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Introduction

Let X = G/K be a homogeneous Riemannian manifold where G is the identity
component of its isometry group. A C'°° function F on X is strongly harmonic if it
is annihilated by every element of D (X), the algebra of all G-invariant differential
operators without constant term. One of the most beautiful results in the harmonic
analysis of symmetric spaces is the Helgason Conjecture, which states that on a
Riemannian symmetric space of non-compact type, a function is strongly harmonic
if and only if it is the Poisson integral of a hyperfunction over the Furstenberg
boundary G/ P, where P, is a minimal parabolic subgroup. (See [He|, [ KKMOOT].)
One of the more remarkable aspects of this theorem is its generality; one obtains a
complete description of all solutions to the system of invariant differential operators
on X without imposing any boundary conditions or growth conditions.

If X is a Hermitian symmetric space, then one is typically interested in complex
function theory, in which case one is interested in functions whose boundary val-
ues are supported on the Shilov boundary rather than the Furstenberg boundary.
(The Shilov boundary is G/P where P is a certain maximal parabolic containing
P,.) In this case, it turns out that the algebra of G invariant differential opera-
tors is not necessarily the most appropriate one for defining harmonicity. Johnson
and Kordnyi [JK], generalizing earlier work of Hua [Hu], Koranyi-Stein [KS], and
Koréanyi-Malliavin [KM], introduced an invariant system of second order differen-
tial operators (the HJK system) defined on any Hermitian symmetric space. In
[DHP2], we noted that this system could be defined entirely in terms of the geo-
metric structure of X as

HIK (f) ==Y _ V*f(Zi, Z;)R(Zi, Z;)|T"

where V denotes covariant differentiation, R is the curvature operator, 79! is the
bundle of anti-holomorphic tangent vectors, and Z; is a local frame field for 7'1°
that is orthonormal with respect to the canonical Hermitian scalar product H on
T10. (It is easily seen that HJK does not depend on the choice of the Z;.) Thus,
HJK maps C*°(D) into sections of Hom¢ (7!, T°1). (See [DHP2] for more details.)
A C* function f is said to be Hua-harmonic if HIK (f) = 0.

In [JK] the following results were proved in the Hermitian symmetric case:

(a) All Hua-harmonic functions are harmonic.
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(b) The boundary hyperfunctions are constant on right cosets of P and hence
project to hyperfunctions on the Shilov boundary.

(¢) Every Hua-harmonic function on X is the Poisson integral of its boundary
hyperfunction over the Shilov boundary.

(d) If X is tube-type then Poisson integrals of hyperfunctions are harmonic.?

Thus, in the tube case, these results yield a complete description of all solutions
to the Hua system, while in the non-tube case, we lack only a characterization
of those hyperfunctions on the Shilov boundary whose Poisson integrals are Hua-
harmonic.

Since the Hua system is meaningful for any Kéhler manifold X, it seems natural
to ask to what extent these results are valid out side of the symmetric case. One
might, for example, consider homogeneous Kahler manifolds. There is a structure
theory for such manifolds that was proved in special cases by by Vindberg and
Gindikin [VG] and in general by Dorfmeister and Nakajima [DN] that states that
every such manifold admits a holomorphic fibration whose base is a bounded ho-
mogeneous domain in C™, and whose fiber is the product of a flat, homogeneous
Kahler manifold and a compact, simply connected, homogeneous, Kahler manifold.
It follows that one should first consider generalizations to the class of bounded
homogeneous domains in C”.

This problem was considered in [DHP2| and [PK]. In both of these works, how-
ever, extremely restrictive growth conditions were imposed on the solutions: in
[DHP2] the solutions were required to be bounded and in [PK] an H? type condi-
tion was imposed.

The technical difficulties involved in eliminating these growth assumptions at
first seem daunting. In the non-symmetric case, K can be quite small. Thus,
arguments which are based on concepts such as K-finiteness and bi-K invariance
tend not to generalize. Entirely new proofs must be discovered.

The most problematic issues, however, come from the the boundary. In general,
G may have no non-trivial boundaries in the sense of Furstenberg. Hence, it is not
at all clear how to even define the Furstenberg boundary. The Shilov boundary
is, of course, meaningful. However, in the symmetric case, the Shilov boundary is
a homogeneous space for K; hence a manifold. In the solvable case it is almost
certainly false that the Shilov boundary is a manifold. All that is known is that
there is a nilpotent subgroup N of G, of nilpotence degree at most 2, which acts
on the Shilov boundary in such a way that there is a dense, open orbit which
we call the principal open subset. The principal open subset is well understood
and easily described. Its compliment in the Shilov boundary is, to our knowledge,
completely unstudied outside of the symmetric case. This does not cause difficulties
for bounded or H? solutions since the corresponding boundary hyperfunctions are
functions and we only need to know them a.e. Understanding general unbounded
solutions seems to require being able to describe their boundary values on this
potentially singular and poorly understood set. In fact, it is not at all clear how to
define the notion of a hyperfunction (or even a distribution) on the Shilov boundary,
much less the boundary hyperfunction for a solution.

!Statement (d) is false in the general Hermitian symmetric case ([BV]).
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There are, however, two works of E. van den Ban and H. Schlichtkrull ([BS1]
and [BS2]) and a work of N. Wallach [Wa] which provide some hope of at least
understanding the solutions with distributional boundary values. To describe these
results, let 7(z) be the Riemannian distance in X from « to the base point z, = eK.
A result of Oshima and Sekiguci [OS] says that the boundary hyperfunction of a
harmonic function F'is a distribution if and only if there are positive constants A
and 7 (depending on F') such that

|F(z)| < Ae”™@) (0.1)

for all z € X. In [BS1], using ideas from [Wal, it was shown that any harmonic func-
tion satisfying (0.1) has an “asymptotic expansion” as = approaches the Furstenberg
boundary where the coefficients are distributions on this boundary. The boundary
distribution occurs as one of the coefficients in this expansion. Actually, in [BS1],
a finite set of these coefficients were singled out as boundary distributions. It was
then shown how to choose one particular boundary distribution whose Poisson in-
tegral is F', providing a new proof of the Oshima-Sekaguci theorem. (Wallach also
obtained a new proof of the same theorem using his asymptotic expansions.)

In [BS2] it was shown that F' is uniquely determined by the restrictions of its
boundary distributions to any open subset of the boundary. In this case, however,
one needs all of the boundary functions, not just the particular one mentioned
above.

Thus, in the non-symmetric case, one might hope to

(1) Prove the existence of a distribution asymptotic expansion for Hua-harmonic
functions satisfying (0.1) as x approaches the principal open subset of the
Shilov boundary.

(2) Choose a particular finite subset of the coefficients to be the boundary
distributions which uniquely determine the solution.

(3) Describe the inverse of the boundary map. (The “Poisson transformation.”)

(4) Describe the image of the boundary map.

In this work we carry out the first three steps of above program and make
progress on the fourth. Specifically, in the general case it is still possible to write
G = AN K where A is an R split algebraic torus, Ny is a unipotent aubgroup
normalized by A, K is a maximal compact subgroup. (See Section 3 for details.)
Then L = AN}, acts simply-transitively on D, allowing us to identify D with L. As
an algebraic variety,

L=Npx (RN c Ny xR?

where d is the rank of X. Under this identification, Ny, is contained in the topolog-
ical boundary of ANy. We use N as a substitute for the Furstenberg boundary.
In the semi-simple case this amounts to restricting to a dense, open, subset of the
Furstenberg boundary.

We prove that any Hua harmonic function that satisfies (0.1) has an asymptotic
expansion as a — 0 with coeflicients from the space of Schwartz distributions on
Np. We then single out a set of at most 2¢ of these coefficients which serve as
the boundary values and show that the boundary values uniquely determine the
solution. Finally, we give an inductive construction, based on our work [P1], of a
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Poisson transformation that “reconstructs” F' from its boundary values. (See the
remark following the proof of Proposition (3.23)).

Actually, all of the above statements hold, with “Schwartz distribution” replaced
by “distribution” under the weaker assumption that for all compact sets K C N,
there is a constant Ck such that

sup |F(na)| < Cge’™@ (0.2)
neK

for all a € A, except that in this case our construction of the Poisson kernel does
not work since there seems to be no way of definining the integrals we require.

We also prove a version of the Johnson-Koranyi result relating to the projection
of the boundary distribution to the Shilov boundary. The Johnson-Koranyi result
that in the semi-simple tube case, the Hua harmonic functions are Poisson integrals
of hyperfunctions over the Shilov boundary follows. (Theorem (3.41).)

Concerning the fourth step, as mentioned above, the description of the space of
boundary values for the Hua system is unknown, even for a Hermitian-symmetric
domain of non-tube type. (The Johnson-Kordnyi result shows that in the tube case,
the space of boundary values is just the space of all hyperfunctions on the Shilov
boundary.) In [BV], Berline and Vergne conjectured that this space could be char-
acterized as null space of a “tangential” Hua system, although, to our knowledge,
this conjecture has never been resolved.

However, in the symmetric case, it is possible it describe the boundary values
for the “H% i 7 functions-which are Hua harmonic functions satisfying an H? like
condition. (See Section 3 below.) In [BBDHPT], the current author, together
with Bonami, Buraczewski, Damek, Hulanicki, and Trojan, showed that for a non-
tube type Hermitian symmetric domain, the H% ;i harmonic functions are pluri-
harmonic—i.e. they are complex linear combination of the real and imaginary parts
of H? functions. Theorem (5.4) states that this same result holds in the non-
symmetric case, at least for domains that are sufficiently non-tube like (Definition
(2.21)).

The ability to generalize this result to the non-symmetric case is, we feel, a sig-
nificant accomplishment. The symmetric space proof utilized the symmetry of the
domain in many ways, but most significantly in its use of the full force of Johnson-
Koranyi theorem for tube domains. Explicitly, it required knowing that Poisson
integrals are Hua-harmonic. It is a result of [PK]| that this result is equivalent with
the symmetry of the domain. One seems to require entirely new techniques (such
as asymptotic expansions) to avoid its use in the general case.

We should also mention that our section on asymptotic expansions is quite gen-
eral. The proofs, while inspired by those in [BS| and [BS2], which were, in turn,
inspired by those in [Wa], are in actuality, quite different (and somewhat less in-
volved) since we do not have as much algebraic machinery at our disposal. It is
our expectation that this theory will have far reaching implications in many other
contexts. It has already found application in [PU]. We expect it to play a major
role in understanding the Helgeson program for other systems of equartions and
other boundaries as well.
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Remarks on notation Throughout this work, we will usually denote Lie groups
by upper case Roman letters, in which case the corresponding Lie algebra will au-
tomatically be denoted by the corresponding upper case script letter. The main
exceptions to this rule will be abelian Lie groups which will be identified with their
Lie algebras. We also use “C” to denote a generic constant which may change from
line to line.

Section 1: Asymptotic Expansions

Let V be a Fréchet space over C and let C = C*°((—o0, 0], V), given the topology
of uniform convergence on compact subsets of functions and their derivatives. For
r € R, let C? be the set of F' € C such that

{7 F(t) |t € (—o0,0]}

is bounded in V. Let || ||;n, m = 1,2,... be a family of continuous semi-norms on V
that defines its topology. We equip C¢ with the topology defined by the semi-norms

1F[lrm = sup e " F(t)]m
te(—o00,0

(1.1)

1E [k m,m = IEC (@)l

sup
—k<t<0
where k € N and
neN,=NU{0}
We let
Cr = ﬂs<rC§

given the inverse limit topology. It is easily seen that C, is a Fréchet space. The
space C, is used since, unlike C?, it is closed under multiplication by polynomials.
Let F and G belong to C.

We say that
F~. G

if F — G € C,. Note that F' ~,. G implies that F' ~, G for all s < r.

Let I C C be finite. An exponential polynomial with exponents from I is a sum

F(ty=>_ ia: e U Fy (1.2)

ael n=0

where F, € V and n, € N,. In this case, we set

Mo

Fo(t)=) t"Fan

n=0
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which is (by definition) a V valued polynomial. We also consider the case where
I C C is countably infinite, in which case (1.2) is considered as a formal sum which
we refer to it as an exponential series.

Definition 1.3: Let F € C and let F' be an exponential series as in (1.2). We
say that G ~ F if
(a) for all r € R, there is a finite subset I(r) C I such that G ~, F,. where
Fo(t)= ) e*Fa(t) (1.4)
a€l(r)

and
(b) I =U,I(r).

In this case, we say that F' is an asymptotic expansion for F.

Remark: In formula (1.4), any term corresponding to an index « with re a > r
belongs to C, and may be omitted. Thus, we may, and will, take I(r) to be contained
in the set of & € I where re a < r.

We note the following lemma, which is a simple consequence of Lemma 3.3 of
[BS].

Lemma 1.5.  If the function from (1.2) belongs to C,, then F,(t) = 0 for all
rea <r and allt € R.

Lemma 1.6.  Suppose G ~ F as in Definition (1.3), where all of the F,(t) for
a € I, are non-zero. Then I(r) = {a € I | re a < r}. In particular, the set of
such « is finite.

Proof Let r < s. Then F ~, F, and F ~, F,. Hence D, = F, — F; € C,. Then
D, is an exponential polynomial with index set

(L(r) UI(s))\ (I(r) N I(s))

Lemma (1.5) shows that this set is disjoint from re a < r, implying that it is
disjoint from I(r). Hence I(r) C I(s). It then follows that I(s) \ I(r) is disjoint
from {rea < r}. Hence {a« € I | rea < r} NI C I(r), which proves our
lemma. [

Corollary 1.7. Let F' € C. Suppose that for each r € R, there is an exponential
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polynomial S” such that F ~, S™. Then there is an exponential series F' such that
F~F.

Proof Each S" may be written

ST = esii)

a€l(r)

where I(r) is a finite subset of C such that S (t) # 0 for all « € I(r). As before, we
may assume that for all a € I(r), re @ <r. Then from the proof of Lemma (1.6),
for r < s, I(r) C I(s). Lemma (1.5) then implies that S’ (t) = S5(t) for a € I(r).

Our corollary now follows: we let I be the union of the I(r) and let
Fa(t) = 55(t)

where 7 is chosen so that a € I(r). The previous remarks show that this is inde-
pendent of the choice of . [

The following is left to the reader. The minimum exists due to Corollary (1.6).

Proposition 1.8. Suppose that F' € C has an asymptotic expansion with exponents
I. Then F € C, where

r=min{rea|acl,F, #0}

Furthermore, suppose that there is a unique o € I with re a = r and that for this
a, F, is independent of t. Then

lim e”“F(t) = F,.

t——o0

We consider a differential equation on C of the form
F'(t) = (Qo + Q) F(t) + G(¢) (1.9)
where G € C,

d
Q) = Z et Q;,
i1

1< B <P << By, (1.10)
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and the Q) are continuous linear operators on V. We also assume that Qg is finitely
triangularizable, meaning that

(a) There is a direct sum decomposition
y=>V (1.11)
i=1

where the V* are closed subspaces of V invariant under Q.
(b) For each i there is an a; € C and an integer n; such that

(Q() — OéiI)ni = O

Vi

(c) a; # aj for i # j.
For the set of exponents we use I = {a;} + I, where

I, ={> Bikj|k;j € N,}.
J
The first main result of this section is the following;:

Theorem 1.12. Let F € C, satisfy (1.9). Assume that G has an asymptotic
expansion with exponents from I' . Then F has an asymptotic expansion with
exponents from I" = ({a;} U T") + Iy.

Proof From Corollary (1.7) it suffices to prove that for all n € N, there is an
exponential polynomial S,,(¢) with exponents from I"” such that

F(t) — Sp(t) € Cripn.

We reason by induction on n. Let

P(t) = P b,

so that Q(t) = e!P(t). Note 3; — 1 > 0 for all 1.
We apply the method of Picard iteration to (1.9). Explicitly, (1.9) implies that

F(t) = etQOF(O) — /O e(t_s)QOesP(s)F(s) ds — /O e(t_s)QOG(s) ds. (1.13)

t t
We begin with the term on the far right. Let

G(t) = R (1) + G(t)u
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where u > max{r + 1, re a;}, RS € C,, and

Gt)u= Y  Galt)e™ (1.14)

is an exponential polynomial.

Let Bz = (QO — OéZI)’V On VZ

et@0 = et A(t) (1.15)

where

It follows that the integrals in the following equality converge where the superscript
indicates the i*" component in the decomposition (1.11).

/0 e(t_s)QO(Rg)i(s) ds = eo‘itAi(t)Gf) — /t eo‘i(t_s)Ai(s — t)(RS)l(s) ds (1.16)

t — 00

where o

G = / e 5% A;(s)(RS)¥(s) ds.
The second term on the right in (1.16) is easily seen to belong to C, and the G?
term will become part of S;. Note that its exponents belong to I C I”.

On the other hand, replacing G(s) in (1.13) with G (s)%e®* from (1.14) produces

a term of the form ,
S=

6aitHZ_(s)e(fai+a)s }S:O

where H; is a V valued polynomial. Both terms are exponential polynomials with
exponents from I” which become part of S.

Next we consider the second term on the right in (1.13). Its i*"* component is
0 .
- / et=9)%es A (t — 5)(P(s)F(s))' ds

t

(1.17)

nig N4 0
= ZZtkeo‘it/t slel=2)sCy S(P(s)F(s)) ds

k=0 j=0

where the () ; are continuous operators on V*.

Since s — P(s)F(s) belongs to C,, it follows that for each v < r and each m € N,
there is a constant M, ,, such that

IC, 5 (P()F(8)) |l m < My,me" (1.18)
for all s < 0. Hence, (1.17) is bounded in || - ||, by

C(|t|N + 1)(e(v+1)t + et( re ozi))
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where C' and N are positive constants. It follows that the left side of (1.17) belongs
to Cryq if re oy > 1+ 1.

On the other hand, if re a; < r+1, then we may express the right side of (1.17)

as
t

et Hy(t) + / et=9)%es Ai(t — 5)(P(s)F(s)) ds

where

H;(t) = —/ eSC Y A (t — 5)(P(s)F(s)) ds.
(Note that the integrals converge in the topology of V since we may choose v >
re a; — 1 in (1.18).) The H; term is an exponential polynomial which becomes
part of S; and the other term belongs to C,y;. It now follows that there does

indeed exist an exponential polynomial S;(t) with exponents from I” such that
F(t) — Sl(t) € CT+1.

Next suppose by induction that we have proved the existence of an exponential
polynomial S,, such that R,, = F — S,, € C,1,, for some n. We provisionally define

0 0
Spi1(t) = efQ0F(0) — / et=9)Q0e3 P(5) S, (s) ds — / =G (s), ds  (1.19)
t ¢

where u is greater than both » +n 4+ 1 and re o; for all i. Then from (inteq)
F— Sn+1 = Rn+1 where

0 0
R,41(t) = —/ et=9)Q0e3 P(5) R, (s) ds —I—/ et=9)Q0 RC (4) ds.
t

t

Now, we project onto V* as before and split the argument into two cases, depend-
ing on whether or not re a; > r 4+ n+ 1. An argument virtually identical to that
done above shows that in each case, R, 11 is the sum of an exponential polynomial,
which becomes part of S,1, and an element of C, ;. We leave the details to the
reader. [

From this point on, until we begin discussing multi-variable expansions, we as-
sume that F € C,. satisfies (1.9) where G =0 so I" = {a;} + I,.

Proposition 1.20. For alln € N, F) ¢, and

FO N e FR(t)

acl
where o
F'(t) = e — (e F,)(t).
n(t) = et () ()

Proof
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Let f),, be the space of all elements F' € C, for which F (n) e ¢, for all n € Ny,
topologized via the semi-norms

F = |[F™lsm
where m € N, n € Ny, || - ||s.m is as in (1.1), and s < 7. It is easily seen that V), is

a Fréchet space.

Now, let F' € C, satisfy (1.9). Pointwise multiplication by the @Q; and by e
define continuous mappings of C, into itself. Hence, from (1.9), F/ € C,. It then
follows by differentiation of (1.9) and induction that F (") ¢ ¢, for all n. Hence,
FeV,.

For F € V,, let M (F) be the mapping of (—oo, 0] into V, defined by

M(F)(t): s — F(t+s) (1.21)

for t € (—00,0]. It is easily seen that in fact M(F) € C.(V). Furthermore, if F'
satisfies (1.9), then

d
M(F)'(t) = QoM (F)(t) + Z QM (F)(t)
where 5
Qi = e*Q;.

It follows from Theorem (1.12) that M (F') has an asymptotic expansion as a %
valued map. It is easily seen that if F’s asymptotic expansion is as in (1.2), then

M(F)(t) ~ Y e M(F,)(t).

d ~
Since s is continuous on V, it follows that
]

M(F)) (1) ~ 3 e (e M () (1),

acl

Our result follows by letting ¢ = 0 in the above formula. [

It follows from Proposition (1.20) and Lemma (1.5), that we may formally sub-
stitute F’s asymptotic expansion (1.2) into (1.9) and equate coefficients of e** for
a € I. We find that for a € I,

F/(t) + aFa(t) = QuFa() + Y Y QiFs(t). (1.22)

i=1 Bel,B+Bi=a

We put a partial ordering on I by saying that v = a if y —a € I,.
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Definition 1.23: Let F ~ F as in (1.2). We say that F,(t) is a leading term
and o a leading exponent if o is minimal in I under = with respect to the property
that Fo(t) # 0.

From the definition of I, for all a € I, there is an ¢ such that o > «;. Since the
set of «; is finite, it follows that each a dominates a leading exponent.

Let a be a leading exponent. Then (1.22) implies that
FL(t) + aF,(t) = QoFu(t). (1.24)
Since Qg is finitely triangularizable, the solution to this differential equation is
F,(t) = e(@—aDtE (0).

Hence, F,(0) uniquely determines F,(t). Since F,(t) is a polynomial, there is an
N such that
0=FM(0) = (Qo — o)V Fu(0).

Hence, o = «; for some i and F,(0) € V. Thus all of the leading exponents come
from the a;. Tt also follows that if Qg is diagonalizable, then the F,,(¢) are constant
for all leading exponents «. In fact we have the following:

Proposition 1.25. The asymptotic expansion of F is uniquely determined by the
elements Fy,(0).

Proof According to the above discussion, the given data is sufficient to determine
the leading terms. If there is an « such that Fi,(¢) is not determined, then there is
a minimal such o. But then (1.22) shows that F,,(¢) satisfies a differential equation

of the form p
(5 +(Qo — aD)Fu(t) = G(1)

where G is known. Since « is not one of the «;, the differential operator on the left
side of this equality has no kernel in the space of V valued polynomials, showing
that F,, is uniquely determined. L[]

Definition 1.26: Let F satisfy (1.9). Then the set of terms in the asymptotic
expansion of the form F,,(0) is referred to as the set of boundary values for F and

is denoted BV(F).

It should be noted that if a; is a leading exponent, then F,,(0) is a non-zero
boundary value but not conversely—not all non-zero boundary values F,,(0) need
be leading terms. They will be leading terms if either (a) «; is minimal with respect
to the partial ordering on I or (b) a; >~ o implies Fy,,(t) = 0.



ASYMPTOTIC EXPANSIONS 13

In the next section we will need to consider asymptotic expansions in several
variables. Let
V(d) = COO((_ooa O]da V)

with the topology of uniform convergence of functions and their derivatives on
compact subsets of (—oo, 0]%. For F € V(d), we define F' € C°°((—o00,0],V(d — 1))
by

Ft1)(ta, ... tq) = F(t1,ta, ..., ta). (1.27)
We define C,(d) C V(d) inductively by

Cr(d) = Cr((—OO, 0]’Cr(d - 1))

We define multiple asymptotic expansions inductively as follows:

Definition 1.28: Let F € C.(d). We say that F' has a d-variable asymptotic
expansion if

(a) F has a C.(d — 1) valued asymptotic expansion

Moy

Flty) ~ Y ) e Goym

ar1€l; O

where Iy C C.
(b) Each Gy, n has a d — 1-variable, V valued asymptotic expansion

Goyn(t)~ > > tNe*'F,

a€l(aq) |N|<n(a)

where t € (—00,0]% ! and, for each ay € Iy, I(ay) C C*~1L.
In this case we write

P~ Y, e Fan

acl |[IN|<m(a)

= Z e F, ()

acl

(1.29)

where
I={(oa,...,q) €C?| (a2, ..., aq) € I(e1)},

m(a) = max{nq,,n(as,...,a,)}.

Let a, 8 € I. We say that o € I is minimal if re a < re (3 in the lexicographic
ordering, for all 8 € I, 8 # «. If I is the index set for an asymptotic expansion
and I € R? then I always has a minimal element, although I might not have a
minimal element in general. The following proposition follows from induction on
Proposition (1.8).
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Proposition 1.30. Let F' have an asymptotic expansion as in (1.29) and let

a = (ay,...,a,) be a minimal element of I. Suppose also that F,, is independent
of t. Then
lim lim ... lim e *'F(t)=F,
tg——o00tg_1—>—00 t1——o0

where the limit converges in V.
We also note the following, which follows by induction from Lemma (1.6).

Lemma 1.31. Letr € R. The set I(r) of a« € I with rea; <r,1<1i<d, is
finite.

Section 2: Homogeneous Domains

In this section, we discuss those structural features of Siegel domains that we use.
These results are, for the most part, well known. Our basic references are [GPV]
and [Vin], although we will at times refer the reader to some of our papers where
the results are presented in similar notation to our current needs. In particular, the
summary given pn p. 86-91 and p. 94-97 of [DHP2| covers many of the essentials.
The reader should not interpret such references as a claim of originality on our
behalf.

Any bounded, homogeneous domain in C™ (and hence, every Hermitian sym-
metric space of non-compac type) may be realized as a Siegel domain of either type
I or II. Explicitly, let M be a finite dimensional real vector space with dimension
nap and let 2 C M be an open, convex cone that does not contain straight lines.
The subgroup of Gl(M) that leave 2 invariant is denoted Gg. We say that 2 is
homogeneous if G acts transitively on Q via the usual representation of Gl(M)
on M. (We denote this representation by p.) In this case, Vindberg showed that
there is a a triangular subgroup S of G that acts simply transitively on 2. This
subgroup may be assumed to contain the dilation maps

§(t):v—tv (2.1)
for all £ > 0.

Suppose further that we are given a complex vector space Z and a Hermitian
symmetric, bi-linear mapping Bq : Z X Z — M. We shall assume that

(a) Ba(z,2) € Q for all z € Z,
(b) Ba(z,z) = 0 implies z = 0.
The Siegel domain D associated with this data is defined as
D ={(z1,22) € Z X M, : im z3 — Bq(z1,21) € Q}. (2.2)



ASYMPTOTIC EXPANSIONS 15
The domain is said to be type I or II, depending upon whether or not Z is trivial.

The terms “tube type” and “type I” are synonyms.

The Bergman-Shilov boundary B of D is defined as
B ={(z1,22) € ZXx M, | im 2z = Bq(z1,21)}
This is the principal open subset of the Shilov boundary referred to in the intro-
duction.
Suppose further that we are given a complex linear algebraic representation o of
S in Z such that
Ba(o(s)z,0(s)w) = p(s)Ba(z,w) for all z,w € Z. (2.3)

The group S then acts on D by
s(z,w) = (0(8)z, p(s)w). (2.4)
We let M act on D by translation:
z(z,w) = (z,w+z), z€ M. (2.5)
Finally, we let Z act by

20(z,w) = (z + 2o, w + 2iBq(z, 20) + 1Ba(20, 20))- (2.6)

These actions generate a completely solvable group L which acts simply transi-
tively on D. Specifically, the group N, generated by the actions (2.5) and (2.6) is
isomorphic with Z x M with the product

(21, m1) (20, mo) = (21 + 20, m1 + mo + 2 im Bg(z1, 20)). (2.7)

Then L is the semi-direct product Ny X S where the S action on N, is defined by
formula (2.4).

The above product is the Campbell-Hausdorff product on N, defined by the Lie
bracket
[(z1,m1), (20, mp)] = (0,4 im Bg(z1, 20))- (2.8)

A Siegel domain that has the structures defined above is referred to as homoge-
neous. It is a fundamental result that every bounded homogeneous domain in C™
is biholomorphic to a homogeneous Siegel domain. ([GPV]) It is important to note
that D contains a type I domain D, as a closed submanifold which is defined by
z1 = 0. The subgroup

T=MS (2.9)

acts simply transitively on D,.

We will also use a slight variant on the above construction. Suppose that in
addition to the above data we are given a real vector space X and an M valued
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symmetric real-bi-linear form Rgq satisfying conditions (a) and (b) below condition
(2.1). Let D C X. x Z x M. be the set of points (x + iy, z, w) such that

im w — Ro(z,z) — Ba(z,z2) € (. (2.10)

Such domains are bi-holomorphic with Siegel II domains. To see this, extend Rgq
to an M.-valued, Hermitian-linear, mapping RS, on Z' = X.. Let ¢ be the bi-
holomorphism of Z’ x Z x M, into itself defined by

o7, z,w) = (2, 2,2w — iRG (2, Z')).
Then, as the reader can check, ¢ transforms D onto the Siegel II domain defined
by 2, Z' x Z, and R, + Bq.

Let ¢, € Q be a fixed base point. We use b, = (0,ic,) € D as the base point for
D. The map g — g- b, identifies L and D. We also identify £ with the real tangent
space of L at b,.

Let P be the complex subalgebra of L. corresponding to T°! and let J : £ — L
be the complex structure so that P is the —i eigenspace of J. Then J satisfies the
“J-algebra” identity:

J(X,Y] - [JX,JY]) = [JX,Y] + [X, JY]. (2.11)

Also
J:Z = Z,
J:8 - M,

J: M—=S.

It follows that S and M are isomorphic as linear spaces. In fact, from the
comments following Lemma (2.1) of [DHP2],

JX = —dp(X)c, X eS,
m = dp(Jm)c, m e M, (2.12)
JX =iX XeZ
where ‘4’ is the complex multiplication of Z, ‘dp’ is the representation of S obtained

by differentiating p and ¢, is the base point in 2.

We shall require a description of an L-invariant Riemannian structure on the
domain. Koszul ([Kl], Formula 4.5) showed that the Bergman structure is defined
by a scalar product of the form

9(X,Y) = u([JX,Y]) (2.13)

where p is an explicitly described element of M* C L*. We assume only that
w € M* is such that (2.13) defines an L-invariant Kdhler structure on D.

Since g is J-invariant,

w(JX, JY]) = —u([J°X,Y]) = (X, Y])
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The sclar product g is the real part of the Hermitian scalar product on £, defined
by
guer(X,Y) = g(X,Y) +ig(X, JY).

We will also make use of the Hermitian scalar product g. on L. defined by

(2, W) = %g(Z, ) (2.14)

where ¢ is extended to L. by complex bi-linearity.

In [DHP2], we describe a particular decomposition
S=A+Ng

where A is a maximal, R-split torus in S and Ny is the unipotent radical of S. The
rank d of D is, by definition, the dimension of A. This splitting has the property
that for all A € A, the operators ad A are symmetric with respect to g on L.
In particular, we may decompose L into a direct sum of joint eigenspaces for the
adjoint action of A.

An element \ € A* is said to be a root of A if there is a non-zero element X € L
such that
[A, X]=MA)X

for all A € A. For A\ € A*, the set of X that satisfy the above equation is denoted
L and is referred to as the root space for A. Then

(L3, Ls] C Latp. (2.15)

There is an ordered basis A1, Ag, ..., A\q for A* consisting of roots for which the
root space of \; is a one dimensional subspace M;; of M. All of the other roots
are one of the following types

(a) Bij = ()\z — )\j)/2 where 7 < 7,

(b) Bij = (Ai +4))/2,
We let As be the set of roots of type (a), Axq be the set of roots of type (b) and
Az be the set of roots of type (c).

The root spaces for roots of types (a), (b), and (c) are belong, respectively, to S,
M and Z and are denoted, respectively, by S;;, M;; and Z;, which is a complex
subspace of Z. We let d;; = d;; denote the dimension of M,;, which for i < j, is also
the dimension of S;;. We let f; be the dimension (over C) of Z;. In the irreducible
symmetric case, the d;; are constant as are the f;, although these dimensions are
not constant in general. In particular, some may be 0.

We define

1<i<j<d

The operator J maps each S;; onto M;;. We note for future reference that from
(2.15)
(24, Z5] C M. (2.16)
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The ordered basis of A that is dual to the basis formed by {\;} is denoted {A;}
and the span of A; is denoted S;;. For each ¢ we let E; = —JA; € M;;. Then

[A;, Ei] = E;. (2.17)

For each 1 <1 < d, we set

pi =< Ei,p >= g(Ay, Ay) = g(Ei, E;). (2.18)

The element

plays a special role:

It follows that

ad JE|, =1,
L (2.19)
ad JE|, =1/2.

The first equality tells us that JE is the infinitesimal generator of the one parameter
subgroup t — &(t). Since
d(t)co = teo

we see that dp(JE)c, = ¢,. Hence
E=—-J(JE)=dp(JE)c, = c,.

Thus, E s the base point of Q). In particular, E € 2.
It follows from formulas (2.11) and (2.19) that for m € M and X € S,

m = [Jm, EJ,

X = J[X, B]. (220)

We say that a permutation o of the indecies {1,2,...,d} is compatible if
As ={(oi) = Ao)/2 11 <i<j < d}

This is equivalent with saying that for ¢ < j, (As(;) — As(s))/2 is not a root. If
o is compatible, then we may replace the sequence A; with A,(;) in the preceding
discussion. This has the effect of replacing M;; and S;; with Mg (;)(;) and S;;
with S, (5)0(;) respectively.

Definition 2.21:  We say that \; is singular if (A\; — X;)/2 is not a root for all
j > 1. We say that the root sequence is terminated if there is an index d, such that
the set of singular roots is just {\; | d; <1i < d}. We refer to d, as the point of
termination. We say that D is non-tube like if d. = d and \;/2 is a root for all
1 <q71<d.
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Lemma 2.22. There is a compatible permutation o such that {\;)y is termi-
nated.

Proof Our lemma follows from the simple observation that if \; is singular where
1 < d, then the permutation that interchanges ¢ and 7 + 1 is compatible.

From now on, we assume that the \; are terminated. This has the consequence
thatSij =01ifd, <i<j<d.

We define,
81* = Z Slm7
1<m
Nl* - Z Slm7
1<m
Ml* — Z Mlm,
1<m (2.23)

S>1:ZSij (1<i<j<r),
M>1:ZMij (1<i<j<r),

Then Si. is a Lie ideal in S and S~ is a complimentary Lie subalgebra. Also,
M, is ad (S) invariant. We identify M~ with the quotient M/(RE; + My.).
The image (257 in M~ of the cone 2 is a cone which is homogeneous under
S/S1« = Ss1. In fact, Q is the orbit of ¢~; in M~ ; under S~ where

d
C>1 — E Ez
2

The data BQ’(Z>1 X Z<1), Ms1 and Q1 defines a Siegel domain on which
L>]_ = (Z>]_ X M>]_) XS S>]_ C L

acts simply transitively.

The group
L1, = (21 x Miy) X5 St

also acts simply transitively on a Siegel domain. Explicitly, for X,Y € Si., there
is a scalar R(X,Y) such that

[X’ [Ya El]] = R(X, Y)El.

Similarly, for z,w € Z;,
Bo(z,w) = B3(z,w)E;
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where B¢ is a C-valued Hermitian form on Z;. Then L;, acts simply transitively
on the Siegel IT domain D1, C ((S14)e X Z1 X C) defined below formula (2.10) by
these forms. This domain is in fact equivalent with the unit ball in C@+fi+1,

We note the following (well known) description of the open S-orbits on M.
Lacking a good reference, we include the proof. Note that it follows that £ = Fq,
yielding yet another notation for the base point ¢, € 2.

Proposition 2.24. FEach open p-orbit O in M contains a unique point of the form

where ¢; = £1.

Proof We reason by induction on the dimension d of A. If d = 1, then M =R and
S = RT, so the result is clear.

Now suppose that the theorem is true for all ranks less than d.

Now, let O C M be an open S-orbit and let M € O. We claim first that there
is a unique n € Ny, such that

p(n)M = aE; + M,
where M, € M~ and a € R. To see this, write
M =aE, +W + M, (2.26)
where a € R, W € My, and M, € M+;.
Let N € Nij.. Then, ad (N) maps M~ into Mj, and My, into M1;. Thus,

_ ad (N)?
plexp N)M =aFE; + ad (N)W + TMO (2.27)

+ [W + ad (N)M,] + M,

where the term in brackets is the M, component of p(exp N)M. We need to show
that there is a unique N € N; that makes this term zero. This will be true if
ad (M,)| N1« has rank k where k = dim My, = dim N7,

To show this is, note that from the following identity, the set X of all X €
M1 such that rank ( ad (X)|Ni.) = k, is Ss1-invariant and is non-empty since it
contains Fj.

ad (p(s)X) = p(s) ad (X)p(s™1).
Hence, X is a Zarski-dense, open subset of M~ 1 which must, therfore, intersect the
image of O in M1, which is just the S<; orbit of M,. Our claim follows.

Thus, we may assume that W in formula (2.26) is zero. From the inductive
hypothesis, there is a unique s; € S~ such that
d

p(Sl)MO = Z GiEi

2
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where ¢; = £1. Thus, we may assume that M, has this form.

Finally, we note that in (2.26), a # 0 since otherwise, [A;, M,] = 0, which
implies that the dimension of the S-orbit of M is less than that of M. This allows
us to transform M, into a point of the form stipulated in the proposition using a

unique element of the one-parameter subgroup generated by A;. Our proposition
follows. [

Lemma 2.28. Let O be an open p orbit in M and let E» € O be as in Proposition
(2.24). Let dm denote Lebesgue measure on M and let ds be a fivred Haar measure
on S. Then there is a constant Co such that

/ f(m) dm = Co / xo(8) 1 (p(3) Eo) ds
(@) S

for all integrable functions f on O.

Proof Let A(f) be the value of the quantity on the left of the above equality. Then,
for all s, € S,

A(f 0 p(s0)) = xp(s5 HJA(S).

The quantity on the right side of the above equality satisfies the same invariance
property. It follows from the uniqueness of Haar measure that the left and right
sides are equal up to a multiplicative constant that depends only on the orbit in
question. We normalize ds so that this constant is 1 for Q. [

Remark: It can be shown that Cp is independent of O. We will not, however,
need this fact.

Our main application of the above proposition will be to orbits of p’s contragredi-
ant representation, p* in M*. The root functionals of A on M* are the negatives of
those on A. Hence the corresponding ordered basis for A* is —A\g, —Ag_1,..., —A1
and the corresponding ordered basis for A is —Ag4, —Ag_1, -+ — A;1.

We define elements E; € M* by
< FE;, E]* >= (523/111
We use the element

E*:ZE;
J

as the base point for *. (It is known that this element belongs to 2*.) Given
an open p* orbit O, the element corresponding to Ex in Proposition (2.24) will be
denoted E¢,.
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If £, is any vector subspace of L, we set
Pr, =span c{X +iJX | X € L,}

Then P splits as
P =PrdP:=.

Our first use of these constructs will be to prove the following:

Proposition 2.29. The submanifold D, is totally geodesic in D.

Proof Let X and Y be vector fields on D that are tangent to D, on D,. To show
that D, is totally geodesic, it suffices to show that VxY is also tangent to D,. By

homogeneity, it suffices to prove this at the base point b, for left-invariant vector
fields on L.

Let
Z=(X—-1JX)/2and W = (Y —iJY)/2.

Then Z and W belong to Q where
0=7

Then L
VxY =V, Zz(W+ W)

_ _ (2.30)
=VzW + V7W + VW + VfW

It suffices to show that each of these terms is in 7.

In [DHP2], we computed a formula for the connection on left-invariant vector
fields on D. To state this formula, let Q7 and Q= to be, respectively, the conjugates
of Py and Pz. Let mg be the projection to Q along P. For each Z € Q, we define

an operator M (Z): Q — Q by

M(Z)(W) = mq([Z, W]).
We also define M*(Z): Q — Q by

9Ge(M*(Z)W1, W) = go(Wy, M(Z)W5).

where W7 and W5 range over Q. These operators extend uniquely to operators
(still denoted M and M*) which map L. into itself and satisfy

M(Z)W = M(Z)W

M (2)W = M*(Z)W.

The significance of M and M* is that they describe the connection. Specifically,
on p. 85, loc. cit., we showed that for Z and W in Q,

V7W = M(Z)W,

V(W) =-M*"(Z)W.
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From formula (2.30), and the observation that the connection is real, the state-
ment that D, is totally geodesic will follow if we can show that for Z € Qr, M(Z)
and M*(Z) both map Q7 into Q7. The first statement follows from the fact
that 7. is a subalgebra and the second follows from the following easily verified
observations, where the orthogonal compliment is with respect to g. in O.

Q'Jf = QZ>
[Q7,Qz] C Z.

O

Next we compute the Laplace-Beltrami operator Ap for D. We choose a g-
orthonormal basis X for each M;; and let Y = JXJ be the corresponding
orthogonal basis for S;;, where 1 < a < d;; = dim(M;;). We assume that this

basis is chosen so that X} = pu, 1/2E Hence Y3 = ,uz_l/2Az.
Similarly, we choose a C-basis X§* for Z where 1 < a < f; = dimc(Z;) that is

orthonormal with respect to gper and let Y* = J X7 so that the X7, together with
the Y;* form a real orthonormal basis for Z.

From [O], p. 86, ApF is the contraction of V2F. Hence

ADf: - Z v2f(Xzo;7Xa)+v2f(Y;(;7Ya)

a,i<j

—ZV FXP, X)) + V(YY) (2.31)

= [Ao— DX+ =D (X + (VRS

a,i<j a,t

where
Z Vxe X3+ Vya Y
a,i<j
+)  Vxa X{ 4+ Vye Y

a,t

Lemma 2.32. The component of Ap which is tangent to A is

D= Z;fl (A2 — (1 +d; + fi)A) (2.33)

where dz = Zj>i dij

Proof 1t is clear from (2.31) that the second order term of A is as stated. To
compute the first order term, we note that since A is formally self adjoint with
respect to the Riemannian volume form, the operator in formula (2.31) must be

formally self adjoint with respect to left invariant Haar measure on L. Let xr be
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the modular function for L. Then the formal adjoint of a left-invariant vector field
X is

X*=—-X —dxr(X).
It follows from formula (2.31) that

Ap = A%
= Ap — 24,
=2 ) dxn(XH)XT +dxo (VY5 — 2> dxn (X)X + dx (Y)Y,
a,i<j o,

Note that there is no constant term since Ap annihilates constants. Thus, since
dxr, is trivial on the nilradical and Y;; = p; el 2Az, the above equality simplifies to

Ap =Ap =24, —2)  pi tdxr(4:)A;.

Our lemma follows since

—dXL(AZ) = Tr ad Az
A Aj +)\
ZZdjk +Zd3k k +22f3 2 Ay)
i<k i<k

=1+ dphj(A) + fi=1+d; + fi.

i<k

Lemma 2.34. Let Ep = JE —iE € P. Then

Z
M(Ep)Z = z
2

Proof Let Z € Q7. Then Z = X —1JX where X € S. Hence

[Ep,Z) = [JE — iE, X — iJX]
— [JE —iE, X +iJX] - 2[JE — iE, JX]
— —2i[JE,JX] mod P
=-2JX mod P
= (X —iJX)— (X +iJX) mod?P
=X —iJX mod P.

Thus, M (Ep) is the identity on Q7.
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Since M centralizes Z, for Z € Qz,
M(Ep)Z = [Ep, Z] = [JE, Z).

Our lemma follows from formula (2.19). O

Corollary 2.35.

— 27 (Z € 9Q7)

Ep,Ep)Z = .
R( P> 'P) _7 (ZEQH)

Proof This follows immediately from the following formula which is a special case of
Theorem (1.9), p. 86 of [DHP2]. (Note that from the previous lemma, M*(Ep) =
M(Ep).)

R(Ep,Ep) = —M"(Ep)M(Ep)+M(Ep)M"(Ep)~M"(M(Ep)Ep)—M(M(Ep)Ep).

The following result is the main step in the characterization of 7y -

Theorem 2.36. The Laplace-Beltrami operator for D, is a linear combination of
Hua operators on D.

Proof Let A, be the differential operator on L defined by

Aof = —9.(HIK (f)Ep, Ep))

where Ep is as above. The identity
9(R(ZW)X,Y) = g.(R(X,Y)Z, W)

shows that B

ANof ==Y CyV*f(Zi, Z;)
where o

Cij = 9.(R(Ep, Ep)Z;, Z;)
and where Z; is an g.-orthonormal basis of P.

If we choose this basis so that {Z1,...,Z,} C Q7 and {Z,,1...Z4} C Qz, we
see that

n d
Nof == 2V f(Z,Z:) = > V(2 Z:)
1 n+1
= Ap,f+Apf.
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(Note that from Proposition (2.29) the D, connection is obtained by restriction
from the D connection.) Hence

Ap, = A, — Ap.

This proves the lemma since, from Proposition (1.4) of [DHP2], Ap is a Hua oper-
ator, while A, is, by definition, a Hua-operator. [

For later purposes, we will require an explicit description of Ap, — Ap. From
formulas (2.31) and (2.33) and the analogous formulas for Ap_, we see that

Ap, — Ap =Ag — A (2.37)
where
A=) (X7 + () (2.38)
and f-
Al = Z M—ZAZ-. (2.39)

Section 3: Hua Boundary Values

We will apply the results from Section 1 to the eigenvalue problem for the “strongly
diagonal Hua operators” as defined in [DHP2] (Theorems (2.18) and (3.6).) It fol-
lows from (2.10) and (2.16) of [DHP2] that X;; and Y;; in [DHP2] equal what we
have called E; and A; respectively, while ¢; = (A;, A;) = p;. Then X5 and Y in
[DHP?2] equal our 11, / 2Xf‘j and u;/ QY;; respectively. The X and Y from [DHP2]
correspond to our elements of the same name.

Thus, in our current notation, in the tube case the strongly diagonal Hua oper-
ators are

di, +2 d;

7

1<k
where dj, = Z,Kj di; and
Ay =2 (A7 + BR)+
S (Xg2+ Y (V)P + (X)) (3.1)
i<k,a k‘<_7,0¢

In the general Siegel II case, the diagonal Hua operator are defined by

HIKy = HIKT — j:—’;Ak (X + (V)2 (3.2)
k

«
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where HJKZL is as in (3.1). We consider the above equalities as defining elements
of A(L) which then act as left invariant differential operators on C*°(L).

Actually, we will need to consider these operators acting on more general spaces
which are most easily described in terms of (right) induced representations. Specif-
ically, suppose that G is a Lie group and G, a closed subgroup. Let m, be a
differentiable representation of G, in a Fréchet space V. Let C*°(G,m,) be the
subspace of C*°(G, V) consisting of those functions F' such that

F(g09) = m0(90)F (9)

for all g € G and g, € G,. We give C*(G, V) the topology of uniform convergence
of functions and their derivatives on compact subsets of G and give C*° (G, 7,) the
subspace topology.

We define the C*°, right-induced, representation 7 = ind*°m, = ind*(G,, G, 7,)
of G acting on C*>°(G,w,) by

ma(91)F(g9) = F(gg1)-

We make use of several simple observations which are well known and easily
checked. First, suppose that G, is normal in G and G is a closed subgroup such
that G,G1 = G. Then restriction defines a Fréchet space isomorphisim

C*(G,m,) — C*(Gy, WO}GO NGy) (3.3)
which intertwines the G; actions. Furthermore

Tc(92)F(g) = mo(9929" ") F(9)

for all go € G5 and g € G. If X € G,, then
1a(X)F(g) = mo( Ad (9)X)F(g). (3.4)

(We typically use the same symbole to represent the representation of the Lie
algebra obtained by differentiating a representation of the corresponding Lie group.)

Now, suppose that 7, is a differentiable representation of Nz on V. We identify
A with R? via the mapping t — a(t) where fot t = (¢1,...,tq),

a(t) = exp(z t;A;).

The isomorphism (3.3) then identifies C°°(L,n,) with C>°(R%,V). We say that
F € C>(L,7,) = C*(R%,V) is diagonally Hua-harmonic if F is annihilated by the
image of the strongly-diagonal Hua system under 7.

Cases of particular interest are:

(a) m, is the right regular representation of Ny in V = C°°(Np). Then 7y, is
the right regular representation of L in C*°(L).

(b) m, is the right regular representation of Ny, in the space of distributions
V= D(NL) on NL.

(c) 7, is the right regular representation of Ny, in the space of Schwartz distri-
butions V = §'(Np) on Np.
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The spaces V in (b) and (c) are particularly important. Specifically, for F' €
C*(L), let F': L — D(Ny) be defined by

<¢,F(9) >= | ¢(n)F(ng)dg

Np

where ¢ € C2°(Ny). Then F € C*(L, ,) where T, is the right regular representa-
tion of Ny, in D(Np). Furthermore, F' is diagonally Hua-harmonic if and only if F
is. From the example on .p 282 of [War], there are positive costants C' and 7’ such
that

") < C|| Ad ()"

where || - || denotes the operator norm with respect to any conveniently chosen norm
on L. It follows that if F' satisfies (0.1), then

F|A € C/(d)(S'(N1))
where C,.(d) is as defined below formula (1.27). Similarly, if F' satisfies (0.2), then

F|A € C(d)(D(NL))

Let
12

Then, according to (3.4), as an operator on C°(R%,V)

H; = D; + tin,(E?) + etimy(2;)
+ YT m (Vi) + et T m(Xiy)
g>i (3.5)
i
Z e mo (Vi) + €' i mo (i)

1<j<’L

where
9? o djipi 0
25 Ot

Di=—5 —vis-
a2~ ot

Vij = % > ()

Y

K
Xij = D) Z(X;F
v

Z =N+ (v

1<j<i

and
A+ fi +2

Vi = 5
(We define X;; = V;; = 0if (A, — Aj)/2 ¢ As. Similarly, we set Z; = 0 if the space
Ai/2 ¢ Az.)

(3.6)
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Fori=1,...,dlet p; > 0 and G’ € C,.(d) be given. We are interested in studying
the system _

for F' € C,(d).

Let notation be as in (2.23). From the comments following (2.23), L~ may be
identified with a Siegel domain. Let HJK +; be the corresponding Hua system for
L>1 and

12
Hio = Elﬂg(HJK >1)i71
where i > 2 and we embed A(L~1) into (L) in the obvious manner. Formulas
(3.1) and (3.2) imply

0

H, =H? —§;—
! oty

+ etl*tiwo(yu) -+ €t1+ti7T0(X1i). (38)
Our main result is:

Theorem 3.9. Let F € C,.(d) satisfy (3.7) where the G* have a V valued asymptotic
ezpansion over (—oo,0]%. Then F has an asymptotic expansion over (—oo,0]%.

Proof Let Ay € A be the subgroup defined by t; = 0 and let A; be defined by
t; =0forall 7> 1. Let L1 = AgN, and define

T = indoo(NL,Ll,wo)
realized in W = C*®°(R?71, V). Then
7, = ind*°(Ly, L, m) (3.10)

which we realize in C*°(A;, W) = C*°(R, W) using the correspondence (3.3). Thus,
F and G* correspond to the elements F' and G' in C*° (R, W) defined as in formula
(1.27). Actually, F and G are valued in Cs(d — 1) for some s. Let

Coo(d — 1) = U o Cop(d — 1)

given the direct limit topology. It is clear from formula (3.4) that for all X € £,
71(X) acts continuously on Cs, (d—1). From Definition (1.28), G! has an asymptotic
expansion as an Co,(d — 1) valued map.

Equation (3.7), with ¢ = 1, is equivalent with the Co(d — 1) valued ordinary
differential equation DF = G where

& d )
— 15—+ et P+ e* Py —py, (3.11)

D=—
dt? dty
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and
P =m(Z+ Z Vij + Xij),

1<j<dy
P2 = 7'('1(E12)

Lemma 3.12. F' € Cy((—00,0],Co0(d — 1)) for some s.

Proof Let
H(t) = e Mt F'(¢).
Then 3 }
H'(t) = e MH(F"(t) = 1 F' (1))
= e MIGHt) —e ! (etPl +e*p, — pl) F.
Hence

t
H(t) = H(0) — / 115G (s) ds
0
t
— / (6(1771)5P1 +el2m)sp, ple*“’ls) F(s) ds.
0

Let p be any continuous semi-norm on Co(d — 1). Applying the triangle inequality
for p to the preceding inequality, and using the continuity of the P; on Coo(d — 1)
together with F € C,.((—00, 0], Coo(d — 1)), we see that H € C,((—00,0],Co0(d — 1))
for some s. [

The equation DE = G is equivalent with the Coo(d — 1) X Coo (d — 1) valued first
order system
dy

- =MoY + MY 4+ 2 MyY + Z (3.13)
1
where o
F
Y: F,:|,
M, — 0 1}7
LP1 M
[0 0
Ml__—Pl 0:|7
[0 0
M2—_—P2 0:|7
[0
Z: élj|

Also Z has an expansion since G does.
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Theorem (1.12), along with Lemma (3.12), implies that ¥ has an asymptotic
expansion. Projection onto the first component shows that F' has an asymptotic
expansion. Let

F(ty) ~ > e Fo(ty),

i oeh - (3.14)
Gi(tr) ~ Y e GL(tr).
acly
For:>1
0
H, =6+ +e"Q; + HY (3.15)
oty
where (51 = ,uzdh/(2,u1) and
Qi = m1(V1i) + 71 (X1).
Applying H; term-by-term to (3.14) shows that for each a € I,
d o I n ~1
(—(51£ - (51'0[ + Hz - pi)Fa = —QiFa,1 + Ga' (316)
1
Write
Fa(tl) — Zﬁan ?7
0
é(lx(tl) = Z étl)z,n ?
0
Then
(HZO — 52'05 — pi)ﬁa,n = ’I”L(Siﬁaerl — Qiﬁafl,n + é(ll,n' (317)
In particular,
(Hzo - 62'05 — pi)Fa,O = —QiFa,LQ —+ G(ll’o. (318)

We will show that each of the ﬁ’a,k has an asymptotic expansion. If o is any
exponent, then there is an n € N, such that a, = a — n is an exponent, but
a, — k is not for any k € N,. In particular, 13’%_170 = 0. Hence, from (3.18),
FaD,O satisfies the Hua system on L~ relative to the eigenvalues ¢;a, + p;. Since

Fo,0 € Cx(d —1), it belongs to Cs(d — 1) for some s. Hence we may assume by
induction that Fao,() has an asymptotic expansion over (—oo,0]¢~! with exponents
from some set I(a,) C C47L. If §; # 0 for some i, we may solve formula (3.17) for
ﬁ’amnﬂ, concluding, by induction, that ﬁ’amk has an asymptotic expansion. If all
of the §; = 0, then the existence of an asymptotic expansion for Fao, . follows as in

the £ = 0 case. Hence, F},, also has such an expansion.

It now follows from formula (3.18) and induction on k, that for all k € N, Fao+k
has an asymptotic expansion, proving our theorem. []
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Our next goal is to define the boundary values of a solution. For the remainder
of this section we assume that F satisfies the hypotheses of Theorem (3.9) where
all of the G* = 0.

Let £ C A* be the set of exponents for F' so that
F(t)= ) Fo(t)e<*> acé (3.19)

where the F,, are non-zero, V valued polynomial functions on A = R%.

Given a constant coefficient differential operator D on C*°(A), we define a poly-
nomial (the characteristic polynomial) on A* by

D(6<t,a>) =pp (a)6<t,a>.

Let p; = pp,. Then for

o = Z Oli)\z',

AL
pi(a) =a? —viai—pi— Y, ZHa;. (3.20)
1<j<i H

Let
Eo={al|pi(a)=0,i=1,...,d}.

Notice that p; depends only on «;, j < @. It follows that we may compute
the elements of &y inductively. Specifically, we compute the ;1 by solving the
equation

Piy1(Qir1dip1 + Zai)‘i) =0
1

where the terms in the summation range over the (known) roots of p1,...,p;. In
particular, £, has at most 2¢ elements.

Let P(R%,V) be the space of V valued polynomials on R9.

Definition 3.21: The boundary value map for F is the function BV : &, —
P(R?,V) defined by BV (F)(a) = F.

Remark: The above definition is not entirely consistent with Definition (1.26)
where the boundary map is valued in V rather than P(R%,V). Note, however, that
when we convert an n'” order equation to a first order system, our boundary map
will in fact be valued in V". Specifically, if F' solves an n!® order equation, then

its a*” boundary value is the element of V" whose k*" component is i—’;(eo‘tFa)(()).
Thus, the real difference between (1.26) and (3.21) the number of terms of F,(t) uti-
lized. Of course, if F,,(t) has degree 0, which is the generic case, there is essentially

no difference.

Our goal is to prove that F' is uniquely determined by BV (F'). We first note the
following lemma.
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Lemma 3.22. Suppose that D is a constant coefficient differential operator on
C>°(R%) which does not annihilate constants. Then D is injective on the space of
polynomial functions on R?.

Proof This is a simple consequence of the observation that for any homogeneous
polynomial P of degree d

D(P) = D(1)P + terms of lower degree.

We leave the details to the reader. O

Let
A =span 27(As UApM UAZ),

AT = span QNO(AS UApm U Ag)
where A. is as described below (2.15).

The following proposition proves that F' is uniquely determined by its boundary
values.

Proposition 3.23. £ C &, + A'. Also F =0 if and only if BV(F) = 0.

Proof Tt follows from Proposition (1.20) and the proof of Theorem (3.9) that (3.19)
may be differentiated term-by-term. Applying the Hua system to (3.19) yields the
equality

D?Fa = _WO(EE)FO{—2)\,; - Wo(Zi)Fa—)\i
- Zﬂ'o(yij)Faf(Aif)\j) + To(Xij) Fa(n+2)

J>i (3.24)
g
1<j<i Y

where
D?F — 6*<t,a>Di(6<t,a>F).

Note that (3.24) expresses D{*F,, as a linear combination of terms F,_g with
B € AT. Lemma (1.31) shows that there is a 3 € AT with the property that
o =a—pFe€butd —~¢¢& for any v € AT. Hence, from (3.24),

DY Fo =0

for all 7. It follows from Lemma (3.22) that if o/ ¢ &,, D" is injective on the space
of polynomials contradicting o/ € £; hence o € &,, proving £ C &, + A™T.
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The preceding argument shows that if £ is non-empty, then £ N &, is also non-
empty. Hence, if F,, =0 for all a € &,, then F, = 0 for all . We must show that
then F' = 0.

Rank 1 Case
For w e V* and g € L, let

F,(9) =< F(g9),w > . (3.25)

Then F, is a C-valued Hua-harmonic function. It suffices to show that F, = 0 for
all w € V*. Thus it suffices to consider scalar valued solutions.

Let G : N, x RT™ — C be defined by

F(nexp((logt)Ay)) t>0

G(n,t)zo t <0

Then G vanishes to infinite order at 0, showing that G is C"*° on Ny, x R. We apply
Theorem 2 of [BG] with

P:Hl_p17

m =k =2, p=0. Comparison with equation 1 in [BG| shows that the hypotheses
of [BG]| are met. It follows, then, that G is zero on a neighborhood of e in N, x R.
Since P is analytic-hypoelliptic, it follows that F' is zero, proving our result in the
rank one case.

Rank d Case

We assume by induction that the result is known for all lower ranks. We repeat
the discussion leading up to (3.14). Let o, be a leading exponent for . Then, as
before, FaD,O satisfies the Hua system on L~ relative to the eigenvalues d;a, + p;.
The set of roots of the correspondinng characteristic polynomials are

E ={(ag,...,aq) € C | (a0, 2,...,0q) € E}.
and the boundary value map is
BV (Fao, )(052, ey Otd)(tg, ey td) = Fa(O, t2, ey td) (326)

where a = (@, a2, ..., Qq).

Then, BV (F') = 0 implies BV'(F,, o) = 0; hence, from the inductive hypothesis,
Fa o = 0. If any one of the d; # 0, we can iterate formula (3.17) to show that

E,, = 0. If all of the §; = 0, then (3.16) shows that F, (t;) satisfies the Hua system
on L>1 for all t; € R. Also

BV'(Fy, (t1))(a, ... aq)(ta, ..., ta) = e Fy(ty, ta, ..., tq) (3.27)

o

which implies once again that F,, = 0.
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Hence, there are no leading terms in the (one variable) asymptotic expansion
of F, showing that F' is asymptotic to 0. To see that F itself is zero, notice that
H, € A(L414). From (3.3) and (3.10)

WL}LH = ind®®(Ny., L1*,7T1}N1*)~

Our argument is finished by repeating the d = 1 argument using P = H; — p; and
Y = H(ﬂ'l). J

Remark: The proof of Proposition (3.23) allows us, in principal, to construct a
mapping (the Poisson transformation) for which F = P(BV(F')). Specifically, we
assume that the Poisson transformation is known for all ranks less than d. This
allows us to construct £, o using (3.26). If at least one §; # 0, we then use (3.17)
to construct F, . If all of the §; = 0, then we use (3.27) to construct F,, . Thus,
we need only know the Poisson transformation for the single equation

(Hl - ,01)F =0.

Notice that H; € (L1.). Reasoning as in the proof of Proposition (3.23), it
suffices to consider H; acting on C*°(L1,). As noted below formula (2.23), L1, acts
simply transitively on the unit ball B in C**/1*!, Formula (huaeigen) shows that

2
= 8K

2
where HJK ; is the first diagonal Hua operator for the unit ball. In [P1], we defined
an explicit integral transformation (the N-transformation) which transforms this
operator into the image of the Casmir operator of SI(2,R) acting in the repre-
sentation space of a certain unitary representation of the universal covering group
SI(2,R). (See formula 24, loc. cit..) We also computed a general formula for
the Poisson kernel for this operator. Our formula assumed that one avoids certain
“singular” eigenvalues, but these assumptions are unnecessary since the Casmir
operator on S1(2,R) is well understood.

From this point on we make the additional assumption that all of the p; = 0.

In this case 0 € &,. The element Fy is the boundary value studied in [DHP].
The following theorem generalizes one of the main results of [DHP2] to the case of
unbounded solutions.

Theorem 3.28. Forall1 <i<j <d,

Wo(yij)Fo = 0

In particular, if 7,(Ng)Fo is a bounded subset of V then mw,(n)Fy = Fy for all
n € Ng.



36 ASYMPTOTIC EXPANSIONS

The second statement follows from the first: we note first that by an argument
similar to that done in the proof of Proposition (3.23), we may assume that V =
C*°(Ng). Then [DH] implies that all bounded solutions to

> ViF =0
i<j
are constant on left cosets of Ng, as desired.

For the proof of the first statement, we will do a detailed analysis of F’s asymp-
totic expansion. We prove somewhat more than required due to the needs of the
next section. Let ,

ﬁiz)\i—)\iJrl Z<d,

Ba = Ad.

Every element of AT is a linear combination, with positive coefficients, of the basis
defined by the 3;. Specifically

(3.29)

Ai = Aj =0+ Bia+ -+ B, (3.30)
Ai + A =0+ Bip1 + -+ Bj—1 + 26+ + 204 '

Let
A =&,Nspan g{\; | d; <i<d}

where 7 is as in Definition (2.21). For d, < i < d, p; depends only on the ‘"

variable and those with index less than d.. Thus, if a € A,
0 =pi(e) = af — oy = ai(a; — 7).

Hence,
A={) aiXi| e €{0,7},dr <i<d}. (3.31)

Lemma 3.32. Let = uv101 + -+ vgBq belong to € where the v; € C are such
that v; —v; ¢ —N,, 1 <i<d,. Then 3 € A+ A™T.

Proof From Proposition (3.23), 8 — v € &, for some v € At. We replace 3 with
B — ~v, which still satisifies our hypotheses. It suffices to show that v; = 0 for
1 <1i < d,. If not, let v; be the first non-zero coefficient. Since p; depends only on
the first ¢ variables

0=p:i(8) =v? —viyi = vi(vi — 7). (3.33)

Hence, v; = ~;, which contradicts v; — v; ¢ —N,, proving our lemma. O
A similar argument proves the following.

Corollary 3.34. If Fy # 0, then 0 is the minimal element of £ in the sense defined
above (1.30). Furthermore, Fy is independent of t.
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Proof Let
B=v1f1+ -+ vaba

belong to £. As in the proof of Lemma (3.32) we may assume that g € &,. Let k be
the first index such that vy # 0. As in the proof of smaller, vy = v > 0, proving
minimality.

The independence of ¢ follows from induction as in the proof of (3.9) together
with the comments immediately preceding Proposition (1.25). O

Theorem (3.28) follows immediately from the following result.

Proposition 3.35. Leti < j <l and o = mifF3; + - -+ + nqgBq where n; € N, and
nj <1 for j <d,. Then

’/To(yij)Fa =0= F)\i*)\j“ra'
If a = 0, the above holds for all 1 <1 < j <d.

Proof Let
€ = )\z — )\j + .

From formula (3.6), 7; > 1 for 1 < i < d,. Hence the assumptions of Lemma (3.32)
apply to € — v for any v € AT,
Case 1: d, <1

Then (A; — Aj)/2 is not a root. Hence );; = 0 and the first equality follows.
Since € ¢ At + A, Lemma (3.32) shows that F. = 0 as well, proving our theorem
in this case.

Case 2: 1 <d;y j=1+1

Then
e=0;+«

and the expansion of € in the basis (3.29) contains no ;1 component. It follows

from Lemma (3.32) and (3.30) that for i < m, e — (\; £ A\,,) ¢ € unless m =i+ 1

and + = — while for m < i, e — (A, £\;) ¢ E. It is clear also that e — m\; ¢ € for

m > 0. Hence (3.24), with « replaced by €, reduces to a single term implying
D;Fe = —Wo(yij)Fa.

Similarly, (3.24) reduces to a single term with ¢ replaced by j =i + 1 implying

€ Hj
Der = —jﬁo(yij)Fa.
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Hence _
DsF. = B per,
K
which is equivalent with
(D; — D)) (e<t>F.) = 0. (3.36)

K

From Lemma (3.22), for F, to be non-zero, e must be a root of the characteristic
polynomial. Hence

pj(e) = %pi(e)- (3.37)

From formula (3.20) and j =i+ 1

pi(Ai = Aj +a) =1—7,

dijlj
pi(Ai—Aj+a)=1+7; - #
Substitution into (3.37) shows that if F, # 0 then
_ d;j _
(L= + 50 =y (L), (3.38)

However, from (3.6) the term on the left is non-positive and that on the right is
positive. This proves our proposition in this case.

General Case:

Now suppose by induction that
To(Vim)Fa = 0= Fx—x, +a
for all [ and m such that 0 < m — 1 < 7 —¢. Then
e—(Ni— X)) =X —\j +a

which, for ¢ < k < j is not an exponent due to the inductive hypothesis. For j < k,
this term is not an exponent due to Lemma (3.32). Lemma (3.32) also shows that
none of € — \;, e —2)\; and € — (\; + A;) are exponents. Thus, (3.24) implies

DOF. = —Y;; Fy. (3.39)

Now we apply (3.24) with « replaced by € and i replaced by j. Then for m < j
e—()\m—)\j):)\i—)\m—l—a

which is not an exponent for m # i due to Lemma (3.32) (m < i) and the inductive
hypothesis (i < m).

For j <m
e—()\j—)\m):)\i—ZAj—i—)\m—l—a
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which is not an exponent due to Lemma (3.32). Lemma (3.32) also shows that none
of e — \j, e —2); and € — (\j + \,,) are exponents.
Thus »
DSF, = —#—J_yijFa. (3.40)

Our result follows just as in the j =7+ 1 case. U
We can now recover the Johnson-Koranyi result:

Theorem 3.41. Suppose that D = G/K is a symmetric, tube domain. Then every
Hua-harmonic function F on G/K is the Poisson integral of a hyperfunction over
the Shilov boundary.

Proof Our proof is based on the argument beginning at the top of p. 4 of [BV].
Specifically, we write F' as a limit of left K-finite functions F} on G/K. Since the
Hua system is invariant, each of the F} is Hua-harmonic. The F}, are Poisson inte-
grals of K-finite functions fj over the Furstenberg boundary where the f; converge
to a hyperfunction f whose Poisson integral is F'. Since the fj, are continuous on
K, they are bounded. It follows from (3.34) and (1.30) that fr = (Fk)o. Then
Theorem (3.28) shows that 7,(Ng)fr = fr. The same must therefore be true of f,
showing that f projects to the Shilov boundary, as desired. [

Remark: The same argument shows that the results of [DHP2] imply the
Johnson-Koranyi result.

Corollary 3.42. Let

B =i, + Bi + -+ Biyy ¥ nip1Xiy,, + -+ naAa

where 1 <4y <ig < -+ <ty =d and d; < ip11. Then f ¢ & unlessi; =i1+j—1
forall1 < j < k+1, in which case

ﬁ = >\11 + (nk+1 - 1)A’Lk+1 + nk+2)\zk+2 + ttt + ,n/d)\d'

Proof Let j < k+ 1 be maximal with respect toi; =11+l —1forall1 <[ <. If
7 < k, then

B=MXi, = Xiyrj + (Bijor + Bij + -+ Biyy + g1 Xiy,, + -+ ngAa)

where 4,11 > i1 + j. Proposition (3.35), with « equal to the term in parentheses,
proves that Fi3g = 0. Hence, j = k£ + 1, proving our corollary. [
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Section 4: The Boundary Representation

In this section we collect a number of representation theoretic facts which we
need. Our basic reference is [War].

In Section 3 we discussed right-induced C*° representations. In this section
we need left-induced unitary representations. Let G be a Lie group, G, a closed
subgroup, and let 7 be a continuous unitary representation of G, in a Hilbert space
H(m), which we denote simply by H.

We define a character x on G, by

x(h) = (xa,/xa)(h)

where x¢ and xq, are, respectively, the modular functions for left-invariant Haar
measure on G and G,.

The representation ind(7) of G induced from 7 acts in a subspace space H (ind (7))
of H-valued functions on GG which satisfy

flgh) = x*?(h)m (k1) f(g) (4.1)

for all g € G and h € G,. For such f,

1 (gh) 2 = xM2(R)|| £ (9) |-

It is well know that there is a unique G invariant functional I defined on the set of
continuous, compactly supported modulo G,, functions on G satisfying the above
covariance condition. Then #(ind (7)) is the completion of set of functions for which

LFIF= Il fll3) < oo

The representation acts on such functions according to

ind(m)(g0) f (9) = £(g, '9)-

When we wish to explicitly indicate the dependence on G and G, we will write
ind(G,, G, ) instead of ind(m).

If there is a closed subgroup G of G which is a complement to G, then,

12 = /G 1 lle(t) dt

where dt is left invariant Haar measure on G;. Hence H(ind(m)) is just L?(Gy, dt, H(r)).

Recall that if 7 is a continuous representation of G in a Hilbert space H, then
C*°(m) denotes the set of vectors H for which ¢ — 7(g)v is differentiable as a
‘H valued map, given the topology of uniform convergence on compact subsets of
G of such functions and all of their derivatives. We let C~°°(7) denote the anti-
dual space to C>°(7). (i.e. the space of continuous conjugate-linear functionals.)
We use the scalar product to embed H linearly into C~°(x). The contragrediant
representation to m|C°°(r) defines a continuous (in fact differentiable) extension of
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7 to C~°°(m) which we continue to denote by 7. The representation of the universal
enveloping algebra 2(G) on C'~°°(m) obtained by differentiating 7 is denoted by 7
as well.

Let m¢ = ind({e}, G, 1), the unitary left regular representation of G. It is well
known that C*°(mg) C C*°(G). We require the following result which, while prob-
ably well known, we have not been ale to find in the literature.

Proposition 4.2. If G is unimodular, then C*®(ng) C L*(QG).

Proof Let X, X3, ..., X, be a basis for the Lie algebra of G and let
D=X]+X3+ - +X2 (4.3)
For each natural number k, let
frv = (I —ma(D))kf.

According to Theorem 3.2 of [NS] there is a function hy € L'(G), independent of
f, such that

f=mc(hi)fx = hi * fi

Furthermore, Corollary 3.2 of [NS] states that if k = [n/4] +1, hy, € L?(G). But, on
a unimodular group, the convolution of two L? functions is an L function. This
proves the proposition. [

Now let
mp = ind(S, L, 1).

In this case,
X(5) = Xp(5)Xo(s)
where
Xp(s) = det p(s) and x,(s) = deto(s).

Since L = NS, we will extend x, and x, to all of L by declaring them to be trivial
on Nb.

We may identify H(m,) with L?(Ny), in which case

mo(sho) f(R) = x(s) /2 f(hy ' h*) (4.4)

where s € S, h, € Ny, and h® = s~ 1hs.

We begin by describing the primary decomposition of 7. For this, for each

B e M*, let

Xﬁ (m) — ei<m,6> .
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Let
78 = ind(M, L, x?).

In this case, the norm is given by

ufu%:/ £(2,0,5)[2 dz ds < oo
ZxS

where dz is Lebesgue measure in Z.

It follows from Proposition (2.24) that there are 2¢ open, p*(S) orbits in M*
where d is the rank of D. Furthermore, since the action is algebraic, the union of
these orbits is dense in M™. For each such open orbit O, let Bp € O be the explicit
representative described in Proposition (2.24).

Proposition 4.5.
™ = D Z mPo.
o

Proof From the theorem on inducing in stages, both 7, and 7? are induced from
the analogous representations on 7. The general result will follow from the tube
case since inducing preserves direct sums. Thus, we assume that Z = 0.

Let 8 = (o for some fixed orbit O. For f € H(mp) and g € T, we define
£9) =€ [ flgm)er<P > dm (46)
M

where dm is Lebesgue measure on M and Cp is as in Proposition (2.28). Then,
for all me M and g € L,

FP(gm) = x"(m™") 2 (g). (4.7)

which is (4.1) for 7P.

To prove our proposition, it suffices to show that
AP =D 7o)
o

where the norm on the left is the 7(7) norm and those on the right are the H(7?)
norms.

Formula (4.1), together with a change of variables shows that for s € S

CY* () = X&) /2 [ flams™)e<m> am

= xp(8) 2N (=p(5)0)

(4.8)
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From Proposition (2.28) (with p* in place of p)
1o as =gt [ 1 (0" (5)80) P s) " ds
= [ 1 CoPas

It now follows from Plancherel’s theorem on M that

Z wPe (H)II* = 1I£1I?

which proves our proposition. [J

The following lemma shows that in the tube case, the decomposition from Propo-
sition (4.5) is the irreducible decomposition.

Lemma 4.9. Suppose that § € M* is such that the orbit Og = p*(S)B is open
mn M*. Then

mp = ind(M, T, X°)

is irreducible. Furthermore, if v € M™ also generates an open orbit O, then wéi 18

equivalent with 7). if and only if Og = O,.

Proof This all follows directly from Mackey theory. Since M is normal in T, 7
will be irreducible if and only if the isotropy subgroup of x? is trivial under the
conjugation action of T' on M”. This is equivalent with saying that the isotropy
subgroup of ( is trivial under the co-adjoint action of S on M*. However, the
dimension of Og is the same as that of S, showing that the isotropy subgroup is
discrete. Since S is completely solvable, this subgroup must then be trivial, show-
ing irreducibility. The statement about equivalence follows directly from Mackey
theory. [J

In the non-tube case, the 7 are reducible. Specifically from the theorem on
inducing in stages,
7% = ind(Ny, L, ;)

where

W]/é\],b = ind(M, Ny, x°).

Let K3 C M be the kernel of 3. Then, Kz is central in N, and Hg = Np/Kp

is a Heisenberg group. The representation ﬂ']ﬂvb is trivial on Kz and, modulo Kg,

defines a representation of Hg that is inducible from a character of the center. Such
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a representation of a Heisenberg is always an infinite multiple of an irreducible
representation. Thus, we may write
8 _ B
Ty, = 00 - Iy,

where H/]Bvb € Ny Tt follows from an argument very similar to that done in the
proof of Lemma (4.9) that

11° = ind(Ny, L, 115, )

is irreducible and
m =& » oo-II7° (4.10)
Bo

defines the irreducible decomposition of .

Now assume that 3 = 8o for some open orbit O. There is a convenient realization
of TI# as a subrepresentation of 7%. We first extend 3 to N} by declaring it to be
zero on Z.

Next, we will describe a positive polarization for 8. Let X7* and Y* be the basis
of Z described above formulas (2.31). For 1 < o <d;, 1 < j <r we define

Z8, = X$ FiYP,

We define
Ps = M. +span c{ZZ ;} (1<j<d,1<a<dj)
where

d
ﬁ:ZEJE;
1

Then Pg is a complex subalgebra of L..

Lemma 4.11. The subalgebra Ps is a totally complex, positive, polarization for

G-i.e.

(a) [Pg, Pp] C ker 3,

(b) Ps+Pg=(Z x M),
(c) P3NPy =M.,

(d) For all Z € Pg,
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Proof Properties (b) and (c) are clear. For (a), note that from the containment
(2.16)

(X3, Y]] = ¢j(a, B)E; (4.12)

for some scalar ¢;j(a, 3). Formula (2.13) shows that

cja, By = —g(X§. XJ)
= —6%5.
Hence
cj(a, B) = My X a,B-
Similarly,

X% X% =0,

X5 X (4.13)

¥, Y7 =0

It follows that [Z¢;,Z ] = 0, for all a and 8. Part (a) now follows from the
containment (2.16) along with the observation that 3 is trivial on M;;.

For (d), we compute

[Z;’;J,Zeﬂ] [XJO‘ —ier}a,Xj‘?‘%—ier}o‘] (4.14)
= —2iuj~_1€jEj.
Hence
. 7 X — *
i <[Ze;22,],8>=2pu; e} < Ej, Ef >=2.

The required positivity follows. [

It now follows from Theorems 3.1 (p. 167) and 3.7 (p. 174) of [BE] that the
subspace HY of functions f in H(n?) that satisfy

(r(2) +ip(2))f =0 (4.15)

for all Z € Pg is a closed, invariant, irreducible, non-zero, subspace of 7 on which
7P is equivalent to II%. From now on IIP refers to this explicit realization of IIP.

We will require an explicit (and well known) description of the elements of 7—[5
For this, we introduce a function f, : N, — C defined by

follz,m) = e=¢tz2)mi<m,p> (4.16)

where
¢(z,w) =< Bq(z,w), E* >

The following lemma follows directly from (2.13) and (2.8).

Lemma 4.17. For z and w in Z
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8z w) = Jgmer((2,0), (1, 0)).

If h € L*(S) and f € H(ry, ), we define
h® f(s(z,m)) = h(s)f(z,m) (4.18)

which is an element of H(7?).

Lemma 4.19. For any function h € L*(S) the function h ® f, belongs to HP.

Proof We must show that g ® f, satisfies (4.15). For this, let w € Z;. Then, from
(4.16) and formula (2.7)

fo((z,m)(w,0)) = fo(z +w,m+ 2 im Bg(z,w))

4.20
= fO(Z,m)efd)(waw)*T(zaw) ( )
where
T(z,w) =2re < Bq(z,w),E* > +2iim < Bq(z,w),3 > .
Note that if z;, € 2k, Ba(zk, w) € (Mjk).. Thus
< Bo(zk,w), 8 >= 0;re; < Ba(zx,w), E* > .
Hence ( ) ( )
20(z,w e; =1
(2, w) ’ (4.21)

T 2(zw) (5= —1)

Since ¢ is anti-holomorphic in w our lemma follows. [

Using Lemma (4.19), we can produce a dense set of elements of H?. Specifically,
for (z,w) € (Z x M), let z,,;(z,w) € C denote the (a,j) coordinate of z with
respect to the basis {X$'}. We also set

Zav _.7 = EO‘M]

For each double sequence of non-negative integers

N ={N(a,j) }1<a<ys1<j<d

we define
ZN = Haaj(zaa 6jj)]\](a,j)'

Then we have the following proposition:
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Proposition 4.22. For all h € L*(S) and all sequences N as described above, the
family of functions below is orthogonal with dense span in HE.

{h@zV f.}.

Using (3.3), we may identify L?(S) with the representation space of
75 = ind(M, T, x%).

We leave the following lemma, which depends on the centrality of M in N3, to the
reader.

Lemma 4.23. For allt € T and h € L?(S)

(72 (t)h) @ 2" fo = TP (t)(h @ 2" f,).

The functions z" f, play an important role in the function theory of N; because
they describe the eigenspace decomposition of certain differential operators.

Lemma 4.24.

e (X + (Y2))EN ) = —(2N(, 5) + 12V fo. (4.25)
Proof We note that

(X9) + (7)) = 2075 —ilXg, 7).

Thus, from formulas (4.1) and (4.12), the term on the left in (4.25) equals

(n (Z9Z5)+ < [X2, Y, 8 >)(EN o)
= (7%, (Z5Z;) — ;)" f).

In the coordinates defined by the X basis, modulo M, % 7r]’6\],b (Z;)‘) is holomorphic
differentiation while %W]ﬂvb(Zﬁ ;) is anti-holomorphic differentiation. Hence
0, (Ze, )2 = 2N (a, )z M9

i, (285

Ej]

vy (4.26)

I\
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where A(a, j) is the sequence which is zero for all indecies except (a, j) where it is
1.

On the otherhand,

fo((2, m)il) = folz,m).
Thus, it follows from formula (4.20) that for w € Z;

fO((wa 0)(25’ m)) = ?o((_z’ _m)(_w’ 0))

= fo(z,m)e ¢ww)—T(zw) (4.27)

_ fo(za m)efd>(w,w)f7'(w,z) )

Recall that the X§ are gpger orthogonal. Hence, from Lemma (4.17) and formula
(4.21),

1 _
T(w, z) = 2 Zwa,ejj Za,e;j
Thus, differentiating formula (4.27) with respect to w at w = 0 shows that

—Q

e (Ze ) fo =0,

(4.28)
W]ﬁvb(Z?jj)fo - _za,ejjfo-

Hence
7r1/6\]717 (Zeajj)szO = 2N(o¢,j)zN—A(aJ)fo

If ¢, = 1 then
a) 2 a)2y /— aF™ _
Wz%b((Xj )"+ (Yg ) )(ZN fo) = Wz/é\)rb(Zj Z; — 1)z fo)
= (—2N(a,j) = 1)(E" fo)
and the lemma follows.

If ; = —1 then we use the identity
a2 a2 7Y o Sy «a
(X)) + (V)" =2, 27 +i[X], Y7
— 22,70, + X5, Y

to prove the lemma as before. [

Section 5: M7y -

Throughout this section, D is assumed to be non-tube like, as defined in Definition
(2.21) in Section 3. We identify A with A using the exponential mapping and A
with R? using the basis Ay, As, ..., Aq. The general element a of A is denoted

a=a(t) =exp(t141 +...tq44).
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We consider the map a — (t1,...,tq) as defining coordinates on A.

As mentioned in the introduction, the Hua system has a Poisson kernel on an
open dense subset of the Shilov boundary of D. Specifically, there is a finite, positive
measure dp on L/S = N, such that every bounded Hua-harmonic function F' may
be expressed in the form

F(g) = f(gh)dp(h) (5.1)
L/S

where f € L°°(L/S) is uniquely determined by F. We refer to f in (5.1) as the
boundary value function of F', dp as the Poisson measure and we say that F' is the
Poisson integral of f. In fact, we showed in [DHP2] that L/S is a boundary for the
Laplace-Beltrami operator and that we may use the corresponding Poisson measure
as dp.

Under the identification L/S = Ny, dp = P dh where dh is Haar measure on N,
and P € L?(N,) N L'(Ny). Under the identification of N, and L/S, for h, h, € N,
and s € S

f(hosh) = f(hoshs™ ).

We may identify L?(N,) with the representation space of m,. Formula (4.4)
shows then that (5.1) is equivalent with

F(g) = x(9) " (mp(g™ ) f, P) = x(9) "/2(f, m(9) P). (5.2)

It follows from [Pou] Proposition 1.1, p. 92 that v € C°°(m) if and only if the
matrix elements g —< m(g)v,w > are C* on L for all w € H(m). Hence, from the
ellipticity of the Laplace-Beltrami operator, P € C(my).

Let § € C~°°(m,) be evaluation at e:

< f,0 >= f(e).

The following is a representation theoretic formulation of the statement that the
Poisson kernel is an approximate identity.

Lemma 5.3. In the weak topology on C~°(my)

lim lim ... lim x(a)"Y?m(a)P = 4.

tg——ocotyg_1——00 t1——o00

Proof Let f € C*°(mp). From (5.2), for a € A
X(a)"2(fim(a)P) = [ faha™")P(h)dh.
Ny

Since the eigenvalues of ad A; in Z + M are all non-negative

lim Ad (exptiA;1)h =e1(h)

t1——00
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converges uniformly on compact subsets of N,. Hence, for all h € Ny,

lim f(aha Y)P(h) = f(aei(h)a ) P(h)

t1——0o0

where a = a(0,ta,...,tq).

Since the restriction of 7, to Ny is the regular representation of Ny, it follows from
Proposition (4.2) that f is bounded. Hence, the dominated convergence theorem
shows that the above limit converges in L'(Np). Our Lemma follows by iterating
this argument and integrating, noting that

lim lim ... lim Ad(a)h=ce.

tg——0o0tyg_1——00 t1——o00

O

In the Hermitian-symmetric tube case, all Poisson integrals over L/S are Hua-
harmonic. This, however, is the only case in which this is true. Let U be the set of
f € L?(N,) for which (5.2) defines a Hua-harmonic function. The ellipticity of the
Hua system shows that U is a closed mp-invariant subspace of L?(N,). We refer to
U as the space of L*-boundary values for the Hua system. We define Hy i to be
the space of all functions F' as in (5.2) where f € U. We remark that

2 2
M., C Higk

where 12 denotes the holomorphic H? space for D. In particular, it follows that U
is non-trivial.

The main result of this section is the following theorem, which generalizes the
main result of [ BBDHPT].

Theorem 5.4. If D is non-tube like then

For the proof, it follows from formula (4.10) that wb}u is a direct sum of multiples

of the representations II1%¢ for certain open orbits O. Let 3 = ¢ for one such orbit.
As in Section 4, we realize IT° in H?. For each intertwining operator

U:H° —u
let 0y € C~°°(I1”) be defined by
< f,ou >=< U(f),0 >.
Then, from formula (4.4), for s € S,

1%(s)6y = x(s)~Y/26y. (5.5)
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Note that dy determines U since

U(f)(g) =<m(g U(f),s >=<TI°(g" ") f, 0u > (5.6)

Let Dg be the set of all ;y where U varies over the space continuous intertwining
operators from H? into wb}u .

The following proposition proves that 7rb’u is the product of exactly two irre-

ducible representations. Theorem (5.4) follows since H2 and H2 are two closed,
invariant subspaces of wb}u .

Proposition 5.7. The set Dg is non-zero only if B = £E*, in which case Dg is
one dimensional.

For the proof, let Py = (U)*(P) where (U)* : L?(N;) — H,, is the adjoint of U.
We note that for all f € H?,

F:g— (£,11°(g9)Pu)x(9) % = (U(f), m(9) P)x(9) "/ (5.8)
defines a Hua-harmonic function. Let
Y =C ().
For g € L, let P(g) € V be defined by
< f, P(g) >= (£,1%(g)Pu)x(g9) ">
Then for n € N, and g € G,
P(ng) =11°(n) P(g).

Hence, p belongs to the representation space mj, = ind* (N, L, m,) where 7, =
II°| Ny, acting on V. We realize this representation in C*°(R%,V) using (3.3).

It is easily seen that P satisfies (3.7) with p; = 0 and G; = 0. Furthermore,
Lemma (5.3) shows that

lim lim ... lim P(t)=dy (5.9)

tg——0o0tyg_1——00 t1——o00

in the weak topology on V. In particular, P € Cy(d) where C,(d) is as defined above
Definition (1.28).

From Theorem (3.9), we obtain an asymptotic expansion
P(t)~ > Pa(t)es™>  acé& (5.10)

where the P, are V valued polynomials on R
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The key observation in the proof of Proposition (5.7) is that from (5.9), Propo-
sition (1.30), and Corollary (3.34),

Py =6p. (5.11)

We assume that the notation of (3.7) is still in effect. Formulas (2.38), (3.4),
and Theorem (2.36) imply

0

(—A; —|— 2 Z etizi) ﬁ)

D+Z:U’z 1 t1E2 4’22,&Z eti~ tjj}ij +€ti+tj./%ij) P =0

1<J

(5.12)

where A/ is as in formula (2.39), D is as in formula (ano) and we set X = II°(X)
for X € A(NL).

Proposition 5.13. For1<[<d

Py ix, = A(fifa) 121 24P (1 #d)

. 9527 (5.14)
Py, =2f*Z3 .

Proof Note that
D

We apply the first equality in (5.12) to the asymptotic expansion (5.10) and equate
terms with the same exponent. We find

(A <AL, a>)Pa=2 > ' ZiPy s, (5.15)

1<i<d

Proposition (3.22) shows that if 0 #< A/, o >, then P, is independent of t if all of
the P,_), are,

In particular, for & = A;, we find (using Corollary (3.42) and Lemma (3.32))
that
[Py, =22 P.

Then, using o = A\; + A\g with [ # d:

(fl fa

” /J/d)P)\l'i‘)\d = 2u; ' 2Py, + 2uy ' 24Py,

=4 ('ul + Md) (papa)™ 12, Z4P,.
i [
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Our lemma follows since

(fz fd) ( +ud>:mud
M Ji  fa fifa

Finally, using a = 2\,

2fiPax, = 22, P,
= Af 1 ZEP,.

which proves our lemma. [

Proposition 5.16. For 1 <[ < d there is an element M; € (M;4)? C A(L) such
that

Proof We apply the second formula in (5.12) to the asymptotic expansion of P and
equate terms with the same exponent finding

e” %> D(P,e<"*>) = — Zﬂflﬁgﬁ’a—ni -2 Z ﬂ;l-)eikpaf()\ﬂr)\k)
1<i<k<d

-2 Z 17 ik P (xi— )
1<i<k<d
(5.17)
where (from formula (2.31) and Lemma (2.33))

The characteristic polynomial for D is
=Y it (ef — (1+ d)aw).
i
For a = 2)\g, and ¢ < j, neither a — (\; — Aj) nor o — (A; + \;) is an exponent
unless ¢ = j = d, in which case (5.17) reduces to
2y Pox, = —pg ' E3Py

as desired.
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Now, let a = A\; + Aq where [ < d. For i < j,
o — ()\z + )\J) = ()\l — )\z) — ()\J — )\d)

Lemma (3.32) shows that for this term to be an exponent we must have [ < ¢ and
j=d.

Also,
a— A=) =B+ +Ba1+2x) = (Bi + -+ Bj-1)

Corollary (3.42), Lemma (3.32), and d = d, show that the above expression is not
an exponent unless ¢ =1 (so &« = A\; + A\gq). Hence (5.17) reduces to

PN+ Aa)Poya, = 20t X0a Py — 2 Z#;lj}ljf’,\ﬁ)\d-
1<j
Since Xjq € (M;4)?, this term may be ignored.

Assume by induction that we have proven the result for [ +1 < j < d. It follows
from (5.5) and (5.11) that for [ < j, ;5o = 0. Hence, for I < j <d

V2P, 1a, = —Y3(E;Eq + M;) Py
= —T1° (ad V{3 (E;Eq + M;)) Py
= -TI° (X2 Eq+ ad Y3 (M;)) P,.

(Note that from (2.15), [V},

;L[lEl, and summing over «, shows that

Ej) = 0.) Repeating the same argument using [V,¢

ly 7Xl(;'] =

2, ' Vi Pay4xy = =iy TP (dy ElEaPy + ) ad (Y5)*(M;)) Po.

Note that ( ad Y;¥)? maps M3, into M7,.

A similar argument shows
20, * ViaPor, = —p; N(diaEyEq + Z(X%)z)lso-
a
Summing the previous two formulas over j and using (5.17), we see that
PN+ Aa)Prag = py " di(EEq + M) Py
where M; € M?,. Our proposition follows since

PN+ ) = —dip;
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Next, we will decompose P, according to the decomposition from Proposition
(4.22). We remind the reader For any functional ¢ € C~°°(II”) and a multi-index
N as in Proposition (4.22), we define a distribution ¢~ on S by
<[, >=<fezVfo,0>.
It is easily seen that ¢ = 0 if and only if ¢y = 0 for all N.

Proposition 5.18. For all N there is a constant Ky such that 155\] = KNX*1/2}S.
In particular P is a C> function.

Proof For ¢ € C°(T) and s € S, let
o(s) :/ B(sm)e'<"P> dm. (5.19)
M

Then ¢ € C2°(S) and i ] i
Qo : ¢ =< ¢®2Nf07P0 >
is a distribution on 7". From Lemma (4.23), (5.5), and (5.19)
LT(S)QO = X(S)_1/2Q~o>
RT(m)Qo - ez’<m,ﬁ>@0

where € S, m € M and Lp and Ry are, respectively, the left and right regular
representations of 7. It follows from Theorem 5.2.2.1 of [War| that there is a
constant K such that

< ¢, pé\f >=Kn (sm)x(s)*1/2e*i<m,ﬁ>
SM
=< ¢, x /%9 >

proving our proposition. [J
Lemma 5.20. ((£,24)P)N € C>=(9).

Proof
For X € Z there are C°° functions ¢, ; on S such that for all s € 5,

Ad (s)X = ¢0.i(8) Zai + o i(8) Zave,i

where the notation is as stated above (4.11).
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Let h € C(S). From the formulas below (4.28), for each multi-index N, there
is a finite sequence of multi-indecies NV; and functions ¢; € C2°(.S) such that

I%(X)(h @ 2" f,)(sn) = h(s)[x%, ( Ad (s7H)X)(Z" f.)](n)
= Z(h% ® zNi fo)(sn).

Iterating this formula shows that a similar equality holds with Z;Z; in place of X.
Applying this to Py shows that ((Z;Z4)Py)Y is a sum of terms (PM ) ® (2N f,)
where 1y € C*°(S) and the M range over a finite set of multi-indecies, proving
the lemma. [J

Proposition (5.7) follows immediately from the following lemma, proving Theo-
rem (5.4).

Lemma 5.21. If 3 # £FE*, then Ky =0 for all N. If 8 = £FE*, then Ky # 0 if
and only if N = 0.

Proof From Proposition (5.16) and Lemma (4.23),
P{l iy, = —En(1- %5ld)7rg~(ElEd + M)x V2
Furthermore, for a € A,
Ad a ' (M3)) € M3, C ker B.
Hence, if a = a(t), where t € R%,
T (E)x " Y*(a) =i < Ad (a7 (E), B > x V*(a) = imeae " x V2 (a).

Thus,
~ 1 L B
Bl (a) = Kn(1— §5ld)MlMdezede ta=tiy =1/2(q), (5.22)

On the otherhand, from Proposition (5.13)

. 1 o .
Py iy, = (11— §5ld)4ﬂlﬂd(flfd) te~ta tlﬂ.]ﬁ\]b(Zl Zq)Po.

Thus, from Lemma (4.24), and formula (4.4), for all a € A,

3 1 o L.
Py, (a)=(1- 5 0a)4pupalfifa) temte [l (2124) Po]™ (a)
fi fa

=Kn(1— %51d)4mud(flfd)16tdtl ; ;(QN(LJ) +1)(2N(d, k) + 1)x~3(a).
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Equating the above expression with (5.22) we find that if Ky # 0
cea = (N(I) + 1)(N(d) +1)

where
N(k)=fs' Y 2N(kj).
1<j<fa
This implies that ¢; and €; have the same sign and N(I) = 0 for all [. Hence, N =0
and B = £ FE*, as desired.

Conversely, we know that the holomorphic and anti-holomorphic functions are
Hua-harmonic. These spaces must correspond to g = £FE*. It follows that Ky # 0
in these cases. [
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