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Abstract

Every Latin square of prime or prime power order s corresponds to a polynomial in 2
variables over the finite field on s elements, called the local permutation polynomial.
What characterizes this polynomial is that its restrictions to one variable are permu-
tations. We discuss the general form of local permutation polynomials and prove that
their total degree is at most 2s−4, and that this bound is sharp. We also show that the
degree of the local permutation polynomial for Latin squares having a particular form
is at most s− 2. This implies that circulant Latin squares of prime order p correspond
to local permutation polynomials having degree at most p − 2. Finally, we discuss a
special case of circulant Latin squares whose local permutation polynomial is linear in
both variables.
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1 Introduction

Every Latin square can be represented by a function of two variables. In this paper
we focus on Latin squares of prime and prime power order. Latin squares of order two
and three have already been examined by Mullen [5] and Diestelkamp [2], both of whom
found that any Latin square of order 3 can be fit to a unique polynomial f(x, y) that is
linear in x and y.

We provide a construction formula for the local permutation polynomials of Latin
squares of prime and prime power order s. We also prove that the degree of these
polynomials is at most 2s − 4. We provide explicit examples to illustrate that there
exist Latin squares of every order s > 3 for which this bound is attained. We show that
circulant Latin squares of prime order p correspond to local permutation polynomials
of degree at most p − 2 and provide examples where this degree is attained. Further,
we show that circulant Latin squares whose first row has a specific form correspond to
linear local permutation polynomials.

Throughout the paper, p is a prime, and if s = pn for some positive integer n, then Fs

denotes the finite field with s elements. When s = p, we use Fp = Zp, the field of integers
modulo p. The set of nonzero elements of Fs is denoted by F∗s. The characteristic of a
finite field F is denoted by char(F ).

We use the usual definition for the degree of a polynomial in two variables: The
degree of a nonzero monomial in two variables axk1yk2 is k1+k2. The degree of f(x, y) =∑m

j=0

∑m
i=0 aijx

iyj is the maximum of the degrees of aijx
iyj such that aij 6= 0.

2 Representation of Latin squares by functions

Definition 2.1. A Latin square of order s is an s×s matrix L with entries from a set S
of size s such that each element of S occurs exactly once in every row and every column
of L.

By indexing the cells of L by S × S, we have the following:

Lemma 2.2. An s × s matrix L with entries aij is a Latin square if and only if there
exists a function f : S × S → S such that f(i, j) = aij ∀i, j ∈ S. Moreover,

(i) x, y, z ∈ S and y 6= z ⇒ f(x, y) 6= f(x, z),

(ii) x, y, z ∈ S and x 6= z ⇒ f(x, y) 6= f(z, y).

Example 2.3. Let S = {0, 1, 2, 3}. The following is a Latin square of order 4 on S:
(Note that S is an arbitrary 4-element set.)




0 2 1 3
3 0 2 1
2 1 3 0
1 3 0 2



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Here, f(0, 0) = 0, f(0, 1) = 2, f(1, 3) = 1 etc.

The definition of a Latin square does not impose a structure on the set S.
For the remainder of this paper, we consider only Latin squares of prime or prime

power order. The underlying set S is chosen to be Fs or Zp. This allows us to exploit
the algebraic properties of finite fields to study these functions.

Consider the following well-known result from the theory of finite fields (see, for
example, [1] or [4]):

Theorem 2.4. If f : (Fs)n → Fs, then f is a polynomial in n variables. If we mandate
that no exponent is greater than s− 1, then the polynomial f is unique.

Theorem 2.4 implies that any function f : Fs × Fs → Fs can be expressed as a
polynomial in two variables of the form

f(x, y) =
s−1∑

j=0

s−1∑

i=0

aijx
iyj . (1)

Throughout this paper, we identify all functions f : (Fs)n → Fs with polynomials
for which every exponent is less than s.

3 Permutations of Fs

In this section, we discuss results regarding permutations of Fs that are needed later on.
Recall that a permutation of Fs is a bijection of Fs. The polynomial corresponding to a
permutation is called a permutation polynomial.

Proposition 3.1. If d > 1 is a divisor of s − 1, then there exists no permutation
polynomial of Fs of degree d.

The proof of Proposition 3.1 is given in [4, p. 349].
Now, let g : Fs → Fs be a permutation. By Propositions 2.4 and 3.1, g is a polynomial

in one variable and has degree at most s−2. We will now provide an explicit construction
of g.

Define
hα(x) =

∏

γ∈Fs
γ 6=α

(x− γ). (2)

Then set
f(x) =

∑

α∈Fs

(−g(α)
)
hα(x). (3)

This is essentially Lagrange’s Interpolation Formula (cf. [4]).

Lemma 3.2. Let f : Fs → Fs be defined as in (3). Then f(x) = g(x) for all x ∈ Fs.
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Proof. By Lemma 4.5 below,

hα(x) =

{
0, if x 6= α,
−1, if x = α.

Thus,
f(α) =

(−g(α)
)
(−1) = g(α).

Now, by Lemma 3.1, the degree of f is at most s− 2. In fact, this upper bound on
the degree of a permutation is sharp:

Proposition 3.3. For s 6= 2, there exists a permutation of Fs whose degree is s− 2.

Proof. Since xs−1 = 1 for x 6= 0, xs−2 is a permutation of Fs.

4 Local permutation polynomials for Latin squares of prime
and prime power order

Definition 4.1. (Mullen [6]) A polynomial f : Fs × Fs → Fs that gives rise to a Latin
square (i.e. satisfies the conditions of Lemma 2.2) is called a local permutation polyno-
mial (or LPP).

It is already known what kind of polynomials can arise as local permutation polyno-
mials over Z2 and Z3:

Proposition 4.2. Let f : Zp × Zp → Zp be a local permutation polynomial. If p = 2 or
p = 3, then f is linear.

The proof can be found in [5] or [2].

Proposition 4.3. Assume s > 3. Let f : Fs×Fs → Fs be a local permutation polynomial.
Then the degree of f is at most 2s− 4.

Proof. Let a, b ∈ Fs. By definition of f as an LPP, the polynomials f(·, a) and f(b, ·) are
permutations of Fs. By Proposition 3.1, these polynomials have degree at most s − 2.
Thus f has degree at most 2(s− 2) = 2s− 4.

Our main result is to prove that the bound on the degree of a local permutation
polynomial given in Proposition 4.3 is sharp. We utilize the following:

Lemma 4.4. Let G be a group (written multiplicatively) with identity 1. Then

∏

g∈G

g =

{
a, if a is the unique element of order 2,
1, otherwise.
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Applying Lemma 4.4 to the additive and multiplicative groups of the field Fs, we
have

Lemma 4.5. If s > 2, then
∑

g∈Fs

g = 0 and
∏

g∈F∗s
g = −1.

Proof. The second statement follows from the fact that the equation x2 − 1 = 0 over Fs

has only the two solutions ±1 (note that −1 = 1 if char(Fs) = 2).

Now, to show that the bound on the degree of an LPP over Fs given in Proposition
4.3 is the best possible, we use the following construction:

Let g : Fs × Fs → Fs be a local permutation polynomial over Fs. Define fβ(y)
to be the polynomial representing the permutation in the βth row. This means that
fβ(y) = g(β, y) as a function. Let hα be defined as in (3). Then

fβ(y) =
∑

α∈Fs

(−g(β, α)
)
hα(y).

Let
f(x, y) =

∑

β∈Fs

−hβ(x)fβ(y). (4)

Then we have

Lemma 4.6. For all y, x ∈ Fs, f(x, y) = g(x, y).

Proof.
f(γ, δ) = −(−1)fγ(δ) = fγ(δ) = g(γ, δ).

We are now ready to prove our main result.

Theorem 4.7. If s is a prime power, and s > 3, then there exists a s× s Latin square
whose local permutation polynomial has degree 2s− 4.

Proof. For s = 4, let ξ be a root of the irreducible polynomial x2 + x + 1 over F2. Then
F4 = F2[ξ]. The LPP for the Latin square




0 1 ξ ξ + 1
1 0 ξ + 1 ξ
ξ ξ + 1 1 0

ξ + 1 ξ 0 1


 ,

where the rows and columns are indexed by (0, 1, ξ, ξ + 1), is given by the function
x2y2 + x2y + xy2 + xy + x + y. This polynomial has degree 2(4)− 4 = 4 as desired.

For s > 4, let φ and π be permutations of Fs with φ(α) 6= π(α) for all α ∈ Fs. Denote
the polynomials corresponding to φ and π by fφ(x) and fπ(x), respectively. Suppose
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that fφ(x) and fπ(x) are of degree s − 2 with different leading coefficients. (We show
at the end of the proof that there always exist such permutations by providing explicit
constructions for φ and π.) Construct a partial s× s Latin square M ′ with φ as the first
row β = 0) and π as the second row (β = 1). M ′ can be extended to a full Latin square
M (see [3]). We claim that either the LPP of M has degree 2s− 4, or the Latin square
M̂ formed by switching the two first rows of M has an LPP with degree 2s− 4.

Let f(x, y) be the LPP for M and f̂(x, y) the LPP for M̂ . Then both f and f̂
can be written in the form given in (4). As we have already shown in the proof of
Proposition 3.3, the coefficient of xs−2 in the polynomial hβ(x) is

∑
γ∈Fs
γ 6=β

(−γ) = β.

Thus the coefficient of ys−2xs−2 in f is
∑

β∈Fs
−β`β, where `β is the coefficient of ys−2

in fβ(y). Now, if the coefficients of ys−2xs−2 for M and M̂ are the same, then
∑

β∈Fs

−β`β =
∑

β∈Fs

−β ̂̀
β,

where the ̂̀
β are the coefficients from M̂ . By construction, `β = ̂̀

β for β 6= 0, 1.
Therefore, 0`0 − 1`1 = 0̂̀

0 − 1̂̀
1, so `1 = ̂̀

1. But `1 is the leading coefficient of the
polynomial representing φ, and ̂̀

1 for π, which are distinct. Thus the coefficients of
ys−2xs−2 for M and M̂ are different, and so at least one of M and M̂ has degree 2s− 4.

We now show that it is always possible to find two permutations φ and π of degree
s− 2 such that φ(x) 6= π(x) for all x ∈ Fs by providing explicit examples.

First, note the following: If g is any any permutation of Fs, and f is defined as in
(3), then consider the coefficient of xs−2 in f . The coefficient of xs−2 in hα(x) is given
by ∑

γ∈Fs
γ 6=α

(−γ) = −
∑

γ∈Fs
γ 6=α

γ = −(−α) = α,

and so the coefficient of xs−2 in f(x) is

∑

α∈Fs




(−g(α)
) ∑

γ∈Fs
γ 6=α

(−γ)


 =

∑

α∈Fs

(−g(α)
)
(α) =

∑

α∈Fs

−αg(α). (5)

Now let

σ(α) :=

{
−α−1, if α 6= 0,
0, if α = 0.

(6)

Using (5), the coefficient of xs−2 in the polynomial for σ is given by
∑

α∈Fs

−ασ(α) =
∑

α∈F∗s
1 = −1.
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If s = pn for p > 3, consider the permutation

ρ(α) =





α−1, if α 6= 0,−1,
−1, if α = 0,

0, if α = −1.

Then ∑

α∈Fs

−αρ(α) =
∑

α∈F∗s
α 6=−1

−1 = 2.

Therefore σ and ρ are both of degree s− 2 and have distinct leading coefficients. Thus
we can use σ and ρ as the permutations φ and π, respectively.

If s = 2n, n > 2, let ξ be a primitive element of Fs (i.e., ξ generates the multiplicative
group of Fs). Since Fs has characteristic 2, the map x 7→ x2 is an automorphism of Fs

that fixes Z2, and hence every element has a square root. Since −x = x, the square root
is unique.

Define1 µ as

µ(α) :=





α, if α 6= 0, 1, ξ, ξ1/2,
1, if α = 0,
0, if α = 1,
ξ1/2, if α = ξ,
ξ, if α = ξ1/2.

Recall the permutation σ defined in (6). For α = 0, 1, ξ, ξ1/2, σ(α) 6= µ(α). For α 6=
0, 1, ξ, ξ1/2, σ(α) = µ(α) implies α−1 = α, which implies that α = 1, a contradiction.
Thus, σ(α) 6= µ(α) for all α ∈ Fs. Now, as shown in the proof of Proposition 3.3 the
coefficient of xs−2 in the polynomial corresponding to µ is

∑

α∈Fs

−αµ(α) =
∑

α∈Fs

αµ(α), since Fs has characteristic 2,

=




∑

α∈Fs

α 6=0,1,ξ,ξ1/2

α2


 + ξ1/2(ξ) + ξ(ξ1/2)

=
∑

α∈Fs

α 6=0,1,ξ,ξ2

α, since x 7→ x2 is an automorphism of Fs,

= 0− (0 + 1 + ξ + ξ2), by Lemma 4.5

= 1 + ξ + ξ2.

1We thank Pieter Blue for suggesting this permutation.
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Since the powers ξ0, ξ, ξ2, . . . , ξn−1 form a basis for Fs as an n-dimensional vector space
over F2, 1 + ξ + ξ2 is neither 0 nor 1. Thus σ and µ have distinct leading coefficients
(and are of degree s− 2), and so can be used as the permutations φ and π, respectively.

When s = 3n for n > 1, let ξ ∈ Fs with ξ 6= 0, 1,−1. Since s > 3, there exists such
an element in Fs. Let

τ (α) =





ξα−1, α 6= 0,−1,
−ξ, α = 0,
0, α = −1,

Then σ(α) 6= τ(α) for all α ∈ Fs. Now, the coefficient of xs−2 in the polynomial that
corresponds to τ is

∑
α

−ατ (α) =
∑

α6=0,−1

−α(ξα−1)

= −
∑

α6=0,−1

ξ = −(3n − 2)ξ = 2ξ = −ξ 6= −1

Thus σ and τ have distinct leading coefficients (and are of degree s− 2), and so can be
used when p = 3, n > 1 and s = 3n as the permutations φ and π, respectively.

5 Circulant Latin squares and other special cases

Definition 5.1. Let L be a Latin square of order t, and let m ∈ {1, ..., t − 1}. L is
m-circulant if each row is obtained by cyclically shifting every entry in the previous row
m places to the right.

Note that this definition does not require the order of L to be a prime or prime
power. However, m-circulant Latin squares of order t exist only if m is relatively prime
to t. Thus there exist m-circulant Latin squares of order p for all m ∈ {1, ..., p− 1}.
Example 5.2.

L =




1 0 2 4 3
2 4 3 1 0
3 1 0 2 4
0 2 4 3 1
4 3 1 0 2




is a 3-circulant Latin square of order 5.
If we label the rows and columns 0, 1, ..., 4, we find that 1 occurs in cells (0, 0),

(1, 3), (2, 1), (3, 4) and (4, 2). Thus if g is the LPP for this Latin square, we have
1 = g(0, 0) = g(1, 3) = g(2, 1) = g(3, 4) = g(4, 2).

In general, we have the following:
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Lemma 5.3. If g : Zp×Zp → Zp is the local permutation polynomial of an m-circulant
Latin square L of order p, then

g(i, j) = g(i + 1, j + m) for all i, j ∈ Zp.

We may characterize an m-circulant Latin square of prime order by the permutation
that determines its first row:

Lemma 5.4. Let g : Zp × Zp → Zp be the LPP of an m-circulant Latin square L of
order p, and let f : Zp → Zp be the permutation in the first row of L. Then

g(x, y) = g(0, y + mx) = f(y + mx) ∀x, y ∈ Zp.

Proposition 5.5. An m-circulant Latin square of order p can be represented as a poly-
nomial in two variables of degree at most p − 2. Further, there exist m-circulant Latin
squares whose local permutation polynomials achieve this bound.

Proof. Let g : Zp × Zp → Zp represent an m-circulant Latin square with LPP g whose
first row is given by a polynomial f . Then the degree of f is at most p − 2, and by
Lemma 5.4, g(x, y) = g(0, y + mx) = f(y + mx). Thus, g can be represented as a
polynomial in two variables of degree at most p− 2.

Using the construction of σ given in (6), we will construct a Latin square whose
polynomial attains this degree bound. Let g(0, y) be the permutation σ, which then
extends to the rest of the Latin square. Since the coefficient of yp−2 of σ is nonzero, the
two-variable polynomial g has degree p− 2.

Example 5.6. The local permutation polynomials for m-circulant Latin squares of order
5 and 7, respectively, are given below. Here, the first row of the Latin square is given by
[a0, a1, ..., ap−1] for p = 5, 7.

g5(x, y) = (a0 + 2a1 + 3a2 + 4a3)m3x3 + (2a0 + 4a1 + a2 + 3a3)m2x2y

+(3a0 + a1 + 4a2 + 2a3)mxy2 + (4a0 + 3a1 + 2a2 + a3)y3

+(a0 + 2a2 + 2a3)m2x2 + (3a0 + a2 + a3)mxy

+(a0 + 2a2 + 2a3)y2 + (a0 + 2a1 + 4a2 + 3a3)mx

+(4a0 + 3a1 + a2 + 2a3)y + a0,

9



g7(x, y) = (a0 + 2a1 + 3a2 + 4a3 + 5a4 + 6a5)m5x5

+(2a0 + 4a1 + 6a2 + a3 + 3a4 + 5a5)m4x4y

+(3a0 + 6a1 + 2a2 + 5a3 + a4 + 4a5)m3x3y2

+(4a0 + a1 + 5a2 + 2a3 + 6a4 + 3a5)m2x2y3

+(5a0 + 3a1 + a2 + 6a3 + 4a4 + 2a5)mxy4

+(6a0 + 5a1 + 4a2 + 3a3 + 2a4 + a5)y5

+(a0 + 4a2 + 6a3 + 6a4 + 4a5)x4 + (3a0 + 5a2 + 4a3 + 4a4 + 5a5)m3x3y

+(6a0 + 3a2 + a3 + a4 + 3a5)m2x2y2 + (3a0 + 5a2 + 4a3 + 4a4 + 5a5)mxy3

+(a0 + 4a2 + 6a3 + 6a4 + 4a5)y4 + (a0 + 2a1 + 2a2 + 2a4)m3x3

+(4a0 + a1 + a2 + a4)m2x2y + (3a0 + 6a1 + 6a2 + 6a4)mxy2

+(6a0 + 5a1 + 5a2 + 5a4)y3 + (a0 + 6a2 + 4a3 + 4a4 + 6a5)m2x2

+(5a0 + 2a2 + 6a3 + 6a4 + 2a5)mxy + (a0 + 6a2 + 4a3 + 4a4 + 6a5)y2

+(a0 + 2a1 + 5a2 + 6a3 + 3a4 + 4a5)mx

+(6a0 + 5a2 + 2a2 + a3 + 4a4 + 3a5)y + a0.

Proposition 5.7. Let g : Zp × Zp → Zp be the LPP for an m-circulant Latin square of
order p whose first row is given by [α, α + k, ..., α + (p− 1)k] for some 0 < k < p. Then
g is linear and is given by

g(x, y) = (p− 1)mkx + ky + α. (7)

Proof. Define g : Zp × Zp → Zp by g(x, y) = (p − 1)mkx + ky + α for 0 < m < p − 1.
Then

g(0, n) = α + nk

and
g(x + 1, y + m) = (p− 1)mk(x + 1) + k(y + m) + α

= (p− 1)mkx + (p− 1)mk + ky + mk + α

= (p− 1)mkx + ky + α

= g(x, y)

Thus g is the LPP for an m-circulant Latin square with first row [α, α+k, ..., α+(p−1)k].
Moreover, there are exactly as many different functions of form (7) as there are m-
circulant Latin squares whose first row is given by [α, α + k, ..., α + (p− 1)k].

Now consider the case of a Latin square of order s = pn. While it is straightforward
to check that any polynomial g : Fs×Fs → Fs that satisfies the condition in Lemma 5.4
(with m being any nonzero element of Fs) is an LPP, the resulting Latin square may
not be circulant if s is a prime power. However, we still have the following:

Proposition 5.8. Let g : Fs × Fs → Fs be the LPP of a Latin square L of order s, and
suppose

g(x, y) = g(0, y + mx) = f(y + mx) ∀x, y ∈ Fs,
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where f : Fs → Fs denotes the permutation in the first row of L and m ∈ F∗s. Then
the degree of g is at most s − 2, and there exist Latin squares of order s whose local
permutation polynomials achieve this bound.
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