation of L in C∞(L).

(b) πo is the right regular representation of NL in the space of distributions
V = D(NL) on NL.

(c) πo is the right regular representation of NL in the space of Schwartz distri-
butions V = S′(NL) on NL.
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The spaces V in (b) and (c) are particularly important. Specifically, for F ∈
C∞(L), let F̃ : L→ D(NL) be defined by

< φ, F̃ (g) >=

∫
NL

φ(n)F (ng) dg

where φ ∈ C∞c (NL). Then F̃ ∈ C∞(L, πo) where πo is the right regular representa-

tion of NL in D(NL). Furthermore, F is diagonally Hua-harmonic if and only if F̃
is. From the example on .p 282 of [War], there are positive costants C and r′ such
that

eτ(x) ≤ C‖ Ad (x)‖r′

where ‖·‖ denotes the operator norm with respect to any conveniently chosen norm
on L. It follows that if F satisfies (0.1), then

F̃
∣∣A ∈ Cr(d)(S′(NL))

where Cr(d) is as defined below formula (1.27). Similarly, if F satisfies (0.2), then

F̃
∣∣A ∈ Cr(d)(D(NL))

Let

Hi =
µ2
i

2
πL(HJKi).

Then, according to (3.4), as an operator on C∞(Rd,V)

Hi = Di + e2tiπo(E
2
i ) + etiπo(Zi)

+
∑
j>i

eti−tjπo(Yij) + eti+tjπo(Xij)

+
∑

1≤j<i

µi

µj
etj−tiπo(Yji) + etj+tiπo(Xji)

(3.5)

where

Di =
∂2

∂t2i
− γi

∂

∂ti
−
∑

1≤j<i

djiµi

2µj

∂

∂tj

Yij =
µi

2

∑
γ

(Y γij )
2

Xij =
µi

2

∑
γ

(Xγ
ij)

2

Zi =
µi
2

∑
γ

(Xγ
i )2 + (Y γi )2

and

γi =
di + fi + 2

2
. (3.6)

(We define Xij = Yij = 0 if (λi − λj)/2 /∈ ∆S . Similarly, we set Zi = 0 if the space
λi/2 /∈ ∆Z .)
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For i = 1, . . . , d let ρi ≥ 0 and Gi ∈ Cr(d) be given. We are interested in studying
the system

HiF = ρiF +Gi i = 1, 2, . . . , d (3.7)

for F ∈ Cr(d).

Let notation be as in (2.23). From the comments following (2.23), L>1 may be
identified with a Siegel domain. Let HJK >1 be the corresponding Hua system for
L>1 and

Ho
i =

µ2
i

2
πG(HJK >1)i−1

where i ≥ 2 and we embed A(L>1) into A(L) in the obvious manner. Formulas
(3.1) and (3.2) imply

Hi = Ho
i − δi

∂

∂t1
+ et1−tiπo(Y1i) + et1+tiπo(X1i). (3.8)

Our main result is:

Theorem 3.9. Let F ∈ Cr(d) satisfy (3.7) where the Gi have a V valued asymptotic
expansion over (−∞, 0]d. Then F has an asymptotic expansion over (−∞, 0]d.

Proof Let A0 ∈ A be the subgroup defined by t1 = 0 and let A1 be defined by
ti = 0 for all i > 1. Let L1 = A0NL and define

π1 = ind∞(NL, L1, πo)

realized in W = C∞(Rd−1,V). Then

πL = ind∞(L1, L, π1) (3.10)

which we realize in C∞(A1,W) = C∞(R,W) using the correspondence (3.3). Thus,

F and G1 correspond to the elements F̃ and G̃1 in C∞(R,W) defined as in formula

(1.27). Actually, F̃ and G̃ are valued in Cs(d− 1) for some s. Let

C∞(d− 1) = ∪∞k=0C−k(d− 1)

given the direct limit topology. It is clear from formula (3.4) that for all X ∈ L1,

π1(X) acts continuously on C∞(d−1). From Definition (1.28), G̃1 has an asymptotic
expansion as an C∞(d− 1) valued map.

Equation (3.7), with i = 1, is equivalent with the C∞(d − 1) valued ordinary

differential equation DF̃ = G̃1 where

D =
d2

dt21
− γ1

d

dt1
+ et1P1 + e2t1P2 − ρ1, (3.11)
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and

P1 = π1(Z1 +
∑

1<j≤d1

Y1j + X1j),

P2 = π1(E
2
1).

Lemma 3.12. F̃ ′ ∈ Cs((−∞, 0], C∞(d− 1)) for some s.

Proof Let

H(t) = e−γ1tF̃ ′(t).

Then
H ′(t) = e−γ1t(F̃ ′′(t)− γ1F̃

′(t))

= e−γ1tG̃1(t)− e−γ1t
(
etP1 + e2tP2 − ρ1

)
F̃ .

Hence

H(t) = H(0)−
∫ t

0

e−γ1sG̃1(s) ds

−
∫ t

0

(
e(1−γ1)sP1 + e(2−γ1)sP2 − ρ1e

−γ1s
)
F̃ (s) ds.

Let ρ be any continuous semi-norm on C∞(d− 1). Applying the triangle inequality
for ρ to the preceding inequality, and using the continuity of the Pi on C∞(d − 1)

together with F̃ ∈ Cr((−∞, 0], C∞(d− 1)), we see that H ∈ Cs((−∞, 0], C∞(d− 1))
for some s. �

The equation DF̃ = G̃1 is equivalent with the C∞(d−1)×C∞(d−1) valued first
order system

dY

dt1
= M0Y + et1M1Y + e2t1M2Y + Z (3.13)

where

Y =

[
F̃
F̃ ′

]
,

M0 =

[
0 1
ρ1 γ1

]
,

M1 =

[
0 0

−P1 0

]
,

M2 =

[
0 0

−P2 0

]
,

Z =

[
0

G̃1

]
.

Also Z has an expansion since G̃1 does.
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Theorem (1.12), along with Lemma (3.12), implies that Y has an asymptotic

expansion. Projection onto the first component shows that F̃ has an asymptotic
expansion. Let

F̃ (t1) ∼
∑
α∈I1

eαt1 F̃α(t1),

G̃1(t1) ∼
∑
α∈I1

eαt1G̃1
α(t1).

(3.14)

For i > 1

Hi = −δi
∂

∂t1
+ et1Qi +Ho

i (3.15)

where δi = µid1i/(2µ1) and

Qi = π1(Y1i) + π1(X1i).

Applying Hi term-by-term to (3.14) shows that for each α ∈ I1,

(−δi
d

dt1
− δiα+Ho

i − ρi)F̃α = −QiF̃α−1 + G̃1
α. (3.16)

Write

F̃α(t1) =

nα∑
0

F̃α,nt
n
1 ,

G̃1
α(t1) =

nα∑
0

G̃1
α,nt

n
1 .

Then

(Ho
i − δiα− ρi)F̃α,n = nδiF̃α,n+1 −QiF̃α−1,n + G̃1

α,n. (3.17)

In particular,

(Ho
i − δiα− ρi)F̃α,0 = −QiF̃α−1,0 + G̃1

α,0. (3.18)

We will show that each of the F̃α,k has an asymptotic expansion. If α is any
exponent, then there is an n ∈ No such that αo = α − n is an exponent, but
αo − k is not for any k ∈ No. In particular, F̃αo−1,0 = 0. Hence, from (3.18),

F̃αo,0 satisfies the Hua system on L>1 relative to the eigenvalues δiαo + ρi. Since

F̃αo,0 ∈ C∞(d − 1), it belongs to Cs(d − 1) for some s. Hence we may assume by

induction that F̃αo,0 has an asymptotic expansion over (−∞, 0]d−1 with exponents
from some set I(αo) ⊂ Cd−1. If δi 6= 0 for some i, we may solve formula (3.17) for

F̃αo,n+1, concluding, by induction, that F̃αo,k has an asymptotic expansion. If all

of the δi = 0, then the existence of an asymptotic expansion for F̃αo,k follows as in

the k = 0 case. Hence, F̃αo also has such an expansion.

It now follows from formula (3.18) and induction on k, that for all k ∈ No, F̃αo+k
has an asymptotic expansion, proving our theorem. �
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Our next goal is to define the boundary values of a solution. For the remainder
of this section we assume that F satisfies the hypotheses of Theorem (3.9) where
all of the Gi = 0.

Let E ⊂ A∗ be the set of exponents for F so that

F (t) ≈
∑

Fα(t)e<t,α> α ∈ E (3.19)

where the Fα are non-zero, V valued polynomial functions on A = Rd.

Given a constant coefficient differential operator D on C∞(A), we define a poly-
nomial (the characteristic polynomial) on A∗ by

D(e<t,α>) = pD(α)e<t,α>.

Let pi = pDi . Then for

α =
∑

αiλi,

pi(α) = α2
i − γiαi − ρi −

∑
1≤j<i

djiµi
2µj

αj . (3.20)

Let
E0 = {α | pi(α) = 0, i = 1, . . . , d}.

Notice that pi depends only on αj , j ≤ i. It follows that we may compute
the elements of E0 inductively. Specifically, we compute the αi+1 by solving the
equation

pi+1(αi+1λi+1 +
i∑
1

αiλi) = 0

where the terms in the summation range over the (known) roots of p1, . . . , pi. In
particular, Eo has at most 2d elements.

Let P(Rd,V) be the space of V valued polynomials on Rd.

Definition 3.21: The boundary value map for F is the function BV : Eo →
P(Rd,V) defined by BV (F )(α) = Fα.

Remark: The above definition is not entirely consistent with Definition (1.26)
where the boundary map is valued in V rather than P(Rd,V). Note, however, that
when we convert an nth order equation to a first order system, our boundary map
will in fact be valued in Vn. Specifically, if F solves an nth order equation, then

its αth boundary value is the element of Vn whose kth component is dk

dtk
(eαtFα)(0).

Thus, the real difference between (1.26) and (3.21) the number of terms of Fα(t) uti-
lized. Of course, if Fα(t) has degree 0, which is the generic case, there is essentially
no difference.

Our goal is to prove that F is uniquely determined by BV (F ). We first note the
following lemma.
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Lemma 3.22. Suppose that D is a constant coefficient differential operator on
C∞(Rd) which does not annihilate constants. Then D is injective on the space of
polynomial functions on Rd.

Proof This is a simple consequence of the observation that for any homogeneous
polynomial P of degree d

D(P ) = D(1)P + terms of lower degree.

We leave the details to the reader. �

Let
∆ = span 2Z(∆S ∪∆M ∪∆Z),

∆+ = span 2No(∆S ∪∆M ∪∆Z).

where ∆· is as described below (2.15).

The following proposition proves that F is uniquely determined by its boundary
values.

Proposition 3.23. E ⊂ Eo + ∆+. Also F = 0 if and only if BV (F ) = 0.

Proof It follows from Proposition (1.20) and the proof of Theorem (3.9) that (3.19)
may be differentiated term-by-term. Applying the Hua system to (3.19) yields the
equality

Dα
i Fα = −πo(E2

i )Fα−2λi − πo(Zi)Fα−λi
−
∑
j>i

πo(Yij)Fα−(λi−λj) + πo(Xij)Fα−(λi+λj)

−
∑

1≤j<i

µi

µj
(πo(Yji)Fα−(λj−λi) + πo(Xij)Fα−(λi+λj))

(3.24)

where
Dα
i F = e−<t,α>Di(e

<t,α>F ).

Note that (3.24) expresses Dα
i Fα as a linear combination of terms Fα−β with

β ∈ ∆+. Lemma (1.31) shows that there is a β ∈ ∆+ with the property that
α′ = α− β ∈ E but α′ − γ /∈ E for any γ ∈ ∆+. Hence, from (3.24),

Dα′

i Fα′ = 0

for all i. It follows from Lemma (3.22) that if α′ /∈ Eo, Dα′

i is injective on the space
of polynomials contradicting α′ ∈ E ; hence α′ ∈ Eo, proving E ⊂ Eo + ∆+.
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The preceding argument shows that if E is non-empty, then E ∩ Eo is also non-
empty. Hence, if Fα = 0 for all α ∈ Eo, then Fα = 0 for all α. We must show that
then F = 0.

Rank 1 Case

For ω ∈ V∗ and g ∈ L, let

Fω(g) =< F (g), ω > . (3.25)

Then Fω is a C-valued Hua-harmonic function. It suffices to show that Fω = 0 for
all ω ∈ V∗. Thus it suffices to consider scalar valued solutions.

Let G : NL × R+ → C be defined by

G(n, t) =
F (n exp((log t)A1)) t > 0

0 t ≤ 0
.

Then G vanishes to infinite order at 0, showing that G is C∞ on NL×R. We apply
Theorem 2 of [BG] with

P = H1 − ρ1,

m = k = 2, p = 0. Comparison with equation 1 in [BG] shows that the hypotheses
of [BG] are met. It follows, then, that G is zero on a neighborhood of e in NL×R.
Since P is analytic-hypoelliptic, it follows that F is zero, proving our result in the
rank one case.

Rank d Case

We assume by induction that the result is known for all lower ranks. We repeat
the discussion leading up to (3.14). Let αo be a leading exponent for F̃ . Then, as

before, F̃αo,0 satisfies the Hua system on L>1 relative to the eigenvalues δiαo + ρi.
The set of roots of the correspondinng characteristic polynomials are

E ′o = {(α2, . . . , αd) ∈ Cd−1 | (αo, α2, . . . , αd) ∈ E}.

and the boundary value map is

BV ′(Fαo,0)(α2, . . . , αd)(t2, . . . , td) = Fα(0, t2, . . . , td) (3.26)

where α = (αo, α2, . . . , αd).

Then, BV (F ) = 0 implies BV ′(Fαo,0) = 0; hence, from the inductive hypothesis,

F̃αo,0 = 0. If any one of the δi 6= 0, we can iterate formula (3.17) to show that

F̃αo = 0. If all of the δi = 0, then (3.16) shows that F̃αo(t1) satisfies the Hua system
on L>1 for all t1 ∈ R. Also

BV ′(Fαo(t1))(α2, . . . , αd)(t2, . . . , td) = eαot1Fα(t1, t2, . . . , td) (3.27)

which implies once again that F̃αo = 0.
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Hence, there are no leading terms in the (one variable) asymptotic expansion

of F̃ , showing that F̃ is asymptotic to 0. To see that F itself is zero, notice that
H1 ∈ A(L1∗). From (3.3) and (3.10)

πL
∣∣L1∗ = ind∞(N1∗, L1∗, π1

∣∣N1∗).

Our argument is finished by repeating the d = 1 argument using P = H1 − ρ1 and
V = H(π1). �

Remark: The proof of Proposition (3.23) allows us, in principal, to construct a
mapping (the Poisson transformation) for which F = P (BV (F )). Specifically, we
assume that the Poisson transformation is known for all ranks less than d. This
allows us to construct F̃αo,0 using (3.26). If at least one δi 6= 0, we then use (3.17)

to construct F̃αo . If all of the δi = 0, then we use (3.27) to construct Fαo . Thus,
we need only know the Poisson transformation for the single equation

(H1 − ρ1)F = 0.

Notice that H1 ∈ A(L1∗). Reasoning as in the proof of Proposition (3.23), it
suffices to consider Hi acting on C∞(L1∗). As noted below formula (2.23), L1∗ acts
simply transitively on the unit ball B in Cd1+f1+1. Formula (huaeigen) shows that

H1 =
µ2

1

2
HJK 1

where HJK 1 is the first diagonal Hua operator for the unit ball. In [P1], we defined
an explicit integral transformation (the N -transformation) which transforms this
operator into the image of the Casmir operator of Sl(2,R) acting in the repre-
sentation space of a certain unitary representation of the universal covering group
S̃l(2,R). (See formula 24, loc. cit..) We also computed a general formula for
the Poisson kernel for this operator. Our formula assumed that one avoids certain
“singular” eigenvalues, but these assumptions are unnecessary since the Casmir
operator on S̃l(2,R) is well understood.

From this point on we make the additional assumption that all of the ρi = 0.

In this case 0 ∈ Eo. The element F0 is the boundary value studied in [DHP].
The following theorem generalizes one of the main results of [DHP2] to the case of
unbounded solutions.

Theorem 3.28. For all 1 ≤ i < j ≤ d,

πo(Yij)F0 = 0.

In particular, if πo(NS)F0 is a bounded subset of V then πo(n)F0 = F0 for all
n ∈ NS.
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The second statement follows from the first: we note first that by an argument
similar to that done in the proof of Proposition (3.23), we may assume that V =
C∞(NS). Then [DH] implies that all bounded solutions to∑

i<j

YijF = 0

are constant on left cosets of NS , as desired.

For the proof of the first statement, we will do a detailed analysis of F ’s asymp-
totic expansion. We prove somewhat more than required due to the needs of the
next section. Let

βi = λi − λi+1 i < d,

βd = λd.
(3.29)

Every element of ∆+ is a linear combination, with positive coefficients, of the basis
defined by the βi. Specifically

λi − λj = βi + βi+1 + · · ·+ βj−1,

λi + λj = βi + βi+1 + · · ·+ βj−1 + 2βj + · · ·+ 2βd.
(3.30)

Let
Λ = Eo ∩ span R{λi | dτ ≤ i ≤ d}

where τ is as in Definition (2.21). For dτ ≤ i ≤ d, pi depends only on the ith

variable and those with index less than dτ . Thus, if α ∈ Λ,

0 = pi(α) = α2
i − αiγi = αi(αi − γi).

Hence,

Λ = {
∑

αiλi | αi ∈ {0, γi}, dτ ≤ i ≤ d}. (3.31)

Lemma 3.32. Let β = ν1β1 + · · ·+ νdβd belong to E where the νi ∈ C are such
that γi − νi /∈ −No, 1 ≤ i < dτ . Then β ∈ Λ + ∆+.

Proof From Proposition (3.23), β − γ ∈ Eo for some γ ∈ ∆+. We replace β with
β − γ, which still satisifies our hypotheses. It suffices to show that νi = 0 for
1 ≤ i < dτ . If not, let νi be the first non-zero coefficient. Since pi depends only on
the first i variables

0 = pi(β) = ν2
i − νiγi = νi(νi − γi). (3.33)

Hence, νi = γi, which contradicts γi − νi /∈ −No, proving our lemma. �

A similar argument proves the following.

Corollary 3.34. If F0 6= 0, then 0 is the minimal element of E in the sense defined
above (1.30). Furthermore, F0 is independent of t.
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Proof Let
β = ν1β1 + · · ·+ νdβd

belong to E . As in the proof of Lemma (3.32) we may assume that β ∈ Eo. Let k be
the first index such that νk 6= 0. As in the proof of smaller, νk = γk > 0, proving
minimality.

The independence of t follows from induction as in the proof of (3.9) together
with the comments immediately preceding Proposition (1.25). �

Theorem (3.28) follows immediately from the following result.

Proposition 3.35. Let i < j < l and α = nlβl + · · ·+ ndβd where ni ∈ No and
nj ≤ 1 for j < dτ . Then

πo(Yij)Fα = 0 = Fλi−λj+α.

If α = 0, the above holds for all 1 ≤ i < j ≤ d.

Proof Let
ε = λi − λj + α.

From formula (3.6), γi > 1 for 1 ≤ i < dτ . Hence the assumptions of Lemma (3.32)
apply to ε− γ for any γ ∈ ∆+.

Case 1: dτ ≤ i

Then (λi − λj)/2 is not a root. Hence Yij = 0 and the first equality follows.
Since ε /∈ ∆+ + Λ, Lemma (3.32) shows that Fε = 0 as well, proving our theorem
in this case.

Case 2: i < dτ , j = i+ 1

Then
ε = βi + α

and the expansion of ε in the basis (3.29) contains no βi+1 component. It follows
from Lemma (3.32) and (3.30) that for i < m, ε− (λi ± λm) /∈ E unless m = i+ 1
and ± = − while for m < i, ε− (λm ± λi) /∈ E . It is clear also that ε−mλi /∈ E for
m > 0. Hence (3.24), with α replaced by ε, reduces to a single term implying

Dε
iFε = −πo(Yij)Fα.

Similarly, (3.24) reduces to a single term with i replaced by j = i+ 1 implying

Dε
jFε = −µj

µi
πo(Yij)Fα.
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Hence
Dε
jFε =

µj

µi
Dε
iFε

which is equivalent with

(Dj −
µj

µi
Di)(e

<t,ε>Fε) = 0. (3.36)

From Lemma (3.22), for Fε to be non-zero, ε must be a root of the characteristic
polynomial. Hence

pj(ε) =
µj
µi
pi(ε). (3.37)

From formula (3.20) and j = i+ 1

pi(λi − λj + α) = 1− γi,

pj(λi − λj + α) = 1 + γj −
dijµj
2µi

.

Substitution into (3.37) shows that if Fε 6= 0 then

µ−1
i (1− γi +

dij

2
) = µ−1

j (1 + γj). (3.38)

However, from (3.6) the term on the left is non-positive and that on the right is
positive. This proves our proposition in this case.

General Case:

Now suppose by induction that

πo(Ylm)Fα = 0 = Fλl−λm+α

for all l and m such that 0 < m− l < j − i. Then

ε− (λi − λk) = λk − λj + α

which, for i < k < j is not an exponent due to the inductive hypothesis. For j < k,
this term is not an exponent due to Lemma (3.32). Lemma (3.32) also shows that
none of ε− λi, ε− 2λi and ε− (λi + λj) are exponents. Thus, (3.24) implies

Dα
i Fε = −YijFα. (3.39)

Now we apply (3.24) with α replaced by ε and i replaced by j. Then for m < j

ε− (λm − λj) = λi − λm + α

which is not an exponent for m 6= i due to Lemma (3.32) (m < i) and the inductive
hypothesis (i < m).

For j ≤ m
ε− (λj − λm) = λi − 2λj + λm + α
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which is not an exponent due to Lemma (3.32). Lemma (3.32) also shows that none
of ε− λj , ε− 2λj and ε− (λj + λm) are exponents.

Thus
Dε
jFε = −µj

µi
YijFα. (3.40)

Our result follows just as in the j = i+ 1 case. �

We can now recover the Johnson-Korányi result:

Theorem 3.41. Suppose that D = G/K is a symmetric, tube domain. Then every
Hua-harmonic function F on G/K is the Poisson integral of a hyperfunction over
the Shilov boundary.

Proof Our proof is based on the argument beginning at the top of p. 4 of [BV].
Specifically, we write F as a limit of left K-finite functions Fk on G/K. Since the
Hua system is invariant, each of the Fk is Hua-harmonic. The Fk are Poisson inte-
grals of K-finite functions fk over the Furstenberg boundary where the fk converge
to a hyperfunction f whose Poisson integral is F . Since the fk are continuous on
K, they are bounded. It follows from (3.34) and (1.30) that fk = (Fk)0. Then
Theorem (3.28) shows that πo(NS)fk = fk. The same must therefore be true of f ,
showing that f projects to the Shilov boundary, as desired. �

Remark: The same argument shows that the results of [DHP2] imply the
Johnson-Korányi result.

Corollary 3.42. Let

β = βi1 + βi2 + · · ·+ βik + nk+1λik+1
+ · · ·+ ndλd

where 1 ≤ i1 < i2 < · · · < im = d and dτ ≤ ik+1. Then β /∈ E unless ij = i1 + j− 1
for all 1 ≤ j ≤ k + 1, in which case

β = λi1 + (nk+1 − 1)λik+1
+ nk+2λik+2

+ · · ·+ ndλd.

Proof Let j ≤ k+ 1 be maximal with respect to il = i1 + l− 1 for all 1 ≤ l ≤ j. If
j ≤ k, then

β = λi1 − λi1+j + (βij+1
+ βij+2

+ · · ·+ βik + nk+1λik+1
+ · · ·+ ndλd)

where ij+1 > i1 + j. Proposition (3.35), with α equal to the term in parentheses,
proves that Fβ = 0. Hence, j = k + 1, proving our corollary. �
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Section 4: The Boundary Representation

In this section we collect a number of representation theoretic facts which we
need. Our basic reference is [War].

In Section 3 we discussed right-induced C∞ representations. In this section
we need left-induced unitary representations. Let G be a Lie group, Go a closed
subgroup, and let π be a continuous unitary representation of Go in a Hilbert space
H(π), which we denote simply by H.

We define a character χ on Go by

χ(h) = (χGo/χG)(h)

where χG and χGo are, respectively, the modular functions for left-invariant Haar
measure on G and Go.

The representation ind(π) ofG induced from π acts in a subspace spaceH(ind(π))
of H-valued functions on G which satisfy

f(gh) = χ1/2(h)π(h−1)f(g) (4.1)

for all g ∈ G and h ∈ Go. For such f ,

‖f(gh)‖H = χ1/2(h)‖f(g)‖H.

It is well know that there is a unique G invariant functional I defined on the set of
continuous, compactly supported modulo Go, functions on G satisfying the above
covariance condition. ThenH(ind(π)) is the completion of set of functions for which
‖f‖ = I(‖f‖H) <∞.

The representation acts on such functions according to

ind(π)(go)f(g) = f(g−1
o g).

When we wish to explicitly indicate the dependence on G and Go we will write
ind(Go, G, π) instead of ind(π).

If there is a closed subgroup G1 of G which is a complement to Go then,

‖f‖2 =

∫
G1

‖f‖H(t) dt

where dt is left invariant Haar measure onG1. HenceH(ind(π)) is just L2(G1, dt,H(π)).

Recall that if π is a continuous representation of G in a Hilbert space H, then
C∞(π) denotes the set of vectors H for which g → π(g)v is differentiable as a
H valued map, given the topology of uniform convergence on compact subsets of
G of such functions and all of their derivatives. We let C−∞(π) denote the anti-
dual space to C∞(π). (i.e. the space of continuous conjugate-linear functionals.)
We use the scalar product to embed H linearly into C−∞(π). The contragrediant
representation to π

∣∣C∞(π) defines a continuous (in fact differentiable) extension of
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π to C−∞(π) which we continue to denote by π. The representation of the universal
enveloping algebra A(G) on C−∞(π) obtained by differentiating π is denoted by π
as well.

Let πG = ind({e}, G, 1), the unitary left regular representation of G. It is well
known that C∞(πG) ⊂ C∞(G). We require the following result which, while prob-
ably well known, we have not been ale to find in the literature.

Proposition 4.2. If G is unimodular, then C∞(πG) ⊂ L∞(G).

Proof Let X1, X2, . . . , Xn be a basis for the Lie algebra of G and let

D = X2
1 +X2

2 + · · ·+X2
n. (4.3)

For each natural number k, let

fk = (I − πG(D))kf.

According to Theorem 3.2 of [NS] there is a function hk ∈ L1(G), independent of
f , such that

f = πG(hk)fk = hk ∗ fk
Furthermore, Corollary 3.2 of [NS] states that if k = [n/4]+1, hk ∈ L2(G). But, on
a unimodular group, the convolution of two L2 functions is an L∞ function. This
proves the proposition. �

Now let
πb = ind(S, L, 1).

In this case,
χ(s) = χρ(s)χσ(s)

where
χρ(s) = det ρ(s) and χσ(s) = det σ(s).

Since L = NbS, we will extend χρ and χσ to all of L by declaring them to be trivial
on Nb.

We may identify H(πb) with L2(Nb), in which case

πb(sho)f(h) = χ(s)−1/2f(h−1
o hs) (4.4)

where s ∈ S, ho ∈ Nb, and hs = s−1hs.

We begin by describing the primary decomposition of πb. For this, for each
β ∈M∗, let

χβ(m) = ei<m,β>.
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Let
πβ = ind(M, L, χβ).

In this case, the norm is given by

‖f‖2β =

∫
Z×S

|f(z, 0, s)|2 dz ds <∞

where dz is Lebesgue measure in Z.

It follows from Proposition (2.24) that there are 2d open, ρ∗(S) orbits in M∗
where d is the rank of D. Furthermore, since the action is algebraic, the union of
these orbits is dense inM∗. For each such open orbit O, let βO ∈ O be the explicit
representative described in Proposition (2.24).

Proposition 4.5.

πb = ⊕
∑
O
πβO .

Proof From the theorem on inducing in stages, both πb and πβ are induced from
the analogous representations on T . The general result will follow from the tube
case since inducing preserves direct sums. Thus, we assume that Z = 0.

Let β = βO for some fixed orbit O. For f ∈ H(πb) and g ∈ T , we define

fβ(g) = C
−1/2
O

∫
M
f(gm)ei<β,m> dm (4.6)

where dm is Lebesgue measure on M and CO is as in Proposition (2.28). Then,
for all m ∈M and g ∈ L,

fβ(gm) = χβ(m−1)fβ(g). (4.7)

which is (4.1) for πβ.

To prove our proposition, it suffices to show that

‖f‖2 =
∑
O
‖fβO‖2

where the norm on the left is the H(πb) norm and those on the right are the H(πβO )
norms.

Formula (4.1), together with a change of variables shows that for s ∈ S

C
1/2
O fβ(s) = χρ(s)

1/2

∫
M
f(sms−1)ei<β,m> dm

= χρ(s)
−1/2f∧(−ρ∗(s)β).

(4.8)
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From Proposition (2.28) (with ρ∗ in place of ρ)∫
S

|fβO(s)|2 ds = C−1
O

∫
S

|f∧(−ρ∗(s)βO)|2χρ(s)−1 ds

=

∫
O
|f∧(−β)|2 dβ.

It now follows from Plancherel’s theorem on M that∑
O
‖WβO (f)‖2 = ‖f‖2

which proves our proposition. �

The following lemma shows that in the tube case, the decomposition from Propo-
sition (4.5) is the irreducible decomposition.

Lemma 4.9. Suppose that β ∈ M∗ is such that the orbit Oβ = ρ∗(S)β is open
in M∗. Then

πβT = ind(M, T, χβ)

is irreducible. Furthermore, if γ ∈M∗ also generates an open orbit Oγ , then πβT is
equivalent with πγT if and only if Oβ = Oγ .

Proof This all follows directly from Mackey theory. Since M is normal in T , πβ

will be irreducible if and only if the isotropy subgroup of χβ is trivial under the
conjugation action of T on M∧. This is equivalent with saying that the isotropy
subgroup of β is trivial under the co-adjoint action of S on M∗. However, the
dimension of Oβ is the same as that of S, showing that the isotropy subgroup is
discrete. Since S is completely solvable, this subgroup must then be trivial, show-
ing irreducibility. The statement about equivalence follows directly from Mackey
theory. �

In the non-tube case, the πβ are reducible. Specifically from the theorem on
inducing in stages,

πβ = ind(Nb, L, π
β
Nb

)

where

πβNb = ind(M, Nb, χ
β).

Let Kβ ⊂ M be the kernel of β. Then, Kβ is central in Nb and Hβ = Nb/Kβ
is a Heisenberg group. The representation πβNb is trivial on Kβ and, modulo Kβ ,
defines a representation of Hβ that is inducible from a character of the center. Such
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a representation of a Heisenberg is always an infinite multiple of an irreducible
representation. Thus, we may write

πβNb =∞ ·Πβ
Nb

where Πβ
Nb
∈ Nb∧. It follows from an argument very similar to that done in the

proof of Lemma (4.9) that

Πβ = ind(Nb, L,Π
β
Nb

)

is irreducible and

πb = ⊕
∑
βO

∞ ·ΠβO (4.10)

defines the irreducible decomposition of πb.

Now assume that β = βO for some open orbitO. There is a convenient realization
of Πβ as a subrepresentation of πβ. We first extend β to Nb by declaring it to be
zero on Z.

Next, we will describe a positive polarization for β. Let Xα
j and Y αj be the basis

of Z described above formulas (2.31). For 1 ≤ α ≤ dj , 1 ≤ j ≤ r we define

Zα±j = Xα
j ∓ iY αj .

We define

Pβ =Mc + span C{Zαεjj} (1 ≤ j ≤ d, 1 ≤ α ≤ dj)

where

β =
d∑
1

εjE
∗
j .

Then Pβ is a complex subalgebra of Lc.

Lemma 4.11. The subalgebra Pβ is a totally complex, positive, polarization for
β-i.e.

(a) [Pβ,Pβ ] ⊂ ker β,

(b) Pβ + Pβ = (Z ×M)c,

(c) Pβ ∩ Pβ =Mc,
(d) For all Z ∈ Pβ ,

iβ([Z,Z]) > 0.
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Proof Properties (b) and (c) are clear. For (a), note that from the containment
(2.16)

[Xα
j , Y

β
j ] = cj(α, β)Ej (4.12)

for some scalar cj(α, β). Formula (2.13) shows that

cj(α, β)µj = −g(Xα
j , X

β
j )

= −δα,β .

Hence
cj(α, β) = −µ−1

j δα,β.

Similarly,

[Xα
j , X

β
j ] = 0,

[Y αj , Y
β
j ] = 0.

(4.13)

It follows that [Zαεjj , Z
β
εjj

] = 0, for all α and β. Part (a) now follows from the

containment (2.16) along with the observation that β is trivial onMij .

For (d), we compute

[Zαεjj , Z
α

εjj
] = [Xα

j − iεjY αj , Xα
j + iεjY

α
j ]

= −2iµ−1
j εjEj.

(4.14)

Hence
i < [Z

α

εjj
, Zαεjj ], β >= 2µ−1

j ε2j < Ej, E
∗
j >= 2.

The required positivity follows. �

It now follows from Theorems 3.1 (p. 167) and 3.7 (p. 174) of [BE] that the
subspace Hβw of functions f in H(πβ) that satisfy

(r(Z) + iβ(Z))f = 0 (4.15)

for all Z ∈ Pβ is a closed, invariant, irreducible, non-zero, subspace of πβ on which
πβ is equivalent to Πβ . From now on Πβ refers to this explicit realization of Πβ.

We will require an explicit (and well known) description of the elements of Hβω.
For this, we introduce a function fo : Nb → C defined by

fo(z,m) = e−φ(z,z)−i<m,β> (4.16)

where
φ(z, w) =< BΩ(z, w), E∗ > .

The following lemma follows directly from (2.13) and (2.8).

Lemma 4.17. For z and w in Z
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φ(z, w) =
1

4
gHer((z, 0), (w, 0)).

If h ∈ L2(S) and f ∈ H(πβNb), we define

h⊗ f(s(z,m)) = h(s)f(z,m) (4.18)

which is an element of H(πβ).

Lemma 4.19. For any function h ∈ L2(S) the function h⊗ fo belongs to Hβω.

Proof We must show that g ⊗ fo satisfies (4.15). For this, let w ∈ Zj . Then, from
(4.16) and formula (2.7)

fo((z,m)(w, 0)) = fo(z + w,m+ 2 im BΩ(z, w))

= fo(z,m)e−φ(w,w)−τ(z,w)
(4.20)

where

τ(z, w) = 2 re < BΩ(z, w), E∗ > +2i im < BΩ(z, w), β > .

Note that if zk ∈ Zk, BΩ(zk, w) ∈ (Mjk)c. Thus

< BΩ(zk, w), β >= δjkεj < BΩ(zk, w), E∗ > .

Hence

τ(z, w) =
2φ(z, w) (εj = 1)

2φ(z, w) (εj = −1)
. (4.21)

Since φ is anti-holomorphic in w our lemma follows. �

Using Lemma (4.19), we can produce a dense set of elements of Hβω. Specifically,
for (z, w) ∈ (Z ×M), let zα, j(z, w) ∈ C denote the (α, j) coordinate of z with
respect to the basis {Xα

j }. We also set

zα,−j = zα, j .

For each double sequence of non-negative integers

N = {N(α, j)}1≤α≤fj 1≤j≤d

we define

zN = Πα, j(zα, εjj)
N(α,j).

Then we have the following proposition:
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Proposition 4.22. For all h ∈ L2(S) and all sequences N as described above, the
family of functions below is orthogonal with dense span in Hβω.

{h⊗ zNfo}.

Using (3.3), we may identify L2(S) with the representation space of

πβT = ind(M, T, χβ).

We leave the following lemma, which depends on the centrality ofM in Nb, to the
reader.

Lemma 4.23. For all t ∈ T and h ∈ L2(S)

(πβT (t)h)⊗ znfo = Πβ(t)(h⊗ znfo).

The functions zNfo play an important role in the function theory of Nb because
they describe the eigenspace decomposition of certain differential operators.

Lemma 4.24.

πβNb(
(
Xα
j

)2
+
(
Y αj
)2

)(zNfo) = −(2N(α, j) + 1)zNfo. (4.25)

Proof We note that (
Xα
j

)2
+
(
Y αj
)2

= Zαj Z
α

j − i[Xα
j , Y

α
j ].

Thus, from formulas (4.1) and (4.12), the term on the left in (4.25) equals

(πβNb(Z
α
j Z

α

j )+ < [Xα
j , Y

α
j ], β >)(zNfo)

= (πβNb(Z
α
j Z

α

j )− εj)(zNfo).

In the coordinates defined by theXα
j basis, moduloM, 1

2 π
β
Nb

(Zαj ) is holomorphic

differentiation while 1
2
πβNb(Z

α
−j) is anti-holomorphic differentiation. Hence

πβNb(Z
α

εjj
)zN = 2N(α, j)zN−Λ(α,j)

πβNb(Z
α
εjj

)zN = 0.
(4.26)
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where Λ(α, j) is the sequence which is zero for all indecies except (α, j) where it is
1.

On the otherhand,
fo((z,m)−1) = fo(z,m).

Thus, it follows from formula (4.20) that for w ∈ Zj

fo((w, 0)(z,m)) = fo((−z,−m)(−w, 0))

= fo(z,m)e−φ(w,w)−τ(z,w)

= fo(z,m)e−φ(w,w)−τ(w,z).

(4.27)

Recall that the Xα
j are gHer orthogonal. Hence, from Lemma (4.17) and formula

(4.21),

τ(w, z) =
1

2

∑
wα, εjj zα, εjj .

Thus, differentiating formula (4.27) with respect to w at w = 0 shows that

πβNb(Z
α

εjj
)fo = 0,

πβNb(Z
α
εjj

)fo = −zα, εjjfo.
(4.28)

Hence
πβNb(Z

α

εjj
)zNfo = 2N(α, j)zN−Λ(α,j)fo

πβNb(Z
α
εjj

)zNfo = −zN+Λ(α,j)fo.

If εj = 1 then

πβNb(
(
Xα
j

)2
+
(
Y αj
)2

)(zNfo) = πβNb(Z
α
j Z

α

j − 1)(zNfo)

= (−2N(α, j)− 1)(zNfo)

and the lemma follows.

If εj = −1 then we use the identity(
Xα
j

)2
+
(
Y αj
)2

= Z
α

j Z
α
j + i[Xα

j , Y
α
j ]

= ZαεjjZ
α

εjj
+ i[Xα

j , Y
α
j ]

to prove the lemma as before. �

Section 5: H2
HJK .

Throughout this section, D is assumed to be non-tube like, as defined in Definition
(2.21) in Section 3. We identify A with A using the exponential mapping and A
with Rd using the basis A1, A2, . . . , Ad. The general element a of A is denoted

a = a(t) = exp(t1A1 + . . . tdAd).
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We consider the map a→ (t1, . . . , td) as defining coordinates on A.

As mentioned in the introduction, the Hua system has a Poisson kernel on an
open dense subset of the Shilov boundary ofD. Specifically, there is a finite, positive
measure dp on L/S = Nb such that every bounded Hua-harmonic function F may
be expressed in the form

F (g) =

∫
L/S

f(gh) dp(h) (5.1)

where f ∈ L∞(L/S) is uniquely determined by F . We refer to f in (5.1) as the
boundary value function of F , dp as the Poisson measure and we say that F is the
Poisson integral of f . In fact, we showed in [DHP2] that L/S is a boundary for the
Laplace-Beltrami operator and that we may use the corresponding Poisson measure
as dp.

Under the identification L/S = Nb, dp = P dh where dh is Haar measure on Nb
and P ∈ L2(Nb) ∩ L1(Nb). Under the identification of Nb and L/S, for h, ho ∈ Nb
and s ∈ S

f(hosh) = f(hoshs
−1).

We may identify L2(Nb) with the representation space of πb. Formula (4.4)
shows then that (5.1) is equivalent with

F (g) = χ(g)−1/2(πb(g
−1)f, P ) = χ(g)−1/2(f, πb(g)P ). (5.2)

It follows from [Pou] Proposition 1.1, p. 92 that v ∈ C∞(πb) if and only if the
matrix elements g →< π(g)v, w > are C∞ on L for all w ∈ H(πb). Hence, from the
ellipticity of the Laplace-Beltrami operator, P ∈ C∞(πb).

Let δ ∈ C−∞(πb) be evaluation at e:

< f, δ >= f(e).

The following is a representation theoretic formulation of the statement that the
Poisson kernel is an approximate identity.

Lemma 5.3. In the weak topology on C−∞(πb)

lim
td→−∞

lim
td−1→−∞

. . . lim
t1→−∞

χ(a)−1/2πb(a)P = δ.

Proof Let f ∈ C∞(πb). From (5.2), for a ∈ A

χ(a)−1/2(f, πb(a)P ) =

∫
Nb

f(aha−1)P (h) dh.

Since the eigenvalues of ad A1 in Z +M are all non-negative

lim
t1→−∞

Ad (exp t1A1)h = e1(h)
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converges uniformly on compact subsets of Nb. Hence, for all h ∈ Nb,

lim
t1→−∞

f(aha−1)P (h) = f(âe1(h)â
−1)P (h)

where â = a(0, t2, . . . , td).

Since the restriction of πb toNb is the regular representation ofNb, it follows from
Proposition (4.2) that f is bounded. Hence, the dominated convergence theorem
shows that the above limit converges in L1(Nb). Our Lemma follows by iterating
this argument and integrating, noting that

lim
td→−∞

lim
td−1→−∞

. . . lim
t1→−∞

Ad (a)h = e.

�

In the Hermitian-symmetric tube case, all Poisson integrals over L/S are Hua-
harmonic. This, however, is the only case in which this is true. Let U be the set of
f ∈ L2(Nb) for which (5.2) defines a Hua-harmonic function. The ellipticity of the
Hua system shows that U is a closed πb-invariant subspace of L2(Nb). We refer to
U as the space of L2-boundary values for the Hua system. We define H2

HJK to be
the space of all functions F as in (5.2) where f ∈ U . We remark that

H2
ω ⊂ H2

HJK

where H2
ω denotes the holomorphic H2 space for D. In particular, it follows that U

is non-trivial.

The main result of this section is the following theorem, which generalizes the
main result of [BBDHPT].

Theorem 5.4. If D is non-tube like then

H2
HJK = H2

ω +H2
ω.

For the proof, it follows from formula (4.10) that πb
∣∣U is a direct sum of multiples

of the representations ΠβO for certain open orbits O. Let β = βO for one such orbit.
As in Section 4, we realize Πβ in Hβω. For each intertwining operator

U : Hβω → U

let δU ∈ C−∞(Πβ) be defined by

< f, δU >=< U(f), δ > .

Then, from formula (4.4), for s ∈ S,

Πβ(s)δU = χ(s)−1/2δU . (5.5)
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Note that δU determines U since

U(f)(g) =< πb(g
−1)U(f), δ >=< Πβ(g−1)f, δU > (5.6)

Let Dβ be the set of all δU where U varies over the space continuous intertwining
operators from Hβω into πb

∣∣U .

The following proposition proves that πb
∣∣U is the product of exactly two irre-

ducible representations. Theorem (5.4) follows since H2
ω and H2

ω are two closed,
invariant subspaces of πb

∣∣U .

Proposition 5.7. The set Dβ is non-zero only if β = ±E∗, in which case Dβ is
one dimensional.

For the proof, let PU = (U)∗(P ) where (U)∗ : L2(Nb)→Hω is the adjoint of U .
We note that for all f ∈ Hβω,

F : g → (f,Πβ(g)PU )χ(g)−1/2 = (U(f), πb(g)P )χ(g)−1/2 (5.8)

defines a Hua-harmonic function. Let

V = C−∞(Πβ).

For g ∈ L, let P̃ (g) ∈ V be defined by

< f, P̃ (g) >= (f,Πβ(g)PU)χ(g)−1/2.

Then for n ∈ NL and g ∈ G,

P̃ (ng) = Πβ(n)P̃ (g).

Hence, P̃ belongs to the representation space πL = ind∞(NL, L, πo) where πo =
Πβ
∣∣NL acting on V. We realize this representation in C∞(Rd,V) using (3.3).

It is easily seen that P̃ satisfies (3.7) with ρi = 0 and Gi = 0. Furthermore,
Lemma (5.3) shows that

lim
td→−∞

lim
td−1→−∞

. . . lim
t1→−∞

P̃ (t) = δU (5.9)

in the weak topology on V. In particular, P̃ ∈ C0(d) where Cr(d) is as defined above
Definition (1.28).

From Theorem (3.9), we obtain an asymptotic expansion

P̃ (t) ∼
∑

P̃α(t)e<a,α> α ∈ E (5.10)

where the P̃α are V valued polynomials on Rd.
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The key observation in the proof of Proposition (5.7) is that from (5.9), Propo-
sition (1.30), and Corollary (3.34),

P̃0 = δU . (5.11)

We assume that the notation of (3.7) is still in effect. Formulas (2.38), (3.4),
and Theorem (2.36) imply (

−A′o + 2
∑

etiZ̃i
)
P̃ = 0D +

∑
i

µ−1
i etiẼ2

i + 2
∑
i<j

µ−1
i (eti−tj Ỹij + eti+tj X̃ij)

 P̃ = 0
(5.12)

where A′o is as in formula (2.39), D is as in formula (ano) and we set X̃ = Πβ(X)
for X ∈ A(NL).

Proposition 5.13. For 1 ≤ l ≤ d

P̃λl+λd = 4(flfd)
−1Z̃l Z̃dP̃0 (l 6= d)

P̃2λd = 2f−2
d Z̃2

d P̃0.
(5.14)

Proof Note that

∆Nb = 2
∑

µ−1
i Z̃i.

We apply the first equality in (5.12) to the asymptotic expansion (5.10) and equate
terms with the same exponent. We find

(A′o+ < A′o, α >)P̃α = 2
∑

1≤i≤d
µ−1
i Z̃iP̃α−λi . (5.15)

Proposition (3.22) shows that if 0 6=< A′o, α >, then P̃α is independent of t if all of

the P̃α−λi are,

In particular, for α = λl, we find (using Corollary (3.42) and Lemma (3.32))
that

flP̃λl = 2Z̃l P̃0.

Then, using α = λl + λd with l 6= d:

(
fl

µl
+
fd

µd
)P̃λl+λd = 2µ−1

l Z̃lP̃λd + 2µ−1
d Z̃dP̃λl

= 4

(
µl
fl

+
µd
fd

)
(µdµl)

−1Z̃l Z̃dP̃0.
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Our lemma follows since(
fl
µl

+
fd
µd

)−1 (
µl
fl

+
µd
fd

)
=
µl µd
fl fd

.

Finally, using α = 2λl
2flP̃2λl = 2Z̃lP̃λl

= 4f−1
l Z̃2

l P̃0.

which proves our lemma. �

Proposition 5.16. For 1 ≤ l < d there is an element Ml ∈ (Mld)
2 ⊂ A(L) such

that

P̃λl+λd = −(ẼlẼd + M̃l)P̃0,

P̃2λd = −1

2
(Ẽ2

l )P̃0.

Proof We apply the second formula in (5.12) to the asymptotic expansion of P̃ and
equate terms with the same exponent finding

e−<a,α>D(P̃αe
<a,α>) = −

∑
µ−1
i Ẽ2

i P̃α−2λi − 2
∑

1≤i<k≤d
µ−1
i X̃ikP̃α−(λi+λk)

− 2
∑

1≤i<k≤d
µ−1
i ỸikP̃α−(λi−λk)

(5.17)
where (from formula (2.31) and Lemma (2.33))

D =
∑
i

µ−1
i (A2

i − (1 + di)Ai).

The characteristic polynomial for D is

p(α) =
∑
i

µ−1
i (α2

i − (1 + di)αi).

For α = 2λd, and i ≤ j, neither α− (λi − λj) nor α− (λi + λj) is an exponent
unless i = j = d, in which case (5.17) reduces to

2µ−1
d P̃2λd = −µ−1

d Ẽ2
dP̃0

as desired.
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Now, let α = λl + λd where l < d. For i ≤ j,

α− (λi + λj) = (λl − λi)− (λj − λd).

Lemma (3.32) shows that for this term to be an exponent we must have l ≤ i and
j = d.

Also,

α− (λi − λj) = (βl + · · ·+ βd−1 + 2λd)− (βi + · · ·+ βj−1).

Corollary (3.42), Lemma (3.32), and d = dτ show that the above expression is not
an exponent unless i = l (so α = λj + λd). Hence (5.17) reduces to

p(λl + λd)P̃λl+λd = −2µ−1
l X̃ldP̃0 − 2

∑
l<j

µ−1
l ỸljP̃λj+λd .

Since Xld ∈ (Mld)
2, this term may be ignored.

Assume by induction that we have proven the result for l+1 ≤ j ≤ d. It follows
from (5.5) and (5.11) that for l < j, Ỹ αlj P̃0 = 0. Hence, for l < j < d

Ỹ αlj P̃λj+λd = −Ỹ αlj (ẼjẼd + M̃j)P̃0

= −Πβ
(

ad Y αlj (EjEd +Mj)
)
P̃0

= −Πβ
(
Xα
ljEd + ad Y αlj (Mj)

)
P̃0.

(Note that from (2.15), [Y αlj , Ed] = 0.) Repeating the same argument using [Y αlj , X
α
lj] =

µ−1
l El, and summing over α, shows that

2µ−1
l Ỹlj P̃λj+λd = −µ−1

l Πβ(dljElEdP̃0 +
∑
α

ad (Y αlj )
2(Mj))P̃0.

Note that ( ad Y αlj )
2 maps M2

jd intoM2
ld.

A similar argument shows

2µ−1
l ỸldP̃2λd = −µ−1

l (dldẼlẼd +
∑
α

(X̃α
ld)

2)P̃0.

Summing the previous two formulas over j and using (5.17), we see that

p(λl + λd)P̃λl+λd = µ−1
l dl(ẼlẼd + M̃l)P̃0

where Ml ∈M2
ld. Our proposition follows since

p(λl + λd) = −dlµ−1
l .

�
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Next, we will decompose P̃α according to the decomposition from Proposition
(4.22). We remind the reader For any functional φ ∈ C−∞(Πβ) and a multi-index
N as in Proposition (4.22), we define a distribution φN on S by

< f, φN >=< f ⊗ zNfo, φ > .

It is easily seen that φ = 0 if and only if φN = 0 for all N .

Proposition 5.18. For all N there is a constant KN such that P̃N0 = KNχ
−1/2

∣∣S.

In particular P̃N0 is a C∞ function.

Proof For φ ∈ C∞c (T ) and s ∈ S, let

φ̃(s) =

∫
M
φ(sm)ei<m,β> dm. (5.19)

Then φ̃ ∈ C∞c (S) and

Q̃o : φ→< φ̃⊗ zNfo, P̃0 >

is a distribution on T . From Lemma (4.23), (5.5), and (5.19)

LT (s)Q̃o = χ(s)−1/2Q̃o,

RT (m)Q̃o = ei<m,β>Q̃o

where ∈ S, m ∈ M and LT and RT are, respectively, the left and right regular
representations of T . It follows from Theorem 5.2.2.1 of [War] that there is a
constant KN such that

< φ̃, P̃N0 > = KN

∫
SM

φ(sm)χ(s)−1/2e−i<m,β>

=< φ̃, χ−1/2
∣∣S >

proving our proposition. �

Lemma 5.20. ((Z̃lZ̃d)P̃0)
N ∈ C∞(S).

Proof

For X ∈ Z there are C∞ functions φα,i on S such that for all s ∈ S,

Ad (s−1)X =
∑

φα,i(s)Zα,εii + φα,i(s)Zα,εii

where the notation is as stated above (4.11).
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Let h ∈ C∞c (S). From the formulas below (4.28), for each multi-index N , there
is a finite sequence of multi-indecies Ni and functions ψi ∈ C∞c (S) such that

Πβ(X)(h⊗ zNfo)(sn) = h(s)[πβNb( Ad (s−1)X)(zNfo)](n)

=
∑
i

(hψi ⊗ zNifo)(sn).

Iterating this formula shows that a similar equality holds with ZlZd in place of X .
Applying this to P̃0 shows that ((Z̃lZ̃d)P̃0)

N is a sum of terms (P̃M0 ψM )⊗ (zNfo)
where ψM ∈ C∞(S) and the M range over a finite set of multi-indecies, proving
the lemma. �

Proposition (5.7) follows immediately from the following lemma, proving Theo-
rem (5.4).

Lemma 5.21. If β 6= ±E∗, then KN = 0 for all N . If β = ±E∗, then KN 6= 0 if
and only if N = 0.

Proof From Proposition (5.16) and Lemma (4.23),

P̃Nλl+λd = −KN (1− 1

2
δld)π

β
T (ElEd +Ml)χ

−1/2.

Furthermore, for a ∈ A,

Ad a−1(M2
ld) ⊂M2

ld ⊂ ker β.

Hence, if a = a(t), where t ∈ Rd,

πβT (El)χ
−1/2(a) = i < Ad (a−1)(El), β > χ−1/2(a) = iµlεle

−tlχ−1/2(a).

Thus,

P̃Nλl+λd(a) = KN (1− 1

2
δld)µlµdεlεde

−td−tlχ−1/2(a). (5.22)

On the otherhand, from Proposition (5.13)

P̃λl+λd = (1− 1

2
δld)4µlµd(flfd)

−1e−td−tlπβNb(Zl Zd)P̃0.

Thus, from Lemma (4.24), and formula (4.4), for all a ∈ A,

P̃Nλl+λd(a) = (1− 1

2
δld)4µlµd(flfd)

−1e−td−tl [πβNb(Z̃lZ̃d)P̃0]
N (a)

= KN (1− 1

2
δld)4µlµd(flfd)

−1e−td−tl
fl∑
j=1

fd∑
k=1

(2N(l, j) + 1)(2N(d, k) + 1)χ−1/2(a).
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Equating the above expression with (5.22) we find that if KN 6= 0

εlεd = (N(l) + 1)(N(d) + 1)

where
N(k) = f−1

α

∑
1≤j≤fα

2N(k, j).

This implies that εl and εd have the same sign and N(l) = 0 for all l. Hence, N = 0
and β = ±E∗, as desired.

Conversely, we know that the holomorphic and anti-holomorphic functions are
Hua-harmonic. These spaces must correspond to β = ±E∗. It follows that K0 6= 0
in these cases. �
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