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Summary. In this paper, we revisit the formalism of graphs, trees, and surfaces
which allows one to build cell models for operads of algebraic interest and repre-
sent them in terms of a dynamical picture of moving strings—hence relating string
dynamics to algebra and geometry. In particular, we give a common framework for
solving the original version of Deligne’s conjecture, its cyclic, A, and cyclic-As
versions. We furthermore study a question raised by Kontsevich and Soibelman
about models of the little discs operad. On one hand, we give a new smooth model
and on the other hand, a minimally small cell model for the A case. Further ge-
ometric results these models provide are novel decompositions and realizations of
cyclohedra as well as explicit simple cell representatives for Dyer—Lashof-Cohen op-
erations. We also briefly discuss the generalizations to moduli space actions and
applications to string topology as well as further directions.
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Introduction

As often happens in pure mathematics, a dynamical physical point of view
can be very helpful in solving complex problems. One instance of these dy-
namics which has been particularly useful is string theory. There are many
incarnations of this theory given by highly developed mathematical tools, such
as Gromov—Witten theory or singularity theory. We will take a less algebraic
and more geometric point of view in the following. Surprisingly, this approach
turns out to have far-reaching algebraic and topological implications. The ba-
sic idea is to treat a string as an interval or a circle with a measure. As these
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types of strings move, split, and recombine, they give rise to a surface with
a partially measured foliation. These ideas are completely described in [KP],
where actually we are considering strings that move on an oriented surface
with boundary. We will consider only the closed case here and furthermore
restrict ourselves to surfaces with no internal punctures.

The first step in obtaining applications to algebra and topology is to rep-
resent these surfaces by certain types of ribbon graphs. The measure of the
foliation translates to weights on the edges of these graphs. To be precise,
there are two types of graphs. One is called the arc graph, which is obtained
by replacing each band of parallel leaves of the foliation with one edge called
an arc. There is a dual picture, provided the foliation sweeps out the surface.
The condition for this to occur is that the complementary regions of the arcs
be polygonal. This condition is called quasi—filling. In this case there is the
natural notion of a dual graph. This dual graph is again a ribbon graph with
weights on its edges, and furthermore the surface it defines is precisely of the
same topological type as the underlying surface. We stress that in general this
need not be the case. Usually we call this dual graph if it exists the associated
ribbon graph or simply the ribbon graph. In these considerations we take the
closed strings to be pointed, which induces marked points on the boundary
and marked points on the cycles of the ribbon graph.

Now it is striking that with this picture one obtains several well-known al-
gebraic and topological objects in one fell swoop. The first object is an operad
[KLP] which is defined when all the boundaries are hit by arcs. This contains
the moduli space of genus g curves with n marked points and a tangent vec-
tor at each of its points as a rational suboperad. Here rational means densely
defined. Furthermore, taking a different route and using R>¢ graded operads
instead [KP], one can even induce a modular operad structure on cohomol-
ogy. We will forego this option and concentrate on the cell level instead. This
cell level is described by graphs, one ribbon graph of the above type for each
cell. Focusing our attention on different types of graphs, we obtain natural
operads, cyclic operads, PROPs, and other algebraic structures.!

Moreover, we are naturally led to cell models for various known and impor-
tant operads such as the little discs, and the framed little discs. Extending the
graphs, we are led to the definition of a ribbon graph operad for a cell model
of moduli space and a model for a PROP which can be called the Sullivan
PROP.?

In the current note, we wish to present the results as a reverse engineering
of sorts, starting with the combinatorics and building spaces out of them.
This is contrary to the historical genesis and the dynamic approach mentioned
above, but it is a purely algebraic/combinatorial formulation which matches
up beautifully with natural operations on the Hochschild complex of various

!See, e.g., [MSS] for a review of these notions and the operads mentioned below.
2There are actually several versions of this PROP on the topological and chain
level see, e.g., [CS,S1,52,CG, TZ]; our version is that of [K4,K5].
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algebras. We will treat the associative, A, Frobenius, and Frobenius A
algebra cases. The latter has sometimes been called [Ko2] a cyclic Ay, algebra.
The classical case has been solved in [Ko3, T,MS1, Vol, KS,MS2, BF,K2], the
cyclic case was first established in [K3] and then extended in [TZ] (see also
[MS4] for an announcement of a different proof), the A, case has been treated
in [KS]. The plethora of proofs goes back to the possibility of choosing suitable
chain models. In our approach the chain models are all CW models which are
minimal in a sense we explain below. Moreover, they all appear naturally
in a geometric picture dictated by string dynamics. The desire to have such
operations has three main sources: string topology [CS, Vo2, CJ, CG, Ch, Me,
S1,52], Deligne’s conjecture, and D-brane considerations [KR,KLil,KLi2]; see
[K4,K5] for details.

Taking this approach, there are algebraic questions and obstacles, but it
turns out that each time the geometry tells us how to overcome them. Along
the way, we introduce new cell models for the little discs and framed little discs,
some of which are smooth. This partially answers a question of Kontsevich and
Soibelman on this subject. Finally, our cell models also cast light on the Dyer—
Lashof Araki-Kudo [AK, Co, DL] operations on the Hochschild cohomology,
which thanks to the affirmative answer to Deligne’s conjecture formally has
the structure of a double loop space. Here we give the explicit cells that are
responsible for the operations, naturally reproducing the results of [We, Tou].

Finally, we comment on a new natural geometric stabilization for our sur-
face operad. This lends itself to exploring all of the above constructions in a
stable limit.

The paper is organized as follows:

§1 contains all the necessary details about graphs. §2 contains the con-
struction of various cell models of the little discs and framed little discs using
trees and graphs. In this paragraph, in particular, we also give a new smooth
cellular model for the little discs and the framed little discs and a cell model
for the minimal operad of [KS]. We furthermore identify the cells responsible
for the Dyer—Lashof operations. To illustrate our approach to operations using
trees, §3 contains a full self-contained proof of the cyclic version of Deligne’s
conjecture for a Frobenius algebra. In §3 we also go on to treat the A, and
cyclic Ay, versions. §4 contains the extensions to moduli space and the Sulli-
van PROP, hence string topology. It also contains the important new notion of
operadic correlation functions. We close the discussion in §5 with an outlook
and complementary results on the higher loop spaces and stabilization.
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Conventions

We fix k to be a field of arbitrary characteristic. We let 71 be the set {0, ..., n}.
I will denote the interval [0, 1], and A™ the standard n-simplex. Furthermore,
K, is the n-th Stasheff polytope or associahedron, and W, is the nth cyclo-
hedron or Bott—Taubes polytope, see, e.g., [MSS] for the definitions of these
polytopes.

1 Graphs, Spaces of Graphs, and Cell Models

1.1 Classes of Graphs

In this section, we formally introduce the graphs and the operations on graphs
which we will use in our analysis.
We will use several types of trees and ribbon graphs.

Graphs

A graph I' is a tuple (Vp, Fr,iop : Fr — Fr,0r : Fr — Vp), where o is
an involution 12 = id without fixed points. We call V- the vertices of I" and
Fr the flags of I'. The edges Ej of I' are the orbits of the flags under the
involution 2. A directed edge is an edge together with an order of the two
flags which define it. In case there is no risk of confusion, we will drop the
subscripts I'. Notice that f — (f,2(f)) gives a bijection between flags and
directed edges.

We also call Fr, := 07 '(v) C Fr the set of flags of the vertex v. If I is
clear from the context, we will just write F,,, and we also call |F},| the valence
of v and denote it by val(v). We also let E(v) = {{f,+(f)}|f € F(v)} and call
these edges the edges incident to v.

The geometric realization of a graph is given by considering each flag as
a half-edge and glueing the half-edges together using the involution 2. This
yields a one-dimensional CW complex whose realization we call the realization
of the graph.

As usual, a tree is a graph whose image is contractible. A black and white
graph, b/w for short, is a graph with a map Vp — {0, 1}. The inverse image
of 1 is called the set of white vertices and denoted by V,,, while the inverse
image of 0 is called the black vertices, and denoted by V},.

Ribbon Graphs

A ribbon graph with tails is a connected graph together with a cyclic order of
the set of flags Fr(v) of the vertex v for every vertex v. A ribbon graph with
tails that satisfies val(v) > 2 for all vertices v will simply be called a ribbon
graph. Notice that we do not fix val(v) > 3. We will call a ribbon graph stable
if it does satisfy this condition.
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For a ribbon graph with tails, the tail vertices are Viay={v € Vp|val(v)=1},
the tail edges Eii(I") are the edges incident to the tail vertices, and the tail
flags Fian(I") are those flags of the tail edges which are not incident to the
tail vertices.

A tree that is a ribbon graph with tails is called a planar tree.

A graph with a cyclic order of the flags at each vertex gives rise to bijections
Cyc, : F, — F,, where Cyc,(f) is the next flag in the cyclic order. Since
F =11F,, one obtains a map Cyc : F' — F'. The orbits of the map N := Cycos
are called the cycles or the boundaries of the graph. These sets have the
induced cyclic order.

Notice that each boundary can be seen as a cyclic sequence of directed
edges. The directions are as follows. Start with any flag f in the orbit. In the
geometric realization go along this half-edge starting from the vertex 9(f),
continue along the second half-edge #(f) until you reach the vertex 9(:(f)),
then continue starting along the flag Cyc(:(f)) and repeat.

An angle is a pair of flags (f, Cyc(f)); we denote the set of angles by /.
It is clear that f — (f, Cyc(f)) yields a bijection between Fr and Zp. It is,
however, convenient to keep both notions.

By an angle marking we mean a map mk? : /p — Z7)27.

The genus of a ribbon graph and its surface

The genus g(I') of a ribbon graph I is given by 2 — 2g(I") = |Vr| — |Er| +
Cyc(I') = x(I') + Cyc(I"), where Cyc(I") = #cycles.

The surface X (I') of a ribbon graph I' is the surface obtained from the
realization of I' by thickening the edges to ribbons. That is, replace each 0-
simplex v by a closed oriented disc D(v) and each 1-simplex e by e x I oriented
in the standard fashion. Now glue the boundaries of e x I to the appropriate
discs in their cyclic order according to the orientations. This is a surface whose
boundary components are given by the cycles of I'. The graph I" is naturally
embedded as the spine of this surface I" C X(I"). Let £(I") be the surface
obtained from X'(I") by filling in the boundaries with discs. Notice that the
genus of the X (I") is g(I") and x(I") = 2 — 2g(X(I)).

Treelike, normalized Marked ribbon graphs

Definition 1.1. A ribbon graph together with a distinguished cycle ¢q is
called treelike if

(i) the graph is of genus 0 and
(ii) for all flags either f € ¢g or ¢(f) € ¢y (and not both).

In other words, each edge is traversed exactly once by the cycle ¢g. Therefore
there is a cyclic order on all (undirected) edges, namely the cyclic order of ¢y.

The data above are called almost treelike if the condition (i) holds and in
condition (ii) the exclusive “or” is replaced by the logical “or”. This means
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that there might be edges both of whose flags belong to ¢o. We call these
edges the black edges of the graph.

Definition 1.2. A marked ribbon graph is a ribbon graph together with a
map mk : {cycles} — Fr satisfying the conditions

(i) For every cycle ¢ the directed edge mk(c) belongs to the cycle.
(ii) All vertices of valence two are in the image of mk, that is Vv, val(v) = 2
implies v € Im(0 o mk).

Notice that on a marked treelike ribbon graph there is a linear order on
each of the cycles ¢;. This order is defined by upgrading the cyclic order to
the linear order <; in which mk(c;) is the smallest element.

The intersection tree of an almost treelike ribbon graph

Notice that an almost treelike ribbon graph need not be a tree. Indeed, if it
has more than two cycles it won’t be. But the following construction yields
a black and white tree. The following definition of a dual tree is indeed a
duality, since one can recover the ribbon graph from its dual tree. For the
gory combinatorial details, see the appendix of [K2].

Dual b/w tree of a Marked ribbon graph

Given a marked almost treelike ribbon graph I, we define its dual tree to
be the colored graph whose black vertices are given by Vp and whose set
of white vertices is the set of cycles ¢; of I'. The set of flags at ¢; consists
of the flags f with f € ¢;, and the set of flags at v consists of the flags
{f:f €co,d(f) = v}. The involution is given by ¢, (f) = N(f) if f € ¢¢ and
1-(f) = N7L(f) otherwise.

This graph is a tree and is b/w and bipartite by construction. It is also
planar, since the ¢; and the sets F'(v) have a cyclic order and therefore also
so does F, N ¢y. It is furthermore rooted by declaring d(mk(co)) to be the
root vertex. Declaring mk(cp) to be the smallest element makes it into a
planted tree.

An equivalent definition is given by defining that there be an edge between
a pair of a black and a white vertex if and only if the vertex corresponding to
b is on the boundary of the cycle ¢;, i.e., v € d(¢;) := {9(f) : f € ¢;} and two
black vertices are connected if there was a black edge between them.

Spineless marked ribbon graphs

A marked almost treelike ribbon graph is called spineless if

(i) There is at most one vertex of valence 2. If there is such a vertex vy then
8(mk(c0)) = V.

(ii) The induced linear orders on the ¢; are (anti)compatible with that of co,
e, f <; fif and only if +(f") <o o(f).
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1.2 Operations on graphs

In this section, we will give the basic definitions of the operations on graphs
that we will need.

Contracting Edges

The contraction I'/e = (Vp, Fr,7,0) of a graph I' = (Vp, Fr,1,0) with respect
to an edge e = {f,1(f)} is defined as follows. Let ~ be the equivalence relation
induced by 9(f) ~ 9(1(f)). Then let Vi := Vi) ~, Fr = Fr \ {f,2(f)} and
7: Fr — Fp,0: Fr — Vp be the induced maps.

For a ribbon graph, the cyclic order is the one which descends naturally.

Fig. 1. Counterclockwise: An example of an element in Cactis, the construction of
its dual arc graph and its dual black and white tree.
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For a marked ribbon graph, we define the marking of (Vr, Fr,7,0) to be
mk(¢) = mk(c) if mk(c) ¢ {f,2(f)} and mk(¢) = N os(mk(c)) if mk(c) €
{f,2(f)}, viz. the image of the next flag in the cycle.

If there is an angle marking, set f' = N~(f),f” = Cyc(f),d =
N='(u(f)) and g" = Cyc(u(f)), let mk“(f',f) = a,mk*(f,f") = b,
mk“(¢',2(f)) = ¢ and mk“(u(f),g”) = d, after the contraction we set

mk“(f’,¢") = ad and mk“(¢’,f") = b¢, where we use the notation
a=1-acZ/2Z.

1.3 Spaces of Graphs with Metrics

Notation 1.3. We will write Rib,, 4 for the set of marked ribbon graphs of
genus g with n cycles and, by abuse of notation, also for the free Abelian
group generated by this set.

We set Rib := II,, 4Rib, 4, and we will again not distinguish in notation
between the set Rib, the free Abelian group generated by it, and the set
{1, Rib,,4 : n € N} to avoid unnecessary clutter. We also write Rib(n) for
the set of marked ribbon graphs with n + 1 cycles together with a labelling
by {0,...,n} of these cycles. Again we also denote the free Abelian group
generated by this set as Rib(n). Finally, to streamline the notation, we will
denote the collection {Rib(n)|n € N} simply by Rib.

The meaning of the symbols will always be clear from the context.

Graphs with a Metric

A metric wp for a graph is a map Er — Rsg. The (global) rescaling of a
metric w by A is the metric Aw : Aw(e) = Aw(e). The length of a cycle ¢ is the
sum of the lengths of its edges length(c) = >, w({f,2(f)}). A metric for a
treelike ribbon graph is called normalized if the length of each undistinguished
cycle is 1. We will write MRib,, 4 for the set of metric marked ribbon graphs
of genus g with n boundary cycles.

Projective Metrics

Notice that there is an Ry g-action on MRib which scales the metric p by an
overall factor. This action of course preserves the genus and number of bound-
aries. We set PRib := MRib/R > 0. The elements of PRib are called graphs
with a projective metric. Notice that one can always choose a normalized
representative for any projective metric. We set PRib,, g = MRib, 4/Rxo.

Remark 1.4. Now and in the following, we do not wish to dwell on
distinguishing projective and non-projective metrics.

Definition 1.5. By a local scaling at a cycle i, we mean that the metric is
scaled only on the edges belonging to the cycle i.
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The Space of Metric Ribbon Graphs

We endow these above sets with a topology by constructing PRib,, 4 in the
standard fashion. That is, we realize them as a subspace of the quotient of
the disjoint union of simplices by an equivalence relation. For each graph
I' € Riby,,4 with |E(I')] = k 4+ 1 we fix a k-simplex Ap. Using barycentric
coordinates for this simplex, a point of this simplex can be identified with a
choice of projective weights on the edges. The points of PRib,, 4 can thus be
identified with the interior of the disjoint union over all Ar : I' € Rib,, 4. Fur-
thermore, the faces of Ap correspond to the edges of I'. We use the following
identifications: A face of Ar is identified with Ap /. if I'/e € Riby, 4. We give
the resulting space the quotient topology (this is actually a CW complex)
and identify PR:b with the image of the interiors of the Ap. Then we give
MTRib .= PRib x Ry the product topology.

Cacti and Spineless Cacti and Thickened Cacti

Definition 1.6. We let Cacti(n) denote the subspace of the treelike ribbon
graphs with n labeled cycles (that is, excluding the distinguished cycle ¢).
Furthermore, we let Cact(n) C Cacti(n) be the subset of spineless cacti.

We let Cactio, be the almost treelike ribbon graphs and Cact., be the
almost treelike spineless ribbon graphs.

Marked Ribbon Graphs with Metric and Maps of Circles

For a marked ribbon graph with a metric, let ¢; be its cycles, let |¢;| be their
image in the realization, and let r; be the length of ¢;. Then there are natural
maps ¢; : S — |¢;| which map S! onto the cycle by starting at the vertex
v; := O(mk(c;)) and going around the cycle mapping each point 6 € S* to the
point at distance %ri from v; along the cycle ¢;. This observation connects the
current constructions to those involving a more geometric definition of Cacti in
terms of configurations of circles [Vo2,K1] and other geometric constructions
involving such configurations such as the map Loop used for the Arc operad
[KLP]. In particular, the treelike ribbon graphs correspond to Cacti, and the
spineless treelike ribbon graphs correspond to Cact.

This observation is also useful in order to describe the glueing operations

0; : Cactioo(n) X Cactioo(m) — Cactioo(n +m — 1), (1)
(I1,1%) = I o Iy, (2)

which are given by scaling I's to the size of the length of the ith cycle of I}
and then glueing together the graphs using the identification given by the
corresponding maps of S's parameterizing the scaled cycle ¢y of I, and the
cycle ¢; of I7.
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For a purely combinatorial version of this construction we refer to the
appendix of [K2]. The version presented there which pertains to Cacti can
easily be adapted to the current case of Cactiy.

Proposition 1.7. The spaces Cactis(n) together with the S, action permut-
ing the labels and the glueing operations o; of (1) form a topological operad,
and the subspaces Cacto(n), Cacti(n), Cact(n) form suboperads.

Proof. Straightforward.

Recall that two operads are equivalent as operads if there is a chain of
quasi-isomorphisms connecting them.

Theorem 1.8. Cactino(n) and Cacti(n) are equivalent to the framed little
discs operad, and Cactso(n) and Cact(n) are equivalent to the little discs
operad.

Proof. The statements about Cacti and Cact are contained in [K1]. The cor-
responding statements about Cactis, and Cacty follow from the observation
that these spaces are homotopic to Cacti and Cact by the homotopy which
contracts all the edges both of whose flags are elements of the distinguished
cycle cg.

Cactus Terminology

The edges of a cactus are traditionally called arcs or segments, and the cycles
of a cactus are traditionally called lobes. The vertices are sometimes called the
marked or special points. Furthermore, the distinguished cycle ¢q is called the
outside circle or the perimeter, and the vertex d(mk(co)) is called the global
zero. And the vertices d(mk(c;)),1 # 0, are called the local zeros. In pictures
these are represented by lines rather than fat dots.

Normalized Treelike and Almost Treelike Ribbon Graphs
and Their Cell Complexes

Definition 1.9. An element of Cacti, is called normalized if the length of all
the cycles except for possibly the distinguished cycle are 1 and the lengths of
all of the black edges are less than or equal to 1. We use the superscript 1 on
the spaces above to indicate the subset of normalized elements, e.g., Cactil_.

Notation 1.10. We will call an element of the set {Cacti, Cact, Cactoo, Cactioo}
simply a species of cactus.

Lemma 1.11. Every species of cactus is homotopy equivalent to its subspace
of normalized elements.

Proof. The homotopy is given by locally scaling each lobe to size 1. Notice
that this is possible, because the graphs are almost treelike.
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The normalized versions have their good side and their bad side. On the
bad side, we see that they are not stable under glueing, but we can modify
the glueing as follows to obtain a topological quasioperad, that is, an operad
which is associative only up to homotopy:

0; : Cactil_(n) x Cactil_(m) — Cactioo(n +m — 1), (3)
(Fl,FQ)l—)FloiFQ. (4)

Here the composition is given by first locally scaling the lobe ¢ of I to the
length of the distinguished cycle of I'; and then glueing.

Proposition 1.12. The normalized elements of any species of cactus together
with the S, action of relabelling and the glueings above form a topological
quasioperad.

Proof. Tedious but straightforward. See [K1] for Cact and Cacti, the more
general version is covered under the Sullivan PROP in [K4], see also Section 4.

The relations between the species are as follows:

Theorem 1.13. [K1] The operad of cacti is the bicrossed product of the op-
erad Cact of spineless cacti with the operad S' based on the monoid S'. Fur-
thermore, this bicrossed product is homotopic to the semidirect product of the
operad of cacti without spines with the circle group S':

Cacti = Cact >4 S' ~ Cact x S*. (5)
The same holds true for the thickened versions
Cactioe = Cactoo X St ~ Cacto, 1 ST. (6)

The details of the semidirect products and bicrossed products are given
below.

Proof. The proof of the first statement is given by verifying that the two
operad structures coincide. For the second statement, one notices that the
homotopy diagonal is homotopy equivalent to the usual one and that one can
find homotopies to the diagonal which continuously depend on the cactus. The
third statement follows from contracting the factors RY, and using Theorem
1.15. Full details are given in [K1] for the non—thickened species. They go over
mutatis mutandis for the thickened species.

Corollary 1.14. The homology operad of Cacti is the semidirect product of
Cact and the homology of the operad S' built on the monoid S*. The same
holds true for Cactin.

Theorem 1.15. Every species of cactus is homotopy equivalent through qua-
sioperads to its normalized version.
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Proof. The statement for regular cacti is contained in [K1], and the argument
carries over mutatis mutandis to the thickened versions.

Corollary 1.16. Every species of cactus is quasi-isomorphic as quasi-operads
to its normalized version, and in particular, the induced homology quasi-
operads are operads and are isomorphic as operads.

Details of the Bicrossed Product Structure for Cacti

In this section we recall the construction of the bicrossed product as it was
given in [K1], to which we refer the reader for more details.

First notice that there is an action of S! on Cact(n) given by rotating
the base point clockwise (i.e., in the orientation opposite the usual one of ¢g)
around the perimeter. We denote this action by

PSSt x Cact(n) — Cact(n).
With this action we can define the twisted glueing

Ofl : Cact(n) x S*(n) x Cact(m) — Cact(n +m — 1),
(C,0,C") = Cop® (6;,C") = Col" C". ()

Given a cactus without spines C' € Cact(n), the orientation-reversed
perimeter (i.e., going around the outer circle clockwise, i.e., reversing the ori-
entation of the source of ¢g) gives a map Ac : ST — (SH)™.

As one goes around the perimeter the map goes around each circle once,
and thus the map A¢ is homotopic to the diagonal Ac(S1) ~ A(S?).

We can use the map A¢ to give an action of S and (S*)*™:

pC:‘SlX(Sl)xngc(Sl)xnx(sl)xnﬂ(sl)xn; (8)

here fi,, is the diagonal multiplication in (S1)*" and 5; is the operation that
forgets the ith factor and shuffles the last m factors to the ith, ..., (i+m—1)st
places. Set

wm (idxm;)(A)xid

O?:(Sl)xnx(sl) (Sl)xnxslx(sl)xm

idx_p)c (Sl)Xn « (Sl)xm N (SI)Xn+m71. (9)

These maps are to be understood as perturbations of the usual maps

0; : (Sl)xn « (Sl)xm (idXWM)Xid (Sl)xn « S % (Sl)xm

M (Sl)xn % (Sl)xm LN (Sl)X’ﬂ+m*1, (10)
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where now p is the diagonal action of S! on (S!)*™. The maps o, and the
permutation action on the factors give the collection {S'(n)} = (S1)*" the
structure of an operad. In fact, this is exactly the usual construction of an
operad built on a monoid.

The multiplication in the bicrossed product is given by

(C,0) 0; (C,0') = (c ol 7 g of 9’). (11)
The multiplication in the semidirect product is given by
(C,0) 0; (C',0') = (c o " f o 0’). (12)

Also, normalized cacti are homotopy equivalent to cacti that are homotopy
equivalent to the bicrossed product of normalized cacti with S* and the semidi-
rect product with S*, where all equivalences are as quasioperads:

Cacti' ~ Cacti = Cact 1 S* ~ Cact* > S* ~ Cact* x S*. (13)

2 The Tree Level: Cell Models for (Framed)
Little Discs and Their Operations

The virtue of the normalized species is that they provide cellular models. In
order to give the cell model, we will use the dualized trees.

2.1 A First Cell Model for the Little Discs: Cact!

In this section we will give a cell model for Cact'. It will be indexed by the
dual trees of the ribbon graphs. The specific type of trees we need are given by
the sets 7°(n), that is, planar planted bipartite black and white trees with
only white leaves. Here as usual a leaf is a vertex of valence one that is not
the root. Since the tree is rooted, the edges have a natural direction toward
the root, and we call the edges that are incoming to white vertices the white
edges and denote the set they form by E,,.

Notice that the differential on the ribbon graphs induces a differential on
the dual trees.

Definition 2.1. We define 7°(n)* to be the elements of 7°P(n) with
|Ey| = k.

Definition 2.2. For 7 € 7% we define A(T) 1= X,cy, () A"l. We define
C(7) = |A(7)|. Notice that dim(C(7)) = |Ew (7).

Given A(7) and a vertex x of any of the constituting simplices of A(7),
we define the zth face of C'(7) to be the subset of |A(7)| whose points have
the zth coordinate equal to zero.
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Definition 2.3. We let K(n) be the CW complex whose k-cells are indexed
by 7 € T (n)k with the cell C(1) = |A(7)| and the attaching maps e, defined
as follows. We identify the zth face of C(7) with C(7'), where 7" = 9,(7) is
the local contribution of the differential contracting the corresponding white

edge. This corresponds to contracting an edge of the cactus if its weight goes
to zero so that A(O7) is identified with O(A(7)).

Lemma 2.4. K(n) is a CW composition for Cact.

Proof. It is straightforward to see that the differential on the graphs which
contracts an edge on the tree side collapses an angle.

Proposition 2.5. K(n) is a cellular chain model for the little discs.

Proof. The claim is that already on the cell level the induced quasioperad is
an operad. This is indeed the case, since in a cell all possible positions of the
lobes are possible and the composition again gives all possible positions; see
[K1] for details.

2.2 A CW Decomposition for Cacti' and a Cellular Chain Model
for the Framed Little Discs

Definition 2.6. A Z/27Z decoration for a black and white bipartite tree is a
+ .
map dec™ : V,, — Z/2Z.

Proposition 2.7. The quasi-operad of normalized cacti Cacti' has a CW de-
composition which is given by cells indexed by planar planted bipartite trees
with a Z/2Z decoration. The k-cells are indexed by trees with k —i white edges
and 1 vertices marked by 1.

Moreover, cellular chains are a chain model for the framed little discs op-
erad and form an operad. This operad is isomorphic to the semidirect product
of the chain model of the little discs operad given by CCy(Cact) of [K2] and
the cellular chains of the operad built on the monoid S'.

Proof. For the CW decomposition we note that as spaces, Cacti'(n) =
Cact! (n) x (S1)*". Now viewing S* = [0,1]/0 ~ 1 as a 1-cell together with the
O-cell given by 0 € S*, the first part of the proposition follows immediately,
by viewing the decoration by 1 as indicating the presence of the 1-cell of S*
for that labeled component in the product of cells.

To show that the cellular chains indeed form an operad, we use the fact
that the bicrossed product is homotopy equivalent to the semidirect product
in such a way that the action of a cell S! in the bicrossed product is homotopic
to the diagonal action. This is just the observation that the diagonal and the
diagonal defined by a cactus are homotopic. Since a semidirect product of a
monoid with an operad is an operad, the statement follows. Alternatively, one
could just remark that there is also an obvious functorial map induced by the
diagonal for these cells.
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The chains are a chain model for the framed little discs operad since
Cacti'(n) and Cacti(n) are homotopy equivalent and the latter is equivalent
to the framed little discs operad.

Although the above chain model is the one one would expect to use for
framed little discs, it does not have enough cells for our purposes. In order to
translate the proofs in the arc complex given in [KLP] into statements about
the Hochschild complex, we will need a slightly finer cell structure than the
one above. After having used the larger structure one can reduce to the cell
model with few cells, since they are obviously equivalent.

Definition 2.8. A spine decoration dec’ for a planted planar bipartite tree
is a Z/2Z decoration together with the marking of one angle at each vertex
labeled by one and a flag at each vertex labeled by zero. We denote the set
of such trees which are n-labeled by 7° bp’decl(n) and again use this notation
as well for the free Abelian group and the k vector space generated by these
sets. We let 7PP-dec’ he their union respectively direct sum. In pictures we
show the angle marking as a line emanating from the vertex that lies between
the marked edges and an edge marking by a line through the respective edge.
For an example see Figure 2 (VI). We sometimes omit the edge marking if
the marked edge is the outgoing edge, e.g., in Figure 3.

The realization 7 of a planar planted bipartite tree 7 with a spine dec-
oration is the realization of 7 as a planar planted tree (the root is fixed to
be black) together with one additional edge inserted into each marked an-
gle connecting to a new vertex. We call the set of these edges spine edges
and denote them by FEgpine. Likewise, set Vipine to be the set of new vertices
called the spine vertices, which are defined to be black. The spine edges are
then white edges. As for tails, we will consider only the flags of Egpine, which
are not incident to the spine vertices. We call the set of these flags Fypine.

6 5 4 6 5 4
@ @M © QO
n 1 9 e
. . . ?v . G “ W W
I 1II 111 v v VI a) VI b) VIc)

Fig. 2. I. the tree [,,- II. the tree 7,- III. the tree 72. IV. the tree O'- V. the tree
7+~ VL.(a). a marked treelike ribbon graph. (b) the corresponding decorated tree.
(c) its realization.

n_... 2 n_ ... n—1.. _1
2 1 3
n_.- 1
(2)1 oy @ng 1 2 n
= + et

Fig. 3. The decomposition of the BV operator.
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Notice that this tree is the dual tree of a cactus with an explicit marking of
the flags mk(c;). Given a cactus, we call its dual tree with explicit markings
its topological type. If 7 had tails, we will split the set of tails of the real-
ization into spines and free tails, which are the images of the original tails:
Eiaits(7) = Eftaits(7) I Egpine(7); and we proceed likewise for the respective
flags.

A spine decoration induces a new linear order on the flags incident to the
white vertices of its realization. This order </, is given by the cyclic order at
v and declaring the smallest element to be the spine flag in case dec*(v) = 1
and the marked flag in case dec® (v) = 0. This gives a canonical identification
of Fiir + Fy —{0,..., [}

Proposition 2.9. The spaces Cacti(n) of the quasi—operad of normalized
cacti Cacti* have CW decompositions K'(n) whose cells are indezed by spine
decorated planar planted bipartite trees (7,dec’) € T bp,dec’ corresponding to
the topological type of the cacti. The k-cells are indexed by n-labeled trees with
k — 1 white edges and i markings by 1.

Moreover, cellular chains of the complex above are a chain model for the
framed little discs operad and form an operad.

Proof. The decomposition is almost as in the preceding proposition except
that in the product Cact!(n) x (S*)*™ we decompose each factor S* as indi-
cated by the lobe it presents. That is, for the S' associated to the nth lobe we
chose the 0-cells to correspond to the marked points and 1-cells to correspond
to the arcs with glueing given by attaching the 1-cells to the 0-cells represent-
ing the endpoints of the arcs (e.g., four 0-cells and four 1-cells for the lobe 1 in
Figure 2 (VIa)). In terms of trees, the arcs correspond to the angles, and thus
we take a marking of an arc to be the inclusion of the corresponding 1-cell
in the tensor product of the cell complexes. Likewise, the edges correspond
to the marked points, and we take a marking of an edge to be the inclusion
of the corresponding 0-cell in the tensor product of the cell complexes.

For the operadic properties, we remark that moving the spine along an arc
and then glueing, which is what is parameterized by marking an angle on the
lobe 7 of ¢ when calculating c o; ¢/, has the effect of moving the base point of
¢ along a complete sequence of arcs until it coincides with a marked point in
the composition of the two cacti. This is one side of the bicrossed product.
The effect on the local zeros of ¢’ of the movement of the base point is to
move them corresponding to structure maps of the bicrossed product above.
The local zeros thus move through a full arc if the global zero passes through
the arc on which they lie. Therefore the o; product of two cells results in
sums of cells. Marking an arc of ¢’ obviously gives rise to a sum of cells.
Alternatively, one can again just remark that there is a functorial map for the
diagonal for this cell model, since there is such a map on the first factor by
[K2] and its existence is obvious on the second factor.

The associativity follows from the associativity of cacti. Let C(7),
7 € TPPde’ () be the cells in the CW-complex and C(7) their interior.
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Then P(7) = C(7) x Ry, 7 € TPPde" give a pseudocell decomposition
Cacti(n) = 1. P(7). It is easy to see that Im(P(r) o; P(1")) = I} P () for
some 7 and o; is a bijection onto its image. Let ogomb be the quasioperad
structure pulled back from K’ to Thpdec” and let o;r be the operad structure
pulled back from the pseudocell decomposition of Cacti to T bp.dec’  Then
these two operad structures coincide over Z/27Z, thus yielding associativity
up to signs. The signs are just given by shuffles, cf. Section 3.1, and are
associative as well.

Remark 2.10. Pulling back the operadic compositions, the differential, and
the grading yields a dg-operad structure on 7PP4¢¢" which is isomorphic to
that of CC,(Cacti') := @, CC.(K'(n)), where CC,(K'(n)) are the cellular
chains of the CW model K'(n) of Cact!(n).

The operation is briefly as follows: given two trees 7,7 € Thpdec’ the
product is 7 0¢°™P 7/ = Y~ 47, where the 74 are the trees obtained by the
following procedure. Delete v; to obtain an ordered collection of trees (77, <),
then graft these trees to 7/, keeping their order by first identifying the spine
edge or marked edge of v; with the root edge of 7 and then grafting the
rest of the branches to 7 so that their original order is compatible with that
of 7. Lastly, contract the image of the root edge of 7/ and declare the image
of the root of 7 to be the new root. The sign is as explained in Section 3.1.
Due to the isomorphism between CC,(Cacti') and Thpdec” o will drop the
superscript comb.

2.3 The GBYV Structure

The picture for the GBV structure is essentially that of [KLP] and goes back
to [CS]. It appears here in another guise, however, since we are now dealing
with cells in CC,(Cactil).

First notice that there is a product on the chain level induced by the
spineless cactus given by the rooted tree 7, depicted in Figure 2. Explicitly:
a-br— 7y (7’5 sa, b), where v is the usual operadic composition. This product
gives CC,(Cacti') the structure of an associative algebra with unit. Moreover,
the product is commutative up to homotopy. The homotopy is given by the
usual operation, which is induced by ~y(71;a,b). This also induces a bracket
which is Gerstenhaber up to homotopy. This can be seen by translating the
statements from [KLP,K2], but it also follows from the BV description of the
bracket below (Figure 5).

To give the BV structure, let O’ be the tree with one white vertex, no
additional black edges, no free tails, and a spine. Notice that the operation ¢
induced by a — v(0’,a) on CC,(Cacti') breaks up on products of chains as
follows, see Figure 3:

5(ab) ~ 8(a,b) + (—1)*1*15(b, a),
§(abe) ~ 8(a,b,c) + (=1)1lbI+eDs (b ¢ a) + (—1)lellal*1Ds (¢ a,b), (14)
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n—1

(5(&1(12 s an) ~ Z(—l)a(ci’a)é(aci(l), . ,aci(n)), (15)
=0

where c is the cyclic permutation and o(c?, a) is the sign of the cyclic permu-
tations of the graded elements a;.

Lemma 2.11.
8(a,b,c) ~ (=1)IeH D05 (a ¢) + 6(a, b)e — 6(a)be. (16)
Proof. The proof is contained in Figure 4.

Proposition 2.12. The chains CC,(Cacti') are a GBV algebra up to homo-
topy. That is, there are a bracket and a BV operator that satisfy the usual
equations up to homotopy. Taking coefficients in k when k is of characteristic
zero, the homology of Cacti hence becomes a GBV algebra.

Proof. The BV structure follows from Lemma 2.11 via the calculation

8(abe) ~ 6(a,b,c) + (=1)alWHIEDs (B ¢ a) + (=1)lellel+BD5(c b, a)
~ (=1)UalFDPIbs (a, ¢) 4 5(a, b)e — d(a)be + (1) ad(b, ¢)
+(=1D)1 50, a)e — (=1)1lad(b)e + (—1)Ia+EDIelg5 (b, ¢)
+(f1)Ib\(\a\+1\)+|a||6|b5(c’ a) — (fl)lalﬂblab(;(c)
~ §(ab)e + (—1)1ad(be) + (—1)1* b5 (ac) — 6(a)be
—(=Dl9las(b)e — (=1)l9l*Plabs(c) (17)

Figure 5 contains the homotopy relating the BV operator to the bracket.

(Jal+1)[b]
—(=1) b (da)c = — (da)bc

| (s

(Ja[+D[b|

5 (a,b)c =(-1) b3 (ac)

Fig. 4. The basic chain homotopy responsible for BV.
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(al+1)(bl+1)
-(=1)  b*a 1

Fig. 5. The compatibility of the BV operator and the bracket.

2.4 Cells for the Araki-Kudo—Cohen, Dyer—Lashof Operations
By the general theory, see, e.g., [Tou], we need to find elements
& € Hy1(Cact' (p) /Sy, £Z./p7Z),

that is, homology classes with values in the sign representation.

Now taking coinvariants on Cact!, we see that the iteration of the
product *, that is, the operation given by " := v(~(... (y(11),71),...,71),71),
gives a class that is the sum over all trees of the highest dimension, where the
partial order on the labeled vertices when considered in the usual tree partial
order is compatible with the linear order on 7.

Proposition 2.13. "« is the cohomology class & in Hp,_1(Cact!(p)/S,,
+7Z/p7).

Proof. First we could reengineer the result from the proof of Tourtchine [Tou],
but it also follows from a straightforward calculation of the boundary of
said cell.

The first example for p = 2 is given by the operation of 71, which has
boundaries in the multiplication and its opposite, cf. Figure 5, and the example
for p = 3 is the hexagon of Figure 6 with i = 1.

Remark 2.14. We wish to point out two interesting facts. First, the class
is solely induced by an operation for p = 2, and second, the resulting cell
description is just the left iteration of %, whereas the right iteration of * is the
simple class given by a cube.
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Tirl Ti (Oir1)

1 @ I 1“,1 ‘ 1

Tivl (Cn) P
Tir1 (@)
Fig. 6. The hexagon that gives the Dyer—Lashof operation, establishes that Cacti
is a braid operad, and shows the associativity up to homotopy of the multiplication.

2.5 A Smooth Cellular Model for the Framed Little Discs: Cacti

The above CW model for the little discs is actually the smallest model which
solves Deligne’s conjecture and has enough cells to support the brace and the
multiplication operations. However, the model is easily seen to be nonsmooth
starting at n = 3. We can read this off Figure 6, since two of these hexagons
glue to give a “cylinder with wings.”

There is, however, a surprisingly small CW model that is smooth. It is
given by considering Cacto,. This is not the minimal model that yields a
solution for the As.-Deligne conjecture, which we will discuss later.

The Relevant Trees

Again the cells of this model will be indexed by certain types of trees that
are the dual trees of the ribbon graphs that are elements of Cactl . These are
planar planted b/w trees with heights.
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It will be convenient to use the convention that these trees have a black
root with valence one and call the unique incident edge the root edge. We will
call the edges which are incident to a white vertex the white edges, F,,, the
other edges are considered to be black, Fj. The exception is the root edge,
which is not considered to be black in case it is not white. We will also fix
the stability condition that there are no black vertices of valence 2 with two
black edges.? We will call such trees 7, Jw-

Definition 2.15. We let H7 (n) be pairs (7, ht) of a planar planted b/w tree
with white leaves only and a black root (7) and a function ht : E, — {1, var}.
We will let Ey, be the inverse image of var, and call them variable edges.
Likewise, let H7 " (n) be pairs (7, ht"°P) with 7 as above and ht"? : £ — [0, 1]
such that the sum of the weights of the edges adjacent to a white vertex is 1.

Remark 2.16. Notice that there is a natural differential on the underlying
ribbon graphs, which can also be considered to have white and black edges.
The latter are labeled by 1, var. The differential is given by summing (with
the appropriate sign) over contractions of the white edges, contractions of the
black edges labeled by var, and relabellings of these edges by 1.

Definition 2.17. We define H7 (n)¥ to be the elements of H7 (n) with
‘Evar| + |Ew‘ - ‘Vw| = k.

Definition 2.18. For 7 € HT we define A(7) := xvve(T)AM X X e By (r) -
We define C(7) = |A(7)]. Notice that dim(C(7)) = |Ew(7)| + | Eb(7)|.

Given A(7) and a vertex x of any of the constituting simplices of A(7),
we define the zth face of C(7) to be the subset of |A(7)| whose points have
the zth coordinate equal to zero. The boundaries of the intervals are taken to
be 0 and 1.

Definition 2.19. We let K (n) be the CW complex whose k-cells are in-
dexed by 7 € HT (n)* with the cell C(7) = |A(7)| and the attaching maps
e, defined as follows. We identify the zth face of C(7) with C(7’), where
7/ = 0;(7). This corresponds to contracting a white edge of the cactus as its
weight goes to zero so that A(J7) is identified with O(A(7)) for these edges.
For the black edges, passing to the boundaries of the intervals corresponds to
letting the weight of the edge go to 1 or 0, and the latter is taken to mean
that the relevant edge is contracted.

Lemma 2.20. K, (n) is a CW composition for Cactl,.

Proof. For this it suffices to remark that the dual ribbon graph of the tree
indexing a cell and an element of this cell has a natural metric on the cor-
responding graph given by the barycentric coordinates on the simplices for
the white edges and the natural coordinates on the intervals taking values

3This means no parallel arcs in the dual picture.
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between 0 and 1 on the black edges. Conversely, using the dual tree construc-
tion turns any element of Cacti, into a tree of the given type, and the metric
determines a unique point in the open cell.

Proposition 2.21. K, (n) is a cellular chain model for the little discs.
Proof. The proof is analogous to the one for normalized spineless cacti.

Theorem 2.22. The space Cactl, is smooth, that is, it is a manifold with
corners.

Proof. The easiest way to see this is to use the dual description in terms of
arc graph. The arc graph is the dual graph on the surface X'(I") to I', where
I' is embedded as the spine of this surface (more details are contained in
Section 4.1). Now fix an element p € Cactil_(n). If it has the maximal number
of edges, that is, the complementary regions of the arc graph are triangles,*
then we can vary the weights of the white edges freely and the weights of the
black variable edges as well, while the ones for the black edges with weight 1
can only decrease. So for the interior of the maximal cells we are done. If we are
in the interior of a cell of lower dimension, some of the complementary regions
are not triangles, but other polygons. Now, not all the diagonals are allowed,
since we have to take care that the resulting ribbon graph is still treelike. To
be precise, the vertices of the polygons are labeled by ¢ # 0 or by 0 and the
diagonals are not allowed to connect two vertices with non—zero labels. But
the vertices adjacent to a vertex with a non—zero label have to be labeled by
zero. See Figure 8 for an example. The relevant space is a subspace of the
product of the spaces of the diagonals of all of the polygons. Now the space
of diagonals of a polygon near the point without diagonals is homeomorphic
to a neighborhood of zero in the corresponding Stasheff polytope. There is
a subpolygon given by connecting the nonzero labeled vertices. Removing
these points corresponds to collapsing cubes in the cubical decomposition of
the Stasheff polytope in such a fashion that the result is again a polytope.
See Figure 7 for an example. The image of 0 can, however, now lie on a face
of the polytope. Nevertheless, we again have found a neighborhood that is
homeomorphic to a neighborhood of 0 in R™ x R’;O.

Remark 2.23. This cell model almost answers a question of Kontsevich and
Soibelman in [KS]. Namely, the existence of a certain smooth CW model
for the Fulton—-MacPherson configuration spaces. In fact, this is a minimal
thickening of a minimal cell model of the little discs, which is minimal in the
sense that it contains all the cells for the A,, multiplications and the brace
operations, that is, a cell incarnation of the minimal operad M of [KS], which
we construct in the next section. See also Remark 2.32.

4We contract the edges of the polygon which lie on the boundary and label them
by the corresponding boundary component.
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Fig. 7. The Stasheff polytope K4, its cubical decomposition, and the polytope of
the cells avoiding one diagonal of the underlying polygon.

Fig. 8. An arc graph, its tree, cactus representation, and one of its polygons.

2.6 The KW Cell Model for the Little Discs

In this section, we construct two more cell models for the little discs operad.
The first will be a cell incarnation of the minimal operad of [KS], and the
second will be a cacti-based model that is a contraction of the model Cactl,
above. We need this second model only as a mediator, to establish the equiv-
alence to the little discs operad.

Trees

The relevant trees are the stable b/w planar planted trees of [KS] with
white leaves 7... Here stability means that there are no black vertices of
valence 2.
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The Minimal A, Complex

Let K, denote the nth Stasheff polytope (associahedron) of dimension n — 2
and let W,, denote the nth Bott—Taubes polytope (cyclohedron) of dimension
n—1.

We will now construct the following CW complex KCW. The cells are
indexed by 7 € 74, and the cell for 7 is given by

A(T) = XveViuie Wio| X Xve Ve Ko|—1- (18)

The boundary of this cell is given by

NAM) = D £OWiy| X Xt eV Wio| X XveVinaa Kol

v’ € Vighite

+ E + XoeVinie Win) X OKjyr| X Xozo eV K]

v’ € Vplack

= A(9(7)) (19)

Fixing n, we inductively glue the cells corresponding to 7 € 7o (n) to the
existing skeleton by identifying the boundary pieces with the cells of lower
dimension. For this we have to remark that indeed the cell differential given
above agrees with the differential on 7., which is straightforward.

We call the resulting CW complex KW(n).

Lemma 2.24. The collection CC.(KW(n)) forms an operad isomorphic to
the minimal operad of [KS].

Proof. Since 7., is an operad, we just pull back the operad structure, since
as Abelian groups, CC,(KW(n)) ~ T (n).

2.7 A Finer Cell Model, the Generalized Boardman—Vogt
Decomposition

In order to connect the above cell model with the little discs, we need to
transform it slightly by subdividing the cells. We will call the corresponding
model KS. First, we identify the spaces of the two CW models and then
afterward, we can contract to the model Cact!. The full details are in [KSch].

Decomposing the Stasheff Polytope

For this we need two basic decompositions. First we decompose the associ-
ahedron into its Boardman—Vogt decomposition (see, e.g., [MSS]). We will
actually need a topological realization, which is given by trees with heights.
In this case, we consider a planar planted tree as used in this construction
as a b/w tree with white leaves and topologically realize the cubical cells by
using a height function on the black edges. This means that a point in this
cubical model of K, is an element of H7*°P.
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Decomposing the Cyclohedra

We actually decompose the cyclohedra as a blowup of the simplex. For this we
again use b/w trees in HT"P as above. The basic simplex is given by taking a
tree with one internal vertex. Now we glue to this simplex the cells that allow
black edges to appear. This is again easiest to describe in the arc graph. We
consider all arc graphs corresponding to at most one internal white vertex, but
we allow diagonals, that is, edges between 0 and 0, that do not form a triangle
two of whose sides are identified. An example of such a complementary region
is given in Figure 8.

Trees and Their Cell Complex

In other words, we consider trees of 7;,,, with the following restrictions. There
are no black vertices of valence two such that one edge is a leaf edge and the
other is black.? '

We call this subset ’ZE}%V . For the height functions, we have one more

restriction. A height function for ’ZE}%V is compatible if the height of a black
edge, both of whose vertices are of valence 2, has to be 1. This restriction is
needed, but in a sense is ungeometric. Omitting it, one is led to the thickened
model above. It is necessary to make the incidence relations of the cells match.
It is clear that we can again glue a cell complex from these trees. This
time
A(T) == Xyevy (A X X eepr- (20)
In particular, there is a new subdivision of cyclohedra, that is, not the
Boardman—Vogt subdivision. The cells are products of cubes and simplices.
This also allows for a partially linear realization in terms of trees with heights.
Here the restriction for the cyclohedron is that there is only one nonleaf white
vertex. See Figure 9 for an example in the language of arc graphs; for further
details we refer to [KSch].

Proposition 2.25. Fach element of KW corresponds to a pair (7,ht) with
TE 7;:}%\, and ht a compatible height function. That is, the KS and KW are
cell models for the same space. In the description in terms of IS, an element
is given by the tree of its cell and a compatible topological height function.

Proof. Any element of KW lies in a unique maximal cell. This corresponds
to a tree T € 7. Now each cyclohedron and associahedron of the product
making up |D(7)| has a decomposition as above, and our element inside the
cell A(7) lies inside one of these finer cells. Inside this product the element is
given by a tree with height satisfying the given conditions. Moreover, given a
pair (7, ht) satisfying the above conditions, it is easy to see that this element
in the above description belongs to the cell A(7), where 7 is the tree in which
all the black edges with ht < 1 are contracted.

5This means that there is no triangle with two sides given by the same arc in
the polygon picture.
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[%

Fig. 9. The subdivision of W5 into a simplex and cubes.

The Homotopy from KS to Cact?!

Definition 2.26. We define the flow ¥ : I x KS — Cact' by 1 > ¢ > 0 :
@ (t)((r,ht)) = (7,%(t)(ht)), where

ht(e) lf e ¢ Eblack,
t ht(e) if e € Fplack,

P(t)(ht)(e) = {

and ¥(0)(7, ht) = (7, ht), where 7 is the tree 7 with all black edges contracted
and ht is ht descended to 7.

Definition 2.27. We define i : Cact!(n) — KW(n) by mapping (7, ht) to
itself.

Proposition 2.28. The spaces Cact!(n) and K.S(n) are homotopy equivalent,
and hence KW is too.

Proof. Using the flow ¥ and the maps P, the statement is straightforward.

The Cell Level: Maps 7o, and %o

On the cell level this induces the following maps. There are maps moo : Too —
TP and iy : TPP — 7.

The first 7, is given as follows. If there is a black vertex of valence > 3,
then the image is set to be 0. If all black vertices are of valence 3, then contract
all black edges and then insert a black vertex into each white edge. It is clear
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that the leaves will stay white. The global marking is defined to be the image
under the contraction.

The second map i+ is given as follows. Remove all black vertices with
valence = 2 and replace each black vertex of valence > 2 by the binary tree,
with all branches to the left.

It is clear that 7w is surjective and 7o 0 i0o = id.

Lemma 2.29. These maps behave well with respect to the differential. We
have To (0(T)) = 0T (T) and the same for is. And Ts is an operadic map.

Proof. 1t is straightforward to check.
We now come to the main statement of this section:

Theorem 2.30. The topological spaces KW(n) and Cact'(n) are homo-
topy equivalent. Moreover, the homotopy is given by an explicit contraction
U, which descends to the chain level operadic map 7 : CC(KW) —
CC.(Cact'), where we used the isomorphisms of operads CCy(KW) ~ T,
and CC,(Cact') ~ TPP to pull back the map 7.

Proof. First it is clear that @ contracts onto the image of i%2P, which gives the
desired statement about homotopies. We see that any cell of 7, is contracted
to a cell of lower dimension as soon as there is a black vertex whose valence
is greater than 3, so that these cells are sent to zero. If the vertices only have
valence 3, then the black subtrees are contracted onto the image of i,, which
yields a cell of the same dimension indexed by the tree 7o (7). Finally, since
Too is an operadic map and CC,(Cact') is an operadic chain model for the
little discs, we deduce that CC,(KW) also has this property.

Corollary 2.31. KW is a cell model for the little discs operad whose cells are
indexed by T .

Remark 2.32. This remark should be seen in conjunction with Remark 2.23.
We have identified a natural cell model for the minimal operad of [KS]. This
is, however, not smooth. We can thicken it by the procedure above to obtain
the smooth model Cact . Its dimension is, however, too large, and some cells
will have to operate as 0. We do wish to point out that there is an inclusion
of the cells of KW into Cact,, and indeed there are cells which correspond
to 7. So it seems that finding a smooth and minimal cell model for the
Aso-Deligne conjecture is not possible.

The Versions for the Framed Little Discs

We do not wish to go through all of the details again. Going over to the framed
versions means taking a bicrossed product on the topological level, which on
the cell level can be realized by inducing Z/27Z decorations as in Section 2.2.
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3 Operations of the Cell Models on Hochschild
Complexes

In this section we use the tree language in order to naturally obtain operations
on the Hochschild complex.

3.1 The Cyclic Deligne Conjecture

In this subsection we give the full details of an action of the model Cacti of
the framed little discs on the Hochschild complex.

Assumption

Now we fix A to be a finite-dimensional associative algebra with unit 1 to-
gether with an inner product 1 : A® A — k which is non-degenerate and both
(i) invariant: n(ab,c) = n(a,bc) and (ii) symmetric: n(a,b) = n(b,a). Such an
algebra is called a Frobenius algebra.

We will use CH to stand for Hochschild cochains CH"(A,A4) :=
Hom(A®", A).

Actually, it would be enough to have a non-degenerate inner product 7 on
A ~ CH(A, A) for which (i) holds on HH"(A, A), that is, up to homotopy
for A. The condition (ii) will then hold automatically up to homotopy, since
CH’(A, A) is commutative up to homotopy [G].

If one wishes to relax furthermore the other conditions “up to homotopy,”
one can fix that n needs to be non-degenerate only on HHO(A, A) and require
only that HHO(A, A) be finite-dimensional. In this case, the operadic opera-
tions defined below will give operations f : A®™ — HHY(A, A) and will thus
give actions only up to homotopy. This is enough to get the BV structure on
CH™(A, A), but not quite enough to lift the action to the chain level.

Notation

Let (e;) be a basis for A and let C := e;n" ® e; be the Casimir element, i.e.,
7" is the inverse to n;; = n(ei, e;).
With the help of the non—degenerate bilinear form, we identify

CH"(A, A) = Hom(A®", A) = A @ A*®" o2 g*OntL, (21)

‘We would like to stress the order of the tensor products we choose. This is the
order from right to left, which works in such a way that one does not need to
permute tensor factors in order to contract.
_ If f € Hom(A®", A), we denote by f its image in A*®"+1 explicitly
flag,...,an) =n(ag, f(ai,...,an)).

With the help of (21) we can pull back the Connes operators b and B (see,
e.g., [L]) on the spaces A®" to their duals and to Hom(A®", A).
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Also let ¢t : A®™ — A®" he the operator given by performing a cyclic
permutation (a1,...,a,) — (=1)""Y(an,a1,...,an_1) and N :=1+t+---+
Tl A®n  A®n,

It is easy to check that the operator induced by b is exactly the Hochschild
differential; we will denote this operator by 9. We write A for the operator
induced by B. It follows that A2 =0 and A9 4+ 0A = 0.

Assumption

To make the formulas simpler we will restrict to normalized Hochschild
cochains CH' (A, A), which are the f € CH"(A, A) that vanish when eval-
uated on any tensor containing 1 € A as a tensor factor (see, e.g., [L]).
On the normalized chains the operator A is explicitly defined as follows: for

feCH" (A, A),

n(ag, (Af)(a1,...,an—1)) :=n(1, f o N(ag,...,an)). (22)

Correlators from Decorated Trees

We will use the notation of tensor products indexed by arbitrary sets; see,
e.g., [D]. For a linearly ordered set I denote by |J; a; the product of the a; in
the order dictated by I.

Definition 3.1. Let 7 be the realization of a spine-decorated planted planar
b/w tree, v € V4, and f € C_Hlv‘(A, A). We define Y (v, f) : AP — k by

Y(”af)< 03¢ “i) =1 <“F:,1<o>’f (“F;ﬁ(l)®"‘®0F;}<|v>)>'

1E€EF, (1)

Set Vieint = V(7)) \ (Viail U {Vroot } U Vipine). For v € Viine we define
Y (v) := AP — k by

Y(U)( @ ai> =7 (1, U ai>.
iEF, (1) i€,

Definition 3.2. Let 7 be the realization of a planar planted b/w tree with
n free tails and k labels and f; € CH (A4, A). For such a tree there is a
canonical identification {vroot } U Vetait — {0, 1, ..., |Vian|} which is given by
sending vyo0t to 0 and enumerating the tails in the linear order induced by
the planted planar tree. Set Ein(7) := E(7) \ (Etait U Eroot U Espine) and for
(ag, ..., an) € A®{root }UVtail) gat
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Y () (f1y.--, fr)(ao, .., an)

— ® Y (v, frab(v)) ® Yy

VEVy (T) VEVjming

‘ R al| ® 1)ecerae

1€ Ftail (T)U{ Froot } J€ Fspine

(23)

In other words, decorate the root flag by ag, the free tail flags by aq, ..., an,
the spines by 1, and the edges by C' and then contract tensors according to the
decoration at the white vertices while using the product at the black vertices.

Definition 3.3. We extend the definition above by

Y(7)(f1,-- s fe)(ao, - san) =0 if Jopap-10] # ni =t | fil- (24)

The Foliage Operator

Let F be the foliage operator of [K2] applied to trees. This means that F(7) is
the formal sum over all trees obtained from 7 by glueing an arbitrary number
of free tails to the white vertices. The extra edges are called free tail edges
FEiail, and the extra vertices Vo are defined to be black and are called free
tail vertices.

Using the trees defined in Figure 2, this corresponds to the formal sum
F(1) :== )", ln o, T, where the operadic composition is the one for b/w trees
that are not necessarily bipartite (see [K2]). In our current setup we should
first form F(7) := 3., 7, 0, 7 and then delete the images of all leaf edges
together with their white vertices of the 7,, to obtain F(7).

Signs

The best way to fix signs of course is to work with tensors indexed by edges as
in [K2,KS]. For this, one fixes a free object L (free Z-module or k-vector space)
generated by one element of degree 41 and calculates signs using L®Fw(7)
before applying the foliage operator while using L&Fweisnt after applying the
foliage operator, where Eyeight = Fw U Eroot U Eftail U Espine-

Explicitly, we fix the signs to be given as follows. For any tree 7’ in the
linear combination above, we take the sign of 7/ to be the sign of the permu-
tation which permutes the set Eyecight in the order induced by < to the order
where at each vertex one first has the root if applicable, then all non—tail
edges, then all the free tails, and if there is a spine edge, the spine.

The explicit signs above coincide with usual signs [L] for the operations
and the operators b and B and also coincide with the signs of [G] for the o;
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and hence for the brace operations [Ge,Kad,GV]. The signs for the operations
corresponding to operations on the Hochschild side are fixed by declaring the
symbols “” and “{” to have degree one.

Definition 3.4. FﬂT € 7Tbpdec’ Jot # be its realization. We define the
operation of 7 on CH(A, A) by

n(ao, 7(f1, .-, fn)(ar,...,an)) =Y (F(F)(f1,. - fn)(ao,...,an). (25)

Notice that due to Definition 3.3, the right-hand side is finite.

Examples

We will first regard the tree O’ with one white vertex, no additional black

— <N
edges, no free tails, and a spine; see Figure 2. For a function f € CH we
obtain

Y(F(O)(f)(ao, ... an-1) =n(1, f(ao,...an_1)
+ (—1)”_1f(an_1, agy - .-, an_2) + - )
= 77((10’ A(f)((h, R an—l))

Let T,’m be the tree of Figure 2. Then the operation corresponds to

Y(F(,))(f191,-- s 9n)(ao, - ., an)
= 77(13 f{/giJrl, <oy 9ns g1 - ,gi}(a(2)a ao, a(l)))a

where N = |f| + > |g:| — n — 1 and we used the shorthand notation

915 90,915+ -, g5 a2y, a0, a)) = Z Tf(aks1ss i, -1,
gj+1(aij+1’ ey a/ij+1+|g]-+1|)? ... 7ain—1,gn(ain? .. 7ai"+|g"\)a ...,aN, ao,

al?"'?ail—lﬂgl(a‘ilﬁ"'?a/i1+|gl‘)7"'?a/ij—:l?gj(a‘ijﬂ"'7a/ij+‘gj|)7"'7ak)7

where the sum runs over 1 <4; < -+ <4 <. <k <o <y <o <
in <N :ip+|g1| <dig1,45 + |g;] < k and the signs are as explained above.

Theorem 3.5. [K3] (The cyclic Deligne conjecture) The Hochschild cochains
of a finite-dimensional associative algebra with a non—degenerate, symmetric,
invariant bilinear form are an algebra over the chains of the framed little discs
operad. This operation is compatible with the differentials.

Proof. We will use the cellular chains CC.(Cacti') as a model for the chains
of the framed little discs operad. It is clear that Definition 3.4 defines an
action. On the Hochschild side, the o; operations are substitutions of the type
fi = ¥(g1,...,gn). For CC4(Cacti') the 7 o; 7" operations are the pullback
via the foliage operator of all possible substitutions of elements of F(7),7 €
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CC.(Cacti') into the position i of F(7'). The action Y then projects onto
the substitution f; = %¥(g1,...,9gn), so that the action is operadic. Explicitly,
the substitution ¢ of ¢’ for planted planar bipartite trees with a decoration
dec’ and additional free tails is given as follows: Say the number of tails of ¢’
coincides with |F(v;)|. In this case replace the vertex v; of ¢, its edges, and
the black vertices corresponding to the edges with the tree ¢’ matching the
flags of v; with the tails of ¢’ by first matching the root edge with the marked
flag of v; and then using the linear order. Lastly, contract the image of the
root flag. Otherwise, set t of ' = 0. With this definition it is easy to see that
F(rot')=F(r)of F(r').

The compatibility of the Hochschild differential with the differential of
the cell complex follows from the relevant statements for 7, and 7°, which
are straightforward but lengthy calculations (see, e.g., [11,K2]), together with
the calculations above Section 3.1, which are easily modified to show that
(00")(f) = A(B(f)) and that (97, ;) (f,91,---,9n) = (07}) (fr 915+ 9n) £
(T{L’i) OFf, 91,y 9n) + >, (T{L’i) (fy915---,0(93),.-.,9n) via an even more
lengthy but still straightforward calculation. This then verifies the claim
in view of the compatibility of the differentials and the respective operad
structures.

Alternatively, in view of the operation of the foliage operator, the compat-
ibilities follow from a straightforward translation of trees with tails into oper-
ations on the Hochschild complex. The compatibility of the differential then
follows from the almost identical definition of the differential for trees with
tails of [K2] and that in the Hochschild complex as 9(f) = fou—(—1)/luof.

Corollary 3.6. The normalized Hochschild cochains of an algebra as above
are a GBV algebra up to homotopy in the sense of Proposition 2.12.

This could of course have been checked directly without recourse to the
operation of a chain model, but we do not know of any source for this result.
It also seems to be difficult to guess the right homotopies as Gerstenhaber did
in the non-cyclic case [G].

Corollary 3.7. Over a field of characteristic zero, the Hochschild cohomology
of an algebra as above is a BV algebra such that the induced bracket is the
Gerstenhaber bracket.

Lastly, since our second version of cellular chains of Proposition 2.9 is a
subdivision of the cell decomposition of Proposition 2.7, we can also use the
latter cell decomposition.

Corollary 3.8. The normalized Hochschild cochains of an algebra as above
are an algebra over the semidirect product over a chain model of the little
discs operad and a chain model for the operad S built on the monoid S*.
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Remark 3.9. The operation of the little discs operad by braces, viz. the origi-
nal Deligne conjecture as discussed in [K2] for Frobenius algebras, corresponds
to the decorations in which dec* = 0 and the decorated edge is always the
outgoing edge.

Remark 3.10. In Theorem 3.5 we can relax the conditions and implications
as explained in Section 3.1.

3.2 The Araki-Kudo—Cohen, Dyer—Lashof Operations
on the Hochschild Complex

By the positive answer to Deligne’s conjecture, the Hochschild complex be-
haves as if it were a double loop space. So we should expect operations £; and
¢1 on it. Indeed, they were found by Westerland [We] for p = 2 and by Tourt-
chine [Tou] for general p. We wish to point out that the cells of Section 2.4
naturally induce these operations. It is easy to see that £; is just the iterated
o product and (; is the product of such iterations. That is,

fi(2) =zo(wo(--0m)- ). (26)

Note that the result is not novel, only the cells of Section 2.4 are. This
description, however, simplifies matters very much.

3.3 The A .-Deligne Conjecture

Theorem 3.11. There is an action of the cellular chains model CC.(KW)
on the Hochschild cochain complex of an A -algebra.

Proof. This follows from the theorem above in conjunction with the theorem
of [KS] that the operad 7 acts in a dg fashion on C*(A4, A).

Remark 3.12. We recall that the action is given by viewing the tree as a
flow chart. Given functions f1,..., f,, the action of 7 € T (n) is defined as
follows. First “insert” the functions f; into the vertex labeled by ¢ and then
view the tree as a flow chart using the operations p, of the A, -algebra at
each black vertex of arity n and the brace operation h{gi,...,gr} at each
white vertex marked by h of arity k to concatenate the function. Here the
brace operation [Ge, Kad, GV] is given by

R{g1,...,gn}(x1,...,2N)

= Z :I:h(xl, . ,1’2'1,1,‘(]1(1'2'1, . ,$i1+|gl|),
1<iy <o <y < || :
ij +195] < ijea

s i1, G Ty - T plgnl)s - IN)- (27)



160 Ralph M. Kaufmann
3.4 The Cyclic A, Case

We assume that we have an A -algebra A which is Frobenius in the sense
that there is a nondegenerate symmetric inner product such that the higher
multiplications pu, are all cyclic with respect to the inner product. These are
sometimes called cyclic A-algebras, see [Ko2].

Theorem 3.13. The cyclic Ay, conjecture holds.

Sketch of proof. For the proof of this statement use spine-decorated stable
trees, that is, trees in 7., together with a spine decoration. First they give
compatible operations, and second, they index a cell model of the framed
little discs. Both these claims follow from constructions completely analogous
to the ones above. 0O

4 The Moduli Space vs. the Sullivan PROP

There are two generalizations of interest for the construction of the previous
paragraph. The first is given by generalizing the restriction In to Out to the
case of several “Out”s, and the second is given by going to the full moduli
space. Surprisingly, these lead to slightly different results. The first route
leads one into the realm of Penner’s combinatorial compactification, and it
fits perfectly with the algebra of the Hochschild complex. However, it does
not exhaust moduli space. Alternatively, one can expand to moduli space and
even omit invoking the compactification, but the price one pays is in terms of
further construction on the Hochschild side to make things match.

4.1 Ribbon Graphs and Arc Graphs
A Short Introduction to the Arc Operad

In this section, we start by giving a brief review of the salient features of
the Arc operad of [KLP] which is reasonably self-contained. The presentation
of the material closely follows Appendix B of [K1]. For full details, we refer
to [KLP]. In addition to this review, we furthermore introduce an equivalent
combinatorial language which will be key for the following, in particular for
[K5]. Simultaneously, we introduce new cell-level structures and then go on
to define new cell-level operads and extensions of the Arc operad structure.

4.2 Spaces of Graphs on Surfaces

Fix an oriented surface Fy, of genus g with s punctures and 7 boundary
components which are labeled from 0 to r — 1, together with marked points
on the boundary, one for each boundary component. We call this data F' for
short if no confusion can arise.
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The piece of the Arc operad supported on F' will be an open subspace of
a space Ajp .. The latter space is a CW complex whose cells are indexed by
graphs on the surface F, up to the action of the pure mapping class group
PMC, which is the group of orientation-preserving homeomorphisms of F/
modulo homotopies that pointwise fix the set which is the union of the set of
the marked points on the boundary and the set of punctures. A quick review
in terms of graphs follows.

Embedded Graphs

By an embedding of a graph I' into a surface F', we mean an embedding
i:|I'| — F with the conditions

(i) I" has at least one edge.
(ii) The vertices map bijectively to the marked points on the boundaries.
(iii) No images of two edges are homotopic to each other by homotopies fixing
the endpoints.
(iv) No image of an edge is homotopic to a part of the boundary, again by
homotopies fixing the endpoints.

Two embeddings are equivalent if there is a homotopy of embeddings of
the above type from one to the other. Note that such a homotopy is necessarily
constant on the vertices.

The images of the edges are called arcs. And the connected components
of F'\ i(I") are called complementary regions.

Changing representatives in a class yields natural bijections of the sets
of arcs and connected components of F'\ ¢(I") corresponding to the differ-
ent representatives. We can therefore associate to each equivalence class of
embeddings its sets of arcs together with their incidence conditions and con-
nected components—strictly speaking, of course, the equivalence classes of
these objects.

Definition 4.1. By a graph « on a surface we mean a triple (F, I’} [i]), where
[i] is an equivalence class of embeddings of I" into that surface. We will denote
the isomorphism class of complementary regions by Comp(vy). We will also
set |y| = |Er|. Fixing the surface F, we will call the set of graphs on a
surface G(F).

A Linear Order on Arcs

Notice that due to the orientation of the surface, the graph inherits an in-
duced linear order of all the flags at every vertex F'(v) from the embedding.
Furthermore, there is even a linear order on all flags by enumerating the flags
first according to the boundary components on which their vertex lies and
then according to the linear order at that vertex. This induces a linear order
on all edges by enumerating the edges by the first appearance of a flag of that
edge.
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The Poset Structure

The set of such graphs on a fixed surface F is a poset. The partial order is
given by writing (F, I, [i']) < (F, I [i]) if I'"" is a subgraph of I" with the same
vertices and [¢'] is the restriction of [i] to I". In other words, the first graph
is obtained from the second by deleting some arcs.

We associate a simplex A(F, I, [i]) to each such graph, where A is the
simplex whose vertices are given by the set of arcs/edges enumerated in their
linear order. The face maps are then given by deleting the respective arcs.
This allows us to construct a CW complex out of this poset.

Definition 4.2. Fix F' = F,; . The space A;’,, is the space obtained by glue-
ing the simplices A(F, I, [i']) for all graphs on the surface according to the
face maps.

The pure mapping class group naturally acts on A’g“’;n and has finite
isotropy [KLP].

Definition 4.3. The space Aj . is defined to be A7, /PMC.

CW Structure of A;’T

Definition 4.4. Given a graph on a surface, we call its PMC orbit its arc
graph. If 7 is a graph on a surface, we denote by % its arc graph or PMC
orbit. We denote the set of all arc graphs of a fixed surface F' by G(F). A
graph is called exhaustive if there are no vertices v with val(v) = 0. This
condition is invariant under PMC, and hence we can speak about exhaustive
arc graphs. The set of all exhaustive arc graphs on F is denoted by G (F).

Notice that since the incidence conditions are preserved, we can set || =
|v], where v is any representative, and likewise define Comp(%). We call an
arc graph exhaustive if it contains no isolated vertices, that is, vertices with
val(v) = 0.

Now by construction it is clear that A . is realized as a CW complex that
has one cell for each arc graph 7 of dimension |y| — 1. Moreover, the cell for a
given class of graphs is actually a map of a simplex whose vertices correspond
to the arcs in the order discussed above. The attaching maps are given by
deleting edges and identifying the resulting face with its image. Due to the
action of PMC, some of the faces might become identified by these maps, so
that the image will not necessarily be a simplex. The open part of the cell
will, however, be an open simplex. Let C(&) be the image of the cell, and
C(@) its interior. Then

Agr = Uae?(FS )0(5‘)’ Agr = Hae?(F;,,,)C(@) (28)

9,7

Let A" denote the standard m-simplex and A its interior. Then C(y) =
RQF‘/R>O = AlErI=1 —. ¢(I), which depends only on the underlying graph
I of ~.
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This also means that the space Aj . is filtered by the cells of dimension

s

less than or equal to k. We will use the notation (A;T)Sk for the pieces of
this filtration.

Open-Cell Cell Complex

It is clear by construction that the Arc operad again has a decomposition into
open cells:

Arcg(n) =1L g g"H)C’(’y). (29)

Again C(y) = ]Rl Fl/R o = AlEri=1 .= ¢(I") depends only on the underlying
graph I of .

We will denote the free Abelian group generated by the C(a) as above
by C5(Arc);(n). We will write C; (Arc)(n) = I, sC; (Arc);(n) and C;(Arc) =
IT,Ck(Arc)(n). We choose the notation to reflect the fact that we are strictly
speaking not dealing with cellular chains; however, see [K4].

The group C(Arc)(n) is also graded by the dimension of the cells; we will
write C(Arc)(n)* for the subgroup generated by cells of dimension k, and
we will also write C(Are)(n)<F for the subgroup of cells of dimension < k.
It is clear that C(Arc)(n)=* induces a filtration on C?(Arc)(n) and that the
associated graded is isomorphic to the direct sum of the Cz(Arc)(n)*:

Gr(Ci(Are)) := Gr (CL(Arc)(n @C (Arc)k (30)

The differential 0 of A7 , also descends to Cj;(Arc) and Gr(C;(Arc)) b
simply omitting the cells Wthh are not in Arc. Applying the differential tw1ce
will kill two arcs, and each original summand will either be twice treated as
zero or appear with opposite sign as in Ay ... Hence the differential squares
to zero.

Relative Cells

The complex Cj(Arc); (n) and the isomorphic complex Gr(C;(Arc))g (n) can

be identified with the complex of relative cells CC, (A, A\ Arc).

Elements of the AZ’T as Projectively Weighted Graphs

Using barycentric coordinates for the open part of the cells, the elements of
A; . are given by specifying an arc graph together with a map w from the
edges of the graph Er to R+ assigning a weight to each edge such that the
sum of all weights is 1.

Alternatively, we can regard the map w : Er — R+ as an equivalence class
under the equivalence relation w ~ w’ if A € RyoVe € Er w(e) = dw'(e).
That is, w is a projective metric. We call the set of w(e) the projective weights
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of the edges. In the limit, when the projective weight of an edge goes to
zero, the edge/arc is deleted; see [KLP] for more details. For an example see
Figure 10, which is discussed below. .

An element o € Aj | can be described by a tuple a = (F, I', [i], w), where I’

and I" are as above, [i] is a PMC orbit of an equivalence class of embeddings,
and w is a projective metric for I'. Alternatively, it can be described by a
tuple (§,w), where ¥ € G(F) and w is a projective metric for the underlying
abstract graph I'.

Example 4.5. .A872 = S'. Up to PMC there is a unique graph with one edge
and a unique graph with two edges. The former gives a zero-cell and the latter
gives a one-cell whose source is a 1-simplex. Its two subgraphs with one edge
that correspond to the boundary lie in the same orbit of the action of PMC
and thus are identified to yield S*. The fundamental cycle is given by A of

Figure 10.
@ .

®
0 _ 4l
@ AOJ_S

Fig. 10. The space A872 is given as the CW decomposition of S* with one 0-cell
and one 1-cell. It can be thought of as the quotient of the interval in which the
endpoints are identified by the action of the pure mapping class group. The generator
of CC.(S') is called A.
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4.3 Topological Operad Structure
The Spaces Arc(n)

We begin by reviewing the construction of [KLP]. We then recast it in a
purely combinatorial way. This will allow us to define the actions of [K5]
more simply, but also allow us to show that although Arcy is not an operad
on the topological level, it is a rational operad and gives rise to a cellular
operad.

Definition 4.6. We define Arcy(n) C Aj ., to be the subset of those
weighted arc graphs whose arc graph is exhaustive. We define Arc(n) :=

Hs,geN .A?"cg(n).G

Notice that the space Arc(n) carries a natural operation of S,, which
permutes the labels {1,...,n} and one of S, 11 which permutes the labels
{0,...,n}. Also notice that the spaces Arcj (n) inherit the grading and filtra-
tion from Aj(n). This is also true for their unions Arc(n), and we will write
Arc(n)<F for these pieces. That is, if a € Arc(n)=* then |E(I'(a))| < k + 1.

Topological Description of the Glueing [KLP]

To give the composite o o; ' for two arc families a = (F, I', [i],w) € Arc(m)
and o = (F', I",[i'],w’) € Arc(n) one most conveniently chooses metrics on
F and F’. The construction does not depend on the choice. With this metric,
one produces a partially measured foliation in which the arcs are replaced
by bands of parallel leaves (parallel to the original arc) of width given by the
weight of the arc. For this we choose the window representation and also make
the window tight in the sense that there is no space between the bands and
between the endpoints of the window and the bands. Finally, we put in the
separatrices. The normalization we choose is that the sum of the weights at
boundary ¢ of a coincides with the sum of the weights at the boundary O;
we can also fix them both to be one. Now when glueing the boundaries, we
match up the windows, which have the same width, and then just glue the
foliations. This basically means that we glue two leaves of the two foliations
if they end on the same point. We then delete the separatrices. Afterward, we
collect together all parallel leaves into one band. In this procedure, some of
the original bands might be split or “cut” by the separatrices. We assign to
each band one arc with weight given by the width of the consolidated band.
If arcs occur, which do not hit the boundaries, then we simply delete these
arcs. We call these arcs or bands “closed loops” and say that “closed loops
appear in the glueing.”

SUnfortunately there is a typo in the definition of Arc(n) in [KLP], where []
was inadvertently replaced by the direct limit.
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Theorem 4.7. [KLP] Together with the glueing operations above, the spaces
Arc form a cyclic operad.

In [KLP] we furthermore obtained the following theorem.

Theorem 4.8. [KLP] The chains of the Arc operad carry the structure of a
GBYV algebra up to homotopy. That is, it has a natural Gerstenhaber algebra
structure up to homotopy and a BV operator up to homotopy, and they are
compatible.

The Dual Graph

Informally the dual graph of an element in Arcy is given as follows. The
vertices are the complementary regions. Two vertices are joined by an edge
if the complementary regions border the same arc. Due to the orientation of
the surface, this graph is actually a ribbon graph via the induced cyclic order.
Moreover, the marked points on the boundary make this graph into a marked
ribbon graph. A more precise formal definition is given in [K4].

4.4 DArc

The whole theory of arc graphs can be looked at in two flavors, either with
projective metrics as we did, or with metrics proper, that is, without modding
out by the overall scaling. This results in a completely equivalent theory. Here
the operad Arc is replaced by the operad DArc, where the “D” stands for
“deprojectivized.”

The Relation to Moduli Space

An interesting subspace of DArc is the space DArcy, which consists of the
arc graphs whose complementary regions are all polygons.

Theorem 4.9. [K}] The space DArcy is equivalent to Mglf;:l, that is, the
moduli space of curves of genus g with n marked points and a tangent vector
at each of these points. The glluemg operations on DArc induce the structure
of a rational operad on M;;;LH.

4.5 Cells

There are several cell models hidden in this construction. First A is a cell
complex from the start.

Second, we wish to point out that the arc graphs actually index cells of a
relative cell complex. This is in complete analogy to the graph complex that
describes the moduli space M, [Kol, CV], with the addition that we are
not dealing with a projectivized version, since the tangent vectors have real
lengths.
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4.6 Digraphs and Sullivan Chord Diagrams
Ribbon Digraphs

A ribbon graph is a digraph I" together with a Z/2Z labelling of the cycles
of I': i/o : {cycles of I'} — Z/2Z. We call the cycles i/o~1(0) =: Outr the
outgoing ones and i/0~1(1) =: Iny the incoming ones. A digraph is said to be
of type (n,m) if [Inr| = n and |Outpr| = m. We will denote the set of these
graphs by Rib"/°.

A ribbon digraph is called perfectly partitioned if i/o(:(f)) = 1 —i/o(f)
for every flag f. That is, each edge is part of one input and one output cycle.
We will call the set of these graphs Rib*~°.

An (S1,S2)-labeled ribbon digraph is a ribbon digraph together with bi-
jective maps In — S; and Out — S3. We denote the induced map on InIT Out
by Lab. If (S7,S2) is not mentioned, we will use S; = 7 and Sy = 7 as the
default indexing sets for a graph of type (n,m).

Sullivan Chord and Ribbon Diagrams

There are many definitions of Sullivan chord diagrams in the literature; we
will use the following conventions.

Definition 4.10. A Sullivan chord diagram is a marked labeled ribbon di-
graph which satisfies the following condition:

(i) after deleting the edges of the incoming cycles one is left with a forest, i.e.,
a possibly disconnected set of contractible graphs.

Remark 4.11. In terms of the dual arc picture, this means that there is a
partition of the boundary components of the surface into In and Out and arcs
only run from In to Out and Out to Out. A complete list of all versions of
Sullivan chord diagrams and their dual Arc pictures can be found in [K4].

The most important candidate for us will be a homotopically equivalent
version of contracted diagrams.

Definition 4.12. We let Arczf_)o be weighted arc graphs on surfaces with
marked inputs and outputs such that

1. All arcs run from In to Out.
2. The sum of the weights on each In boundary is 1.

The importance of this space is that it is the analogue of the normalized
cacti, that is, it gives a cell model for the Sullivan PROP.

Theorem 4.13. [K/] The subspaces %’f’o when bigraded by the number of
In and Out boundaries and endowed with the symmetric group actions permut-
ing the labels form a topological quasi-PROP, i.e., a PROP up to homotopy.
It is naturally a CW complexr whose cells are indexed by the corresponding
graphs, and the induced quasi-PROP structure on the cell level is already a
PROP structure.
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4.7 Graph Actions, Feynman Rules, and Correlation Functions
Operadic Correlation Functions

In this section, we introduce operadic correlation functions, which can be
thought of as the generalization of an algebra over a cyclic operad to the dg
setting. In order to get to the main definition, we first set up some notation.

Given a pair (A, C') where A is a vector space and C' = 3" cM®@c?) € AR A,
we define the following operations:

0; : Hom(A®" ™! k) @ Hom(A®™ ! k) — Hom(A®" ™™ k), (31)
where for ¢ € Hom(A®" 1 k) and ¢ € Hom(A®™+! k),

poiP(ar ® -+ @ antm)

- Z¢(a1®~ +®0i1 0 ®ipm @+ @) (P R R Daiym_1).
(32)

Definition 4.14. A set of operadic correlation functions for a cyclic linear
operad O is a tuple (4, C,{Y,}), where A is a vector space, C = > ¢V ®
c? € A® A is a fixed element, and Y, 41 : O(n) — Hom(A®"+1 k) is a
set of multilinear maps. The maps {Y,,} should be S,,+1 equivariant, and for
opn € O(n), 0py € O(m),

Yn+m (Opn O4 Opm) = Yn+1(0pn) 04 Ym+1(0pm)a (33)

where the o; on the left is the multiplication of equation (31) for the pair
(A4,C).

We call the data (A,{Y,}) of an algebra and the S, ; equivariant maps
correlation functions or simply correlators for O.

Example 4.15. Correlators for algebras over cyclic operads. An example
is given by an algebra over a cyclic operad. Recall that this a triple
(A, (, ),{pn}), where A is a vector space, { , ) is a non—degenerate bi-
linear pairing, and p, : O(n) — Hom(A®", A) are multilinear maps, also
called correlators, that satisfy

(i) p(opn 0; opm) = p(oprn) o; p(opm), where o; is the substitution in the ith
variable.
(ii) The induced maps Y,,+1 : O(n) — Hom(A®" 1 k) given by

Yot1(opn)(ao ® -+ @ an) := {ao, plopn) (a1 ® - - @ ay)) (34)
are S, 41 equivariant.

Notation 4.16. Given a finite dimensional vector space A with a non-
degenerate pairing ( , ) = n € A®@ A, let C € A® A be dual to g
under the isomorphism induced by the pairing and call it the Casimir el-
ement. It has the following explicit expression: Let e; be a basis of V, let
ni; = (ei,e;) be the matrix of the metric, and let % be the inverse matrix.
Then C =3, e @e;.
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4.8 Operadic Correlation Functions with Values
in a Twisted Hom Operad

Definition 4.17. Let (A, (, ),{Y,}) be as above. And let H = {H(n)} with
H(n) C Hom(A®™, A) as k-modules be an operad where the S,, action is the
usual action, but the operad structure is not necessarily the induced operad
structure. Furthermore, assume that py,,, € H(n). We say that the {Y,}
are operadic correlation functions for O with values in H if the maps p are
operadic maps from O to H. We will also say that we get an action of O with
values in H.

Signs

As in the case of the Deligne conjecture, one twist which we have to use is
dictated by picking sign rules. In the case of Deligne’s conjecture this could
be done by mapping to the brace operad Brace (see, e.g., [K2]) or by twisting
the operad Hom by lines of degree 1 (see, e.g., [KS]). In what follows, our
actions will take values on operads that are naturally graded, and moreover,
we will identify the grading with the geometric grading by, e.g., the number
of edges or the number of angles. The signs will then automatically match
up if we use the procedure at the same time for both the graph side and the
Hom side, i.e., for the operad H. In fact, this approach unifies the two sign
conventions mentioned above on the subspace of operations corresponding to
LT'reecy.

Definition 4.18. A quasi-Frobenius algebra is a triple (A,d,( , )), where
(A,d) is a unital dg-algebra whose homology algebra H := H(A,d) is finite-
dimensional and has a non—degenerate pairing (, ) and is a Frobenius algebra
for this pairing. A quasi-Frobenius algebra with an integral is a triple (4, d, [),
where [ : A — k is a linear map such that

(i) Vae A: [da=0;

(ii) (A4,d,(, )) is a quasi-Frobenius algebra, where (a,b) := [ ab. The cocycles
of a quasi-Frobenius algebra with an integral are the subalgebra Z =
ker(d) C A of the algebra above.

4.9 Arc“4 Correlation Functions

In order to present the correlation functions, we need to partition the arc
graphs and endow them with angle markings. Given an arc graph «, it gives
rise to a formal sum of arc graphs P(«), where each summand is obtained
from « by inserting finitely many parallel edges. See Figure 11 for one such
summand. This operation is the analogue of the foliage operator. An angle
marking is an angle marking of the arc graph. The corresponding space is
called A<. In keeping with the notation already in place, Arc“ is the subspace
of graphs that hit all boundaries, and elements of Arci are also quasifilling.
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Given an arc graph, there are two standard angle markings. The first marks all
angles by 0 except the angles spanned by the smallest and biggest element at
each boundary. The second marking marks all angles by 1. When partitioning
an angle-marked graph, we mark all new angles by 1.

The idea of how to obtain the correlation functions for the tensor algebra
is very nice in the Arc picture, where it is based on the polygon picture. This
polygon picture can be thought of as an IRF (interaction 'round a face) picture
for a grid on a surface which is dual to the ribbon picture. For this we would
modify the arc graph by moving the arcs a little bit apart as described. Then
the complementary regions of partitioned quasifilling arc graphs, denoted by
PG#, are 2k-gons whose sides alternately correspond to arcs and pieces of
the boundary. The pieces of the boundary correspond to the angles of the
graph, and of course any polygonal region corresponds to a cycle of the arc
graph. If the graph of has an angle marking, then the sides of the polygons
corresponding to the boundaries will also be marked. We fix the following
notation. For an angle-marked partitioned arc graph o that is quasifilling,
let Poly(a?) be the set of polygons given by the complementary regions of o
when treated as above. See Figure 8 for an example. For m € Poly(a?), let
Sides” be the sides corresponding to the angles which are marked by 1, and
Sides’(a?) be the union of all of these sides. If we set £ (I') = (mk“)~1(1),
let there is a natural bijection between /*(a?) and Sides’(aP).

For some purposes it is convenient to contract the edges of the 2k-gon
that belong to pieces of the boundary and label the resulting vertex by the
corresponding boundary label.

Correlation Functions on the Tensor Algebra of an Algebra

Fix an algebra A with a cyclic trace, i.e., a map [ : A — k which satisfies
fai---a, == [anai---an_1, where £ is the standard sign.
Now for m € Poly(a?), set

Y(w)( X as>—/ II e (35)

seSides’ () s€Sides’ ()

Notice that we only have a cyclic order for the sides of the polygon, but [ is
(super)-invariant under cyclic permutations, so that if we think of the tensor
product and the product as indexed by sets (35), it is well defined.

For an angle marked partitioned arc family oP set

Y (a?) ® as | = ® Y () ® as |, (36)
s€(mk<)—1(1) mEPoly(ar) s€Sides’ ()

where we used the identification of the set Sides'(a?) = Hﬂepoly(ap)Sides’(ﬂ)
with Z*(aP). Since for each a? € P<G"(n) the set of all flags has a linear
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order, we can think of Y (aP) as a map A®IF@) = "  A®IFE)l - k and
furthermore as a map to TA®" — k by letting it be equal to equation (36)
as a map from @, A®F @Il C TA®" and setting it to zero outside of this
subspace.
Extending linearly, for an angle-marked arc family o € Arc?, we finally
define
Y(a) :=Y(P(a)). (37)

Correlators for the Hochschild Cochains of a Frobenius Algebra

Let A be an algebra and let C™"(A, A) = Hom(A®", A) be the Hochschild
cochain complex of A. We denote the cyclic cochain complex by CC" (A, k) =
Hom(A®"*1 k). Then one has a canonical isomorphism of CC*(A) =
C*(A,A) as complexes and hence also HC*(A) = H*(A, A), where HC is
Connes’ cyclic cohomology and H is the Hochschild cohomology.

Lemma 4.19. For any Frobenius algebra (A, ( , )), we have canonical isomor-
phisms CC*(A) = C*(A,A) = C*(A,A) and HC*(A) = H*(A,A) = H*(A, A)
induced by the isomorphism of A and A which is defined by the non-degenerate
pairing of A.

Proof. The only statement to prove is the last isomorphism. As mentioned,
the map on the chain level is induced by the isomorphism of A and A defined
by the nondegenerate pairing of A. The fact that the complexes are isomorphic
follows from the well-known fact that the invariance of the pairing (ab, c) =
(a, bey implies that the isomorphism between A and A is an isomorphism of
A bimodules, where the bimodule structure of functions f € A is given by
a' fa'(c) = f(a"ca’); see, e.g., [L].

For any f € C™(A, A) let f € A®" be its image under the isomorphism of
A with A defined by the Frobenius structure of A.

Given pure tensors f; = fURf1i® @ fin, € C" (A, A),i €{0,...,n}, we
write f; = foi ® -+ ® fin, for their image in CC"(A). Fix a € Arc?(n). Now
decorate the sides s € Sides'(a) := (mk“)~'(1) of the complementary regions,
which correspond to pieces of the boundary, by elements of A as follows: for
a side s € Sides’ let j, be its position in its cycle ¢; counting only the sides of
¢; in Sides’ starting at the side corresponding to the unique outside angle at
the boundary given by the cycle. If the number of such sides at the boundary
i is n; + 1, then set f, := fi;.

Now we set

Y(@)(f1, - fa) =Y (P) | & f]- (38)

s€/+(ar)
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Fig. 11. A partitioned arc graph with decorations by elements of A and one of its
decorated polygons. The bold line corresponds to the bold edges.

We extend this definition by linearity if f; € C™ (A, A),i € fi. If the condition
that n; + 1 equals the number of Sides’ at the boundary ¢ is not met, we set
Y (a)(fo,---, fn) = 0. An example of a decorated partitioned surface and its
polygons is given in Figure 11.

Theorem 4.20. [K5] Let A be a Frobenius algebra and let C(A, A) be the
Hochschild complex of the Frobenius algebra. Then the cyclic chain operad of
the open cells of Arc* acts on C(A, A) via correlation functions. Hence so
do all the suboperads, subdioperads, and PROPs of [K}] mentioned in the in-
troduction. In particular, the graph complex of M;;:l, the Moduli space of
pointed curves with fized tangent vectors at each point, act on CH(A, A) by its
two embeddings into Arci. Furthermore, there is a natural operad structure
on the corresponding partitioned graphs P“Arcy, and for this operad struc-
ture the correlation functions are operadic correlation functions with values in
GrCM. Moreover, the operations of the suboperad Tree., correspond to the
operations U and O; induced by Zo as defined in [MS3].

The same formalism also yields operadic correlation functions for the ten-
sor algebra of the cocycles of a differential algebra (A, d) over k with a cycli-
cally invariant trace [ : A — k that satisfies [da = 0 and whose induced
pairing on H = H(A,d) turns H into a Frobenius algebra, i.e., they are
chain-level operadic correlation functions with values in GrCM.

Here GrCM is the associated graded operad of a filtered suboperad of
Hom, which is essentially generated by products, co—products, and shuffles.

Remark 4.21. We wish to point out that strictly speaking, Deligne’s origi-
nal conjecture also only yields correlation functions with values in the Brace
suboperad. This is due to the necessary fixing of signs.
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The Sullivan—Chord Diagram Case

ASSUMPTION: For the rest of the discussion of this subsection let A be a
commutative Frobenius algebra.

4.10 Correlators for A4

In general, we extend the action as follows. Notice that given an arc graph «,
each complementary region S € Comp(G) has the following structure: it is a
surface of some genus g with » > 1 boundary components whose boundaries
are identified with a 2k-gons. Alternating sides belong to arcs and boundaries
as above, and the sides come marked with 1 or 0 by identifying them with
the angles of the underling arc graph. Now let Sides’(S) be the sides which
have an angle marking by 1 and let x be the Euler characteristic of S. We set

Y (9S) ® a ::/ H as | e Xt (39)

s€Sides’(S) s€Sides’(S)

where e := p(A(1)) is the Euler element. For an angle marked partitioned arc
graph of we set

Y (aP) ® ® as = ® Y (9S) ® as

SeComp(a;) \s€Sides’(S) SeComp(a;) se€Sides’(S)
Again, for a € CC,(A%) we simply set
Y(a) = Y(P(a)). (41)

Theorem 4.22. The Y («) defined in equation (41) give operadic correla-
tion functions for CC*(ATCZIHO) and induces a dg-action of the dg-PROP
CC.(Arc,” ) on the dg-algebra CH (A, A) of reduced Hochschild cochains for
a commutative Frobenius algebra A.

The Y (a) also yield correlation functions on the tensor algebra of the
cocycles of a differential algebra (A, d) over k with a cyclically invariant trace
[+ A— k that satisfies [ da =0 and whose induced pairing on H = H(A,d)
turns H into a Frobenius algebra. These correlation functions are operadic
chain-level correlation functions.

Corollary 4.23. The operadic correlation functions descend to give a PROP
action of H.(Arc, °) on H*(A) for a commutative Frobenius algebra A.



174 Ralph M. Kaufmann

4.11 Application to String Topology

Let M be a simply connected compact manifold M and denote the free loop
space by LM and let C.(M) and C*(M) be the singular chains and (co)-
chains of M. We know from [J, CJ] that C,.(LM) = C*(C*(M),C.(M)) and
H.(LM) ~ H*(C*(M),C.(M)). Moreover, C*(M) is an associative dg alge-
bra with unit, differential d, and an integral (M was taken to be a compact
manifold) [ : C*(M) — k such that [ dw = 0. By using the spectral sequence
and taking field coefficients, we first obtain operadic correlation functions Y
for Tree on E* ~ C*(H,H), where H = H*(M). The spectral sequence
converges to H,(LM) and the operadic correlation functions ¥ descend to
induce an operadic action on the homology of the loop space. Except for the
last remark, this was established in [K3].

Theorem 4.24. When taking field coefficients, the above action gives a dg
action of a dg-PROP of Sullivan chord diagrams on the E'-term of a spectral
sequence converging to H.(LM), that is, the homology of the loop space if a
simply connected compact manifold and hence induces operations on this loop
space.

Proof. Recall from [CJ] that the isomorphism C,(LM) = C*(C* (M), C.(M))
comes from dualizing the isomorphism C,(LM) = C,(C*(M))[J]. Calculating
the latter with the usual bicomplex [L], we see that the E'-term is given
by CH,(H*(M)), and dualizing the corresponding E'! spectral sequence, we
get CH*(H*(M), H.(M)), so we get an operation of the E! level. Since the
operation of Tree was dg, it is compatible with the E! differential and hence
gives an action on the convergent spectral sequence computing H.(LM) and
hence on its abutment.

5 Stabilization and Outlook

We have shown that the above methods are well suited to treat the double
loop space nature of the Hochschild complex, string topology, and a moduli
space generalization. The Arc operad is manifestly BV, and since it describes
string topology, it should not go beyond the double loop space. To go to higher
loop spaces we need a stabilization of the arc operad. In the following, we will
give an outlook of the results we aim to prove in the higher loop case.

In this section s = 0.

Definition 5.1. The elements in the complement of Arcy are called non-
effective. Let Arc®* be the suboperad of connected arc families.

Definition 5.2. We define StArcy(n) := lii>nArcCtd, where the limit is taken

with respect to the system o — a0;Op,, @ — Op,0;cr, where Op, € Arc§(2)
is non-effective.

Claim. The spaces St Arcy(n) form an operad.
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S

Fig. 12. The Uz and the U; operations.

Claim. The operad StArcO(n) detects infinite loop spaces, i.e., if X admits
an operadic action of StArc0(n), then it has the homotopy type of an infinite
loop space.

Sketch of proof. We can give a hemispherical construction a la Fiedorowicz
by using the arc graphs for the U; products as given in Figure 12.

Corollary 5.3. StArco(n) has the homotopy type of an infinite loop space.

This can be compared to the theorems of Tillmann and Madsen on infinite
loop spaces and Segal’s approach to CFT.

Notice that the construction above uses only the tree part and indeed, we
make the following claim.

Claim. The suboperad of stabilized linear Chinese trees (cf. [KLP]) has an
operadic filtration StGT'reey in terms of effective genus. The operad linear
StGTreey is isomorphic to the little 2g cubes operad. That is, we get cells for
the U;-operations. A finer filtration gives all k-cubes.

This fits well with the slogan that strings yield all higher-dimensional
objects. It also gives tools to describe the cells for the higher Dyer—Lashof-
Cohen operations.
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