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Introduction

There has long been an intricate relationship between foliations, arc complexes and
the geometry of Teichmüller and moduli spaces [PH, FLP]. The study of string theory
as well as that of topological and conformal field theory has added a new aspect to
this theory, namely to study these spaces not only individually, but together all at
once. The new ingredient is the idea to glue together surfaces with their additional
data. Physically, this can for instance be viewed as stopping and starting time for the
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generation of the world–sheet. Mathematically, the general idea of gluing structures
together in various compatible ways is captured by the theory of operads and PROPs
[May1, BV, MSS]. This theory was originally introduced in algebraic topology to study
loop spaces, but has had a renaissance in conjunction with the deepening interaction
between string theory and mathematics.

The Arc operad of [KLP] specifically provides the mathematical tool for this ap-
proach using foliations. Combinatorially, the underlying elements are surfaces with
boundaries and windows on these boundaries together with projectively weighted arcs
running in between the windows. Geometrically these elements are surfaces with par-
tially measured foliations. This geometric interpretation is the basis of the gluing
operation. We glue the surfaces along the boundaries, matching the windows, and
then glue the weighted arcs by gluing the respective foliations. The physical interpre-
tation is that the mentioned foliations are transversal to the foliation created by the
strings. The details of this picture are given in [KP].

The gluing operation, which is completely natural from the foliation point of view,
yields a surface based geometric model, for a surprising abundance of algebraic and
geometric structures germane to loop spaces, string theory, string topology, loop spaces
as well as conformal and topological field theory. Surprisingly this also includes higher
dimensional structures such as the little k–cubes, Associahedra, Cyclohedra and D–
branes. This is true to the slogan that one only needs strings.

It gives for instance rise to models for the little discs and framed little discs operads,
moduli space and the Sullivan–PROP. These models exist on the topological, the chain
and the homology level. On the chain and homology these operads and PROPs corre-
spond to Gerstenhaber, BV algebras, string topology operations and CFT/string field
theory operations. One characteristic feature is that they are very small compared to
their classical counterparts. Topologically this means that they are of small dimension.
On the chain level this means that they are given by a small cellular model.

A classical result is that the little discs operad detects two–fold loop spaces, con-
sequently so does the arc operad. The classical theory about loop spaces goes further
to state that k–fold loop spaces are detected by the little k cubes or any Ek operad.
This generalized to k =∞. By using a stabilization and a unital fattening of a natural
suboperad of Arc one obtains a surface model for all these operads. A consequence
is a new infinite loop space spectrum coming from the stabilized unital fattened Arc
operad.

Another consequence of the foliation description are natural actions of the chains
on the Hochschild cohomology of associative or Frobenius algebras, lifting the Gersten-
haber algebra structure on the cohomology. This type of action was conjectured by
Deligne and has been a central theme in the last decade. One important application
is that this type of action together with the fact that the little discs are formal as an
operad implies Kontsevich’s deformation quantization.

There is a vast extension of this chain level action, which gives a version of string
topology for simply connected spaces. For this the surface boundaries are classified
as “in” or “out” boundaries. This is the type of setup algebraically described by a
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PROP. In particular, as a generalization of the above results there is a PROP, the
Sullivan–PROP, which arises naturally in the foliation picture. Again there is a CW
model for it and its chains give an action on the Hochschild co–chains of a Frobenius
algebra extending the previous action.

This action further generalizes to a model for the moduli space of surfaces with
marked points and tangent vectors at these marked points as it is considered in confor-
mal field theory and string field theory. Both these actions are given by a discretization
of the Arc operad and their algebra and combinatorics are geometrically explained by
foliations with integer weights.

Finally, there is an open/closed version of this whole theory. This generalizes the
actions as well. On the topological level one consequence of this setup is for instance a
clear geometric proof of the minimality of the Cardy–Lewellen axioms for open/closed
topological field theory using Whitehead moves.

Thus the Arc operad and its variations provide a wonderful, effective, geometric
tool to study and understand the origin of these algebraic structures and give new
results and insights. The explicit homotopy BV equation provided by the arc operad
given in Figure 11 or the geometric representation of the classical ∪i products in Figure
17 may serve as an illustration.

We expect that this foliation geometry together with the operations of gluing will
provide new results in other fields such as cluster algebras, 2+1 dimensional TFTs and
any other theory based on individual moduli spaces.

Scope

The scope of the text is a subset of the results of the papers [KLP, K2, K6, KSchw,
KP, K8, K7, K5, K9] and [KP]. It is the first time that all the various techniques
developed in the above references are gathered together in one text. We also make
some interconnections explicit that were previously only implicit in the total body of
results. The main ones being the stabilization of Arc and the arc spectrum and the
analysis of the S1 equivariant geometry.

For a more self–contained text, we have added an appendix with a glossary con-
taining basic notions of operads/PROPs and their algebras as well as Hochschild co-
homology and Frobenius algebras.

Layout of the exposition.

In this theory there are usually two aspects. First and foremost there is the basic
geometric idea about the structure, and then secondly there is a more technical mathe-
matical construction to make this idea precise. This gives rise to the basic conundrum
in presenting the theory. If one first defines the mathematically correct notions, one has
to wait for quite a while before hearing the punch line. If one just presents the ideas,
one is left with sometimes a formidable task to make mathematics out of the intuitive
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notions. We shall proceed by first stating the idea and then giving more details about
the construction and, if deemed necessary, end with a comment about the finer details
with a reference on where to find them.

The text is organized as follows: In the first section, we introduce the spaces
of foliations we wish to consider. Here we also give several equivalent interpretations
for the elements of these spaces. There is the foliation aspect, a combinatorial graph
aspect and a dual ribbon graph version.

The basic gluing operation underlying the whole theory is introduced in section §2 as
are several slight variations needed later. This leads to the Arc operad, which is a cyclic
operad. We also study its discretization and the chain and homology level operads.
For the homology level, we also discuss an alternative approach to the gluing which
yields a modular operad structure on the homology level. We furthermore elaborate
on the natural S1–actions and the resulting geometry. The chain and homology levels
for instance yield new geometric examples for so–called K–modular operads.

Section §3 contains the explicit description of the little discs and framed little discs
in this framework. Technically there are suboperads of Arc that are equivalent, that is
quasi-isomorphic, to them. This includes an explicit presentation of the Gerstenhaber
and BV structures and their lift to the chain level. In this section we give an explicit
geometric representation for the bracket and the homotopy BV equation, see Figures
9 and 11.

Section §4 contains the generalization to the Sullivan–(quasi)–PROP which governs
string topology and the definition of the rational operad given by the moduli spaces.
There are some fine points as the words “rational” and “quasi–” suggest which are fully
explained.

Another fine point is that the operads as presented do not have what is sometimes
called a unit. This is not to be confused with the operadic unit that they all possess.
Thus is why we call operads with a unit simply “pointed”. For the applications to
String Topology and Deligne’s conjecture the operads need not be pointed. However,
for the applications to loop spaces this is essential. The main point of section §5 is to
give the details of how to include a unit and make the operad pointed. This allows us
to fatten the Arc to include a pointed E2 operad and hence detect double loop spaces.
The other basic technique given in this section is that of stabilization. The result
of combining both adding a unit and stabilization leads to the Ek operads, explicit
geometric representatives for the ∪i products (see Figure 17) and a new spectrum, the
Arc spectrum.

The various chain level actions are contained in §6. The first part is concerned with
Deligne’s conjecture and its A∞, the cyclic and cyclic A∞ generalization. These are
given by actions given by a dual tree picture. The section also contains the action of
the chain level Sullivan PROP and that of moduli space on the Hochschild cochains
of a Frobenius algebra. For this we introduce correlation functions based on the dis-
cretization of the foliations. As a further application we discuss the stabilization and
the semi–simple case.

We close the main text in §7 with a very brief sketch of the open/closed theory.
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Conventions

We fix a field k. For most constructions any characteristic would actually do, but
sometimes we use the isomorphism between Sn invariants and Sn co-invariants in which
case we have to assume that k is of characteristic 0. There is a subtlety about what
is meant by Gestenhaber in characteristic 2. We will ignore this and take the algebra
over the operads in question as a definition.

When dealing with operads, unless otherwise stated, we always take H∗(X) to
mean H∗(X, k), so that we can use the Künneth theorem to obtain an isomorphism
H∗(X × Y, k) ' H∗(X)⊗k H∗(Y ).

1 The spaces

1.1 The basic idea

As any operad the Arc operad consists of a sequence of spaces with additional data,
such as symmetric group actions and gluing maps. There are two ways in which to
view the spaces:

Geometric Version: The spaces are projectively weighted families of arcs on
surfaces with boundary that end in fixed windows at the boundary considered up to
the action of the mapping class group.

An alternative equivalent useful characterization is:
Combinatorial Version: The spaces are projectively weighted graphs on surfaces

with boundaries, where each boundary has a marked point and these points are the
vertices of the graph, again considered up to the action of the mapping class group.

The geometric version can be realized by partially measured foliations which make
the gluing natural, while the combinatorial version allows one to easily make contact
with moduli space and other familiar spaces and operads, such as the little discs, the
Sullivan PROP etc..

1.2 Windowed Surfaces with partially measured foliations

We will now make precise the geometric version following [KLP].

1.2.1 Data and notation Let F = F sg,r be a fixed oriented topological surface of
genus g ≥ 0 with s ≥ 0 punctures and r ≥ 1 boundary components, where 6g − 7 +
4r + 2s ≥ 0. Also fix an enumeration ∂1, ∂2, . . . , ∂r of the boundary components of F
once and for all.

Furthermore, in each boundary component ∂i of F , fix a closed arc Wi ⊂ ∂i, called
a window.
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The pure mapping class group PMC = PMC(F ) is the group of isotopy classes of
all orientation-preserving homeomorphisms of F which fix each ∂i−Wi pointwise (and
fix each Wi setwise).

Define an essential arc in F to be an embedded path a in F whose endpoints lie
in the windows, such that a is not isotopic rel endpoints to a path lying in ∂F . Two
arcs are said to be parallel if there is an isotopy between them which fixes each ∂i−Wi

pointwise (and fixes each Wi setwise).
An arc family in F is the isotopy class of a non–empty unordered collection of

disjointly embedded essential arcs in F , no two of which are parallel. Thus, there is a
well-defined action of PMC on arc families.

1.2.2 Induced data Fix F . There is a natural partial order on arc families given by
inclusion. Furthermore, there is a natural order on all the arcs in a given arc family as
follows. Since the surface is oriented, so are the windows. Furthermore we enumerated
the boundary components. This induces an order, by counting the arcs by starting in
the first window in the order they hit this window, omitting arcs that have already
been enumerated and then continuing in the same manner with the next window.

This procedure also gives an order <i to all arcs incident to a specific boundary ∂i.

1.3 The spaces of weighted arcs

We define Ks
g,r to be the semi-simplicial realization of the poset of arcs on F sg,r. This is

the simplicial complex which has one simplex for each arc family α with the i–the face
maps given by omitting the i–th arc. The dimension of such a simplex is the number
of arcs |α| minus 1. Hence the vertices of this complex correspond to the arc families
consisting of single arcs.

The space |Ks
g,r| has a natural continuous action of PMC(F sg,r). We define Asg,r :=

|Ks
g,r|/PMC(F sg,r). This space is not necessarily simplicial any more, but it remains a

CW complex whose cells are indexed by PMC orbits of arc families, which we denote
by [α]. The number of arcs is invariant under the PMC action. With the notation
|[α]| := |α| the dimension of the cell indexed by [α] is |[α]| − 1.

We also consider the de-projectivized version |Ks
g,r| × R>0 and its PMC quotient

Ds
g,r = Asg,r × R>0.

1.4 Different pictures for arcs

Depending on the circumstances there are different completely equivalent pictures
which we can use to be closer to the intuition. There are the following choices for
the windows.

I Disjointly embedded arcs with endpoints in windows.

II Shrinking the complement of the (open) window to a point. The two endpoints
of the window then are identified and give a distinguished point on the boundary.
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Figure 1. I A. Arcs running to a point on the boundary; II A. Arcs running to a point
at infinity; III A. Arcs in a window; I B. Bands in a window

I C

u
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wvu

II C

Figure 2. I C. Bands ending on an interval; II C. Bands ending on a circle

Arcs still do not intersect pairwise and avoid the marked points on the boundary.
This version is particularly adapted to understand the S1 action (see 2.7) and
the operads yielding the Gerstenhaber and BV structures.

III Shrinking the window to a point. The Arcs may not be disjointly embedded at
the endpoints anymore, but they form an embedded graph. This is a version
that is very useful in combinatorial descriptions, e.g. a dual graph approach for
moduli spaces.

These are depicted in Figure 1. We also may choose the following different pictures for
the arcs as we discuss in 2.1 in greater detail.

A Arcs with weights.

B Bands of leaves with (transversal) width.

C Bands of leaves with width filling the windows.

The arcs with weights are the quickest method to construct the relevant spaces, the
bands–of–leaves picture is what makes the operadic gluing natural. It also greatly helps
elucidate the S1 action and the discretization that acts on the Hochschild complexes.

The cases I,II,III A and III B are depicted in Figure 1, the cases II B and II C are
in Figure 2.
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Figure 3. The space K0
0,2 = R as a simplicial space. We indicated two 0–simplices and

a connecting 1–simplex

1

1

0 0

1
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Figure 4. The CW complex A0
0,2 = S1. We indicated the base point and a generic

element

1.4.1 Example Consider K0
0,2, see Figure 3. The 0–simplices are given by (the iso-

topy class of) a straight arc and all its images under a Dehn twist. Thus the 0 skeleton
can be identifies with Z. It is possible to embed two arcs which differ by one Dehn twist.
Calling these one cells Iii+1, if the first arc is the i–fold Dehn twist of 0, we see that
|K2

0,2| = R. PMC(F 0
0,2) is generated by the Dehn twist and hence A0

0,2 = R/Z = S1.
This S1 is what underlies the BV geometry, see §3.

1.4.2 Elements as weighted arc families A weight function wt on an arc family
α is a map that associates to each arc of α a positive real number. There is a natural
scaling action by R>0 on the set of weight functions on α and we denote by [wt] the
equivalence class of a given weight function wt under this action.

An element a ∈ |Asg,r| in the realization of Asg,r lies in a unique open simplex. Let
α be the arc family indexing this simplex, then using the enumeration of arcs, we can
identify the barycentric coordinates with weights on the arcs of α. In this picture, a
codimension one boundary is given by sending one of the weights to zero. We are free
to think of the barycentric coordinates as a projective class [wt] of a positive weight
function wt on the arcs. In this fashion a = (α, [wt]).

In this picture, the elements of |Ks
g,r| × R>0 are naturally pairs (α,wt) of an arc

family together with a weight function.
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Taking the quotient by PMC, we get a description of elements of Ds
g,r as pairs

([α], wt) where [α] denotes the PMC orbit of α. Further taking the quotient with
respect to the R>0 action elements of Asg,r are pairs ([α], [wt]).

1.4.3 Weights at the boundary Taking up the picture above, given (α,wt) ∈ Ds
g,r,

we define the weight wt(∂i) at the boundary i of α to be the sum of the weights of the
ends of the arcs incident to ∂i. Notice that in this count, if an arc has both ends on ∂i
its weight counts twice in the sum.

Definition 1.1. An weighted arc family ([α], wt) ∈ Ds
g,r or ([α], [wt]) ∈ Asg,r is called

exhaustive if wti(α) 6= 0 for all i.
We set Arcsg(r−1) ⊂ Asg,r and DArcsg(r−1) ⊂ Ds

g,r to be the subsets of exhaustive
elements.

We furthermore set Arc(n) = qg,sArcsg(n),DArc(n) = qg,sDArcsg(n) where q is
the coproduct given by disjoint union, and finally Arc = qnArc(n) and DArc(n) =
qnDArc(n).

The natural Sr action descends both to Arc(r − 1) and to DArc(r − 1).

1.5 Quasi–filling families, Arc Graphs and dual Ribbon Graphs

We call an arc family quasi–filling if the complementary regions are polygons which
contain at most one marked point.

1.5.1 Dual (ribbon) graph Let Γ̂(α) be the dual graph in the surface of α. This
means there is one vertex for every component of F \ α and an edge for each arc of α
connecting the two vertices representing the two regions on either side of the arc.

If the graph is quasi–filling this graph is again an embedded (up to isotopy) naturally
ribbon graph. The cyclic order at each vertex being induced by the orientation of the
surface. The cycles of the ribbon graph are naturally identified with the boundary
components of F . This identification also exists in the non-quasi-filling case. That
is the set of oriented edges or flags of Γ̂(α) are partitioned into cycles, that is into a
disjoint union of sets each with a cyclic order.

There is an additional structure of a marking where a marking is a fixed vertex
for every cycle. This vertex is the vertex corresponding to the region containing the
complement of the window.

Combinatorially, the vertices have valence ≥ 2 with only the marked vertices possi-
bly having valence 2.

Given an element a ∈ DArc, we also obtain a metric on the dual graph of the
underlying arc family, simply by keeping the length of each edge. The geometric
realization is obtained by gluing intervals of these given lengths together at the vertices.
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1.5.2 Arc graph It is sometimes convenient to describe the arc families simply as a
graph. The basic idea is as follows: given an arc family α on F we define its graph Γ(α)
to be the graph on F obtained by shrinking each window Wi to a point vi. The vi are
then the vertices and the arcs of α are the edges. We can think of Γ(α) as embedded
in F . Again there is some fine print. First the graph only has an embedding up to
homotopy. Secondly by changing the window, we changed our initial data, which is
fine, but then the arcs are not disjointly embedded anymore. A rigorous geometric
interpolation of the two pictures is given in [KLP].

As an abstract graph, we can also let the vertices be given by the Wi and the edges
be given by the set of arcs of α. In §1.6.2, we give a geometric construction of this
space.

In the situation s = 0 and in case of a quasi–filling α the data of the marked ribbon
graph Γ̂ is equivalent to α, since one can obtain Γα by reversing the dualization.

1.6 Foliation picture

If ([α], wt) = ([{a0, a1, . . . , ak}], wt) ∈ Ds
g,r is given by weights (w0, w1, . . . , wk) ∈ Rk+1

+ ,
then we may regard wi as a transverse measure on ai, for each i = 0, 1, . . . , k to
determine a “measured train track with stops” and corresponding “partial measured
foliation”, as considered in [PH].

This works as follows. Fix some complete Riemannian metric ρ of finite area on
F , suppose that each ai is smooth for ρ, and consider for each ai the “band” Bi in F
consisting of all points within ρ-distance wi of ai. Since we can scale the metric ρ to
λρ, for λ > 1, we will assume that these bands are pairwise disjointly embedded in F ,
and have their endpoints lie in the windows. The band Bi about ai comes equipped
with a foliation by the arcs parallel to ai which are at a fixed ρ-distance to ai, and
this foliation comes equipped with a transverse measure inherited from ρ; thus, each
can be Bi regarded as a rectangle of width wi and some irrelevant length. The foliated
and transversely measured bands Bi, for i = 0, 1, . . . , k combine to give a “partial
measured foliation” of F , that is, a foliation of a closed subset of F supporting an
invariant transverse measure (cf. [PH]). The isotopy class in F rel ∂F of this partial
measured foliation is independent of the choice of metric ρ.

1.6.1 Partial Parametrization at the boundary For i = 1, 2, . . . , r, consider
∂i ∩

(∐k
j=0Bj

)
, which is empty if α does not meet ∂i and its intersection with Wi

is otherwise a collection of closed intervals in Wi with disjoint interiors. Collapse to
a point each component complementary to the interiors of these intervals in Wi to
obtain an interval, which we shall denote ∂i(α

′). Each such interval ∂i(α
′) inherits an

absolutely continuous measure µi from the transverse measures on the bands. If ∂i(α
′)

is not empty, scaling the measure to have total weight one, this gives a unique measure
preserving map of cαi : ∂i(α

′)→ S1 where S1 has the Haar measure.
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Further collapsing the complement of the interior of Wi to a point, we get a space
S1
i (α). ci(α) induced map φi from this quotient to S1 which is a measure preserving

homeomorphism, that maps the image of the endpoints of Wi to 0 ∈ S1 = R/Z. We
call this map the parameterized circle at ∂i.

A pictorial representation can be found in Figure 2.

1.6.2 Loop graph of an arc family: A geometric construction of the dual
graph The loop graph of a weighted arc family a ∈ DArc is the space obtained from
qiS1

i / ∼ where ∼ is the equivalence relation which is the closure of the by the relation
p ≈ q if p and q are the end points of a leaf. The loop is invariant under the PMC
action and we call the resulting space L(a). There are natural maps li : S1

i → L(a),
the images are called the i–th circle or lobe. The 0–th circle is also called the outside
or output circle, while the circles for i 6= 0 are called the input circles.

The loop of the graph is homeomorphic to the geometric realization of dual graph
with its metric. The circles correspond to the cycles and the marked point on each
cycle is the image of 0.

2 The gluing and the operad structures

2.0.3 Basic Idea Think of the elements of Asg,r as partially measured foliations mod-
ulo common scaling. The most natural way to do this is in terms of foliations as derived
from the theory of “train tracks” (cf. [PH])

In this picture, two weighted exhaustive arc families can be naturally composed by
fixing one boundary component on each of the surfaces and glue naturally if one glues
the underlying surfaces along a pair of fixed boundary components. Concretely on the
condition that the weights on the two boundaries agree one produces a weighted arc
family on the glued surface from two given arc families by viewing them as foliations.
If the families are exhaustive, this can always be achieved by scaling. If one starts with
projective weights, one only chooses representatives which satisfy the condition.

This gluing yields the sought after operadic structure.

2.1 Standard gluing for foliations.

2.1.1 Basic idea Given two weighted arc families (α,wt) in F = F sg,m+1 and (β,wt′)
in F ′ = F th,n+1, construct the respective foliation. Now picking one boundary compo-
nent on each surface, we can glue them and the respective foliations if they have the
same weights. This is well defined up to the action of PMC.

More precisely, if the two foliations have the non–zero same weights say wti(α) =
wt0(β) we can glue them to give a foliation on the surface obtained by gluing the
boundary i of F to the boundary i of F ′. Identifying the glued surface with F s+tg+h,m+n

we obtain the weighted family (α,wt) ◦′i (β,wt′).



12

If we have two exhaustive weighted families, whose weights do not agree, we can
use the R>0 action to make them agree and then glue. That is in general: ([α], wt) ◦i
([β], wt′) := wti(α)([α], wt) ◦′i wt0([β])(β,wt′) and this descends to Arc.

2.1.2 Gluing weighted arc families Given two weighted arc families (α,wt) in
F sg,m+1 and (β,wt′) in F th,n+1 so that µi(∂i(α

′)) = µ0(∂0(β′)), for some 1 ≤ i ≤ m, we
will define a weighted arc family (γ,wt′′) := (α,wt) ◦i (β,wt′) for each 1 ≤ i ≤ m on
the surface F s+tg+h,m+n as follows:

First, let’s fix some notation: let ∂i denote the i–th boundary component of F sg,m+1,
and let ∂′0 denote the 0–the boundary component of F th,n+1. We glue the boundaries

together using the maps to S1 given above. This yields a surface X homeomorphic to
F s+tg+h,m+n, where the two curves ∂i and ∂′0 are thus identified to a single separating

curve in X. There is no natural choice of homeomorphism of X with F s+tg+h,m+n, but

there are canonical inclusions j : F sg,m+1 → X and k : F th,n+1 → X.
We enumerate the boundary components of X in the order

∂0, ∂1, . . . , ∂i−1, ∂
′
1, ∂
′
2, . . . ∂

′
n, ∂i+1, ∂i+2, . . . ∂m

The punctures are enumerated simply by enumerating the ones on Fsg,m+1 first.

Choose an orientation-preserving homeomorphism H : X → F s+tg+h,m+n which pre-
serves the labeling of the boundary components as well as those of the punctures, if
any.

In order to define the required weighted arc family, consider the partial measured
foliations G in F sg,m+1 and H in F th,n+1 corresponding respectively to (α′) and (β′).
By our assumption that µi(∂i(α

′)) = µ0(∂0(β′)), we may produce a corresponding
partial measured foliation F in X by identifying the points x ∈ ∂i(α′) and y ∈ ∂0(β′)

if c
(α)
i (x) = c

(β)
0 (y).

The resulting partial measured foliation F may have simple closed curve leaves
which we must simply discard to produce yet another partial measured foliation F ′ in
X.

The leaves of F ′ thus run between boundary components of X and therefore, as in
the previous section, decompose into a collection of bands Bi of some widths wi, for
i = 1, 2, . . . , I, for some I. Choose a leaf of F ′ in each such band Bi and associate to
it the weight wi given by the width of Bi to determine a weighted arc family (δ′) in X
which is evidently exhaustive. Let (γ′) = H(δ′) denote the image in F s+tg+h,m+n under
H of this weighted arc family.

Lemma 2.1. The PMC(F s+tg+h,m+n)-orbit of (γ′) is well-defined as (α′) varies over a

PMC(F sg,m+1)-orbit of weighted arc families in F sg,m+1 and (β′) varies over a PMC(F th,n+1)-

orbit of weighted arc families in F th,n+1.

Proof. Suppose we are given weighted arc families (α′2) = φ(α′1), for φ ∈ PMC(F sg,m+1),

and (β′2) = ψ(β′1), for ψ ∈ PMC(F th,n+1), as well as a pair H` : X` → F s+tg+h,m+n of
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homeomorphisms as above together with the pairs j1, j2 : F sg,m+1 → X` and k1, k2 :
F th,n+1 → X` of induced inclusions, for ` = 1, 2. Let F`,F ′` denote the partial measured
foliations and let (δ′`) and (γ′`) denote the corresponding weighted arc families in X`

and F s+tg+h,m+n, respectively, constructed as above from (α′`) and (β′`), for ` = 1, 2.
Let c` = j`(∂0) = k`(∂

′
i) ⊆ X`, and remove a tubular neighborhood U` of c` in X` to

obtain the subsurface X ′` = X` −U`, for ` = 1, 2. Isotope j`, k` off of U` in the natural
way to produce inclusions j′` : F sg,m+1 → X ′` and k′` : F th,n+1 → X ′` with disjoint images,
for ` = 1, 2.

φ induces a homeomorphism Φ : X ′1 → X ′2 supported on j′1(F sg,m+1) so that j′2 ◦φ =
Φ ◦ j′1, and ψ induces a homeomorphism Ψ : X ′1 → X ′2 supported on k′1(F th,n+1) so
that k′2 ◦ ψ = Ψ ◦ k′1. Because of their disjoint supports, Φ and Ψ combine to give a
homeomorphism G′ : X ′1 → X ′2 so that j′2 ◦ φ = G′ ◦ j′1 and k′2 ◦ ψ = G′ ◦ k′1. We may
extend G′ by any suitable homeomorphism U1 → U2 to produce a homeomorphism
G : X1 → X2.

By construction and after a suitable isotopy, G maps F1∩X ′1 to F2∩X ′2, and there
is a power τ of a Dehn twist along c2 supported on the interior of U2 so that K = τ ◦G
also maps F1 ∩U1 to F2 ∩U2. K thus maps F ′1 to F ′2 and hence (δ′1) to (δ′2). It follows
that the homeomorphism

H2 ◦K ◦H−1
1 : F s+tg+h,m+n → F s+tg+h,m+n

maps (γ′1) to (γ′2), so (γ′1) and (γ′2) are indeed in the same PMC(F s+tg+h,m+n)-orbit.

Notice that although the gluing is local on the boundaries, there is a global effect
of gluing the leaves together. For instance there can be bands which have both ends
on the same boundary. If these are split, they may recursively cut other bands. An
example of such a gluing is given in Figure 5. Alternatively, one can describe the
gluing procedure purely combinatorially, see [K3] for the details. For this one uses a
least common partition of the unit interval, duplicates each edge for every cut and then
glues the flags or half edges if they are indexed by the same subinterval.

Remark 2.2. An alternative to discarding the simple closed curve leaves is to enlarge
the space Asg,r to include them. This would be in the spirit of V. Jones’ planar algebras
[J]. We however do not take this route and the applications such as string topology do
not exhibit these type of curves.

2.1.3 Symmetric group actions On Ks
g,r there is a natural action of the symmetric

group of r elements Sr which permutes the labels 0, . . . , r−1 enumerating the boundary
components. It contains a subgroup Sr−1 which only permutes the labels 1, . . . , r
keeping 0 fixed. Like above, after renumbering, we have to choose a homeomorphism
to the standard surface. In the figures, this is usually suppressed.

2.1.4 Comments on the details, see [KLP] Notice that since we fixed the sur-
faces F sg,r the gluing actually depends a priori on a choice of homeomorphism of the
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Figure 5. a) The arc graphs which are to be glued assuming the relative weights a,b,c,d
and e as indicated by the solid lines in c). b) The result of the gluing (the weights are
according to c). c) The combinatorics of cutting the bands. The solid lines are the
original boundaries, the dotted lines are the first cuts, and the dashed lines represent
the recursive cuts. d) The combinatorics of splitting and joining flags.
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glued surface. These choices become irrelevant after passing to PMC quotients. Other
possibilities are to choose models F sg,r and compatible morphisms of surfaces glued
from these back to the chosen models.

2.1.5 Partial/Colored operad structure

Proposition 2.3. The gluings together with the symmetric group action permuting
the labels give a (cyclic) partial operad structure to the spaces D(r − 1) := qg,sDs

g,r.
Moreover this partial operad structure is an R≥0 colored operad. Here R≥0 is considered
with the discrete topology.

Proof. Notice that Sn naturally acts on D(n) via permuting the labels 1, . . . , n on the
boundaries. Moreover Sn+1 acts by permuting the labels on the boundaries 0, . . . , n.
The gluings if defined are associative and symmetric group equivariant; for the precise
definition of the various actions, see the Appendix. The important point is that the
gluing did not depend on the name of the boundaries. This is a straightforward check.
The additional equation for a cyclic operad is also easy to check. The only obstruction
to gluing is that the weights on the two boundaries which are glued are the same. The
procedure also works if the two boundaries are both not hit by any arc. Thus assigning
the color wt(∂i) ≥ 0 to each i we obtain an R≥0 colored operad.

2.2 Cyclic Operad Structure: The scaling approach of [KLP]

In the gluing operation above, we could compose two weighted arc families if they had
the same weight at the designated boundaries. We can get rid of this restriction if
we consider exhaustive families by using the R>0 scaling action. Given exhaustive arc
families ([α], [wt]) ∈ Arc(n) and ([β], [wt′]) ∈ Arc(m)

([α], wt) ◦i ([β], wt′) := wti(α)([α], wt) ◦′i wt0([β])(β,wt′) (2.1)

Theorem 2.4. [KLP] The spaces DArc(n) form a cyclic operad and this cyclic operad
structure descends to Arc(n)

Proof. One has to recheck the associativity for this case, but it again works out [KLP].

Remark 2.5. Notice that if we start in Arc there are unique representatives ([α], wt) ∈
D(n) and ([β], [wt]) ∈ D(m) such that wt(∂i) = wt′(∂0) = 1 and we could have used
these to define gluing directly on Arc, but that would have not allowed us to lift the
operad structure to DArc.

2.2.1 Discretization: The Suboperad of positive integer weights/multiarcs
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Proposition 2.6. The arc families in DArc with positive integer weights for a cyclic
suboperad. Using the inclusion N ⊂ R, they also form an N colored cyclic suboperad of
the R-colored version of DArc.

A useful pictorial realization of an arc family with positive integer weights is to
replace an arc of weight k by k parallel arcs.

Alternatively, one adds k − 1 parallel copies to the arc after say fixing a small
rectangular neighborhood of the original arc. We will call positively multi–arc families.

These multi–arc families are what is used in the string topology and moduli space
actions. There they will appear in their N colored version.

Another relevant operad structure is the one sums of these elements given as follows:
Given an exhaustive arc graph α, with arcs e1, . . . ek, let α(n1,...,nk) ∈ DArc for ni ∈ N
be defined by wt(ei) = ni

αN = q~n∈Nkα~n (2.2)

We furthermore for two exhausting arc graphs, we set

αN ◦i βN =

′∑
(~n,~m)

α~n ◦i β ~m (2.3)

where
∑′

runs over the pairs (~n, ~m) such that wt(∂i(α
~n) = wt(∂0(β ~m), that is those

pairs for which the N–colors match.

Proposition 2.7. The compositions ◦i are operadic. Furthermore dropping the su-
perscript N they give an operad structure to the collection of exhaustive arc graphs α
where the operad degree is the number of boundaries of α.

2.3 Chains and Homology

One basic question is how operads behave with respect to functors of homology and
various chain functors. It is the homology level that gives the algebra and the chain
level is basically the “algebra up to homotopy” level which is relevant for applications
from Deligne’s conjecture to field theory.

2.3.1 Operads and Functors: technical details The general answer to the ques-
tion what kind of functor pushes forward an operad structure is that it should be a
weak monoidal one. Let us denote this functor as F : C → D where both C and
D are monoidal categories with a product ⊗. The condition of weakly monoidal
means among other things (see e.g. [Kas]) that there are natural morphisms F(X,Y ) :



17

F(X)⊗F(Y )→ F(X ⊗ Y ). For our operads this means that we get compositions ◦Fi
by using the sequence of maps

◦Fi : F(O(n))⊗F(O(m))
F(O(n),O(m))−→ F(O(n)⊗O(m))

F(◦i)−→ F(O(m+ n− 1))

2.4 Singular Homology and Singular Chains

If we take (singular) homology with coefficients in a field k then the Künneth formula
guarantees us that the functor H∗( , k) is even a strong monoidal functor, that is there
is an isomorphism H∗(O(n), k) ⊗H∗(O(m), k) ' H∗(O(n) ×O(m), k) and this shows
that the homology is again a cyclic operad. For singular chains the Eilenberg–Zilber
theorem provides us with a weak monoidal functor on the chain level.

Corollary 2.8. The singular chains and the homologies of DArc(n) and Arc(n) form
cyclic operads.

2.4.1 Other Chains There may be other chain models besides singular chains, we
might want to use. For singular chains one has to use the Eilenberg–Zilber theorem.
This is for instance easier to track in cubical chains. Mostly we will be interested in
either singular or cellular chains. Throughout we will denote singular chains by S∗ and
cellular chains by CC∗. When dealing with CW complexes one has the extra bonus of
proving that the topological compositions indeed give rise to cellular maps.

Additionally in some particular cases one may obtain special chain models that
work for a given operad in a special situation, although there is no general a priori
guarantee that the construction is valid. This then of course can and has to be checked
a posteriori.

We will just use Chain to denote any operadic chain model. In all the models we
consider, one has families representing the chains. We will from now on treat families
and leave open the specification of a particular chain model. We will mostly use singular
or cellular chains in the following.

2.5 Open/Cellular Chains

Arcsg(n) (unlike DArc) is a subspace of the CW complex Asg,r. That complex has cells
C[α] indexed by classes of arc graphs α. For Asg,r and the partial gluing structure, we
can use cellular chains. Some of the suboperads/PROPs of Arc actually have homotopy
equivalent CW models whose cellular chains are models for them on the chain level.
These will give us the solution to Deligne’s conjecture and it generalizations up to and
including String Topology.

Unfortunately Arc itself is not outright a CW complex, since the condition of being
exhaustive is not necessarily stable under removing arcs. We can however regard the
complex CC∗(A

s
g,r, A

s
g,r \ Arcsg(r − 1)).
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Alternatively, Arcsg(r− 1) is also the disjoint union of open cells and hence filtered
by using the dimension of cells.

Arcsg(r − 1) = q[α]:[α] is exhaustiveĊ[α] (2.4)

where Ċ denotes the open cell. And although we can not use cellular chains, we can
work with the free Abelian group generated by the open cells which is denoted by
C∗o (Arcsg(r − 1)). Each generator is given by an oriented cell. Such a cell is given
in turn by an arc graph. The dimension is the number of arcs minus 1. There is a
differential, which deletes arcs, as long as the result is still exhaustive. In order to get
an operad structure on C∗o (Arc), we recall the following facts from [K3]:

As sets

Ċ[α] ◦i Ċ[β] = qΓ∈I([α],[β])Ċ[γ] (2.5)

where I([α], [β]) is a finite index set of arc graphs on the glued surfaces [K3] running
through all the graphs that appear as the underlying graphs of the composed families.

If α has k arcs and β has l arcs then, if two conditions are met, for any weights,
generically the number of arcs in ([α], [wt]), ([β], [wt′]) is k+ l− 1. The two conditions
are that (1) there are no closed loops and (2) that not both arc families are twisted at
the boundary at which they are glued. In these cases, the dimension of the composed
cell drops. Overall the composition respects the filtration by dimension. Moreover,
the “bad” part, that is the locus, where the families glue together to form families
with less than the expected graphs is of codimension at least 1, if the two families are
not twisted at the boundary simultaneously. In that case the number of arcs in the
composition generically already has one less arc than expected. In the top dimension
the composition map is bijective.

The best way to treat the operadic structure is to pass to the associated graded
GrC∗o (Arc) of C∗o (Arc).

In [K3] we showed that

Theorem 2.9. The Abelian groups C∗o (Arc)(n) =
∐
g,s C∗o (Arcsg(n)) and GrC∗o (Arc) =∐

g,sGrC∗o (Arcsg(n)) =
∐
g,s CC∗(A

s
g,r, A

s
g,r \ Arcsg(r − 1)) are cyclic operads. Where

the compositions are given by

Ċ(α) ◦k Ċ(β) =
∑
i∈I
±Ċ(γi) (2.6)

where ± is the usual sign corresponding to the orientation, and I is a subset of I(α, β).
More precisely: (1) I is empty if both families are twisted at the glued boundaries (2) I
runs over the arc graphs which are not obtained by erasing arcs and (3) in the graded
case Gr, the arc family also has the expected maximal number of arcs.

2.5.1 Discretizing the Chain level When dealing with the chain level and the
actions, there are two modifications for the discretization (2.3). The first is to add
appropriate signs. The signs are given in [K4] and are discussed in the appendix. Here
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we will just use the fact that such appropriate signs exist. The second is to adjust the
gluing to fit with that of relative chains, that is to use the modification (1) and or (2)
of Theorem 2.9. On the discrete side, there is again a filtration by the degree of the
underlying arc family.

For the action we will use the following

Theorem 2.10. [K4] For α an arc graph with k arcs, let

P(α) :=
∑
~n∈Nk

±αn (2.7)

with the appropriate sign. Then for two arc graphs: P(α ◦i β) = ±P(α) ◦i P(β), where
again ± denotes the appropriate sign and the two ◦i are taken with the same modifica-
tion. In particular using both modifications for the gluing P gives an operad morphism
from C∗o (Arc) to the operad of N–weighted arc families (modified with appropriate signs,
see [K4]0. Using the respective associated grading on the discrete P gives an operad
morphism from CC∗(A

s
g,r, A

s
g,r \ Arcsg(r − 1)) to the associated graded.

Remark 2.11. Here α◦iβ is the gluing given by gluing the open cells and enumerating
the indexing set of the resulting cells. A priori this can be any gluing between two
boundaries that are hit, bu also between two empty boundaries. With the obvious
modification this applies as well to gluing an empty boundary to a non–empty one by
erasing.

2.6 Modular structure: The [KP] approach.

One can ask if there is a modular operad structure for Arc. The challenge is to add
self–gluings. One can readily see that the partial operad structure on the D(n) is indeed
modular. One can glue any two boundary components on connected or disconnected
surfaces as foliations in the above manner, if the weights on the two boundaries agree.
It is not possible in general, however, to scale in order to obtain self–gluings without
restrictions, at least on the topological level. The reason for this is that the R>0 action
scales the weights on all boundaries simultaneously, so if they don’t agree one cannot
change them to agree merely by the action.

There is however a flow, which one can use, to make them agree. This is a very in-
tricate procedure, that even works in families. It is contained as one result in [KP]. We
will content ourselves with just stating the main result as it pertains to the discussion
here.

Theorem 2.12. The homologies H∗(DArc(n)) = H∗(Arc(n)) form a modular operad
using g as the genus grading. Moreover, it is induces from a modular operad structure
up to canonical homotopies on the chain level. That structure is obtained from the R>0

colored topological operad structure on DArc(n) via flows.
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Figure 6. I, the identity and II, the arc family δ yielding the BV operator

2.7 S1 action

We have already seen that A0
0,2 ' S1. Since all the elements are exhaustive in this

case, we obtain that Arc20(1) = A0
0,2. We now show that this is even true as groups.

2.7.1 Group structure Pick two elements ∆t,∆s with s, t ∈ [0, 1) as depicted in
Figure 4. Gluing them together there are two situations, (i) s+t ≤ 1 or (ii) 1 < s+t > 2.
In the first case we immediately see that ∆t◦1∆s = ∆s+t; in the second situation we see
that after gluing the outer two strands become parallel and indeed ∆t ◦1 ∆s = ∆s+t−1.

Now via gluing there is an (S1)×n+1–action on each Arcsg(n). Let us enumerate the
Cartesian Product of (S1)×n+1 as having factors 0, . . . , n. Then the factors i = 1, . . . n
act via ρi(t)([α], [wt]) = [α], [wt]) ◦i ∆t and the 0 component acts as ρ0(t)([α], [wt]) =
∆t ◦0 [α], [wt]).

2.7.2 S1 action as twisting and moving the base point. If we look at the arc
picture II B or C, in the enumeration 1.4, we can nicely describe the geometry of this
action. It simply moves the basepoint around the boundary in the direction of its
orientation. The distance is given by the transverse measure of the bands as in §2.1.
If the basepoint moves into a band, it simply splits it.

Definition 2.13. An arc family is called untwisted at a boundary i if no two arcs are
parallel after removing the base point of the boundary I in picture II. Otherwise it is
called twisted at i. The elements of Asg,r and Arcsg(n) are twisted or untwisted if their
underlying arc families are. We will also say an arc family is twisted or untwisted if
arcs become parallel or not after removing all basepoints at the boundaries.

In the pictures II B and C we can see the twisting more explicitly. An element is
twisted at i, if the basepoint of ∂i is inside a band which is not split at the other end.
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An example of a twisted arc family is given by ∆t. This is even the general case in
the following sense.

Lemma 2.14. Any element of Arcsg(n) lies in the orbit of an untwisted element under
the (S1)n+1 action.

Proof. Just use the action to slide the basepoints at the different boundaries out of
any band they might be inside of. In this way we obtain an element which is untwisted
at each boundary. Now it can happen that there are arcs which become parallel only
after removing both the basepoints of the boundaries they run between. In this case,
we can move the points in sync outside of the band.

Proposition 2.15. There is an action of (S1)×n+1 on Arc(n).

Proof. The action is given by (θ0, . . . , θn)α = (· · · ((∆θ0 ◦1 α) ◦1 ∆θ1) · · · ) ◦n ∆θn).
The fact that this is indeed an action follows from the associativity of the operadic
compositions.

We denote the coinvariants by Arc(n)S1 .

2.8 Twist gluing

There is an additional gluing we can perform which yields an odd structure on the
chain and the homology level. This is inspired by string field theory and it gives rise
to a second type of Gerstenhaber and BV structure on the homology and chain levels.
For this we let ∆ be the chain given by I → Arc(1); t 7→ ∆t. Notice that this chain
represents a generator of the homology H1(Arc00(1)).

Definition 2.16. Given two chains α ∈ S∗(Arc(n)) and β ∈ S∗(Arc(m)) we define the
twist gluing α•iβ to be the chain obtained from the map ∆n×I×∆m → Arc(m+n−1)
given by α ◦i ∆ ◦1 β.

Theorem 2.17. On the chain and homology level the operations ◦i induce the structure
of an odd cyclic operad. Furthermore, H∗(Arc(n)) is an odd modular operad aka. a
K–modular operad.

Likewise the chains on the S1 co–invariants Arc(n)(S1) form an odd cyclic operad
and H∗(Arc(n)S1) is an odd modular operad.

Proof. It is easy to see that on the chain level the twist gluing is of degree 1, which is
precisely what we need for the odd versions of the operadic structures. This immedi-
ately shows the first two claims. Notice that the S1 coinvariants do not form an operad
by themselves. To define the gluings, we simply choose representatives, glue and take
coinvariants again. This is independent of choices, since any two lifts differ by an S1

action on the boundaries and these get absorbed into the family.
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Corollary 2.18. The direct sums of cyclic group coinvariants
⊕

n(H∗(Arc(n)))Cn+1

and
⊕

n Chain(Arc(n))Cn+1
carry a Gerstenhaber bracket and that of Sn+1 coinvari-

ants
⊕

nH∗(Arc(n))Sn+1 carries a BV operator.
The analogous result holds for the S1 coinvariants.

2.9 Variations on the gluings

We have already deviated a bit from the original gluing to obtain the modular structure
on homology. There are several other variations on the basic gluing, which are necessary
and helpful. Usually these do not alter the picture on the level of homology.

2.9.1 Local scaling In the gluing of DArc we scaled both surfaces in order to obtain
an associative structure. To make the two weights match, we could also just locally
scale the width of only those bands incident to ∂i(F ) and/or those incident to ∂0(F ).
In fact for gluing disjoint surfaces this is exactly done by the first type of flow in [KP].
What happens in this case is that the gluings are not associative any longer, but there
is a homotopy between the two different ways to compose. This guarantees a bona fide
associative structure on homology. It is rather surprising that in several situations,
notably that of string topology, there are already strictly associative chain models, —
see §3.3 and §4.3.2 below.

2.9.2 Erasing We have not discussed how to glue a boundary of weight 0 with one of
non–zero weight. The natural idea is to simply erase all bands incident to the boundary
which is glued. Indeed this is sometimes the answer. There are two caveats however.
First, this operation is again not associative. Second one has to be careful that iterating
such gluings one does not obtain an empty arc family. One such undesirable situation
occurs when on tries to use this type of gluing to extend the operad structure to the
Asg,r. Then one could obtain an empty family, but adding it would entail making the
spaces contractible and hence kill all homology information.

However this type of gluing is used in string topology. The trick here is that the
empty family does not appear due to the conditions that are placed on the graphs to
make them part of the Sullivan PROP.

2.9.3 Wilting The last modification is that instead of erasing, one lets the leaves
wilt. Technically this can be formalized by adding wilting weights at the boundary.
A wilting weight is an assignment of a length in R≥0 to each interval of ∂i \Wi. The
source of the map ci is then the full interval with the induced measure. For the source
of the map L , we contract the intervals just as before. The effect on the maps li is
that they are stationary on these intervals.

A foliation interpretation is as follows: on top of the foliation on the surface, we also
consider a compatible germ of a trivial transverse measured foliation of a neighborhood
of each boundary. Here trivial means that all leaves are homotopic to a meridian of
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the cylinder. Compatible means that the restriction of the given partially measured of
the surface is a sub–foliation. The other leaves are called wilted leaves. Notice that
the weight can be zero, which means that the band is empty.

For the gluing of these foliations we use the modified maps ci and proceed as before.
Upon gluing regular leaves to wilted leaves, the leaves wilt and are erased from the
surface foliation, but kept for the foliations near the boundaries which are not glued.
This gluing is used in section 5.1 to add units.

3 Framed little discs and the Gerstenhaber and BV Structures

3.1 Short overview

One extremely important feature of the Arc operad is that it contains several sub–
operads that are quasi–isomorphic to classically important operads. The main ones
are spineless cacti which are equivalent to the little discs, cacti which are equivalent to
the framed little discs and the corrolas which are equivalent to the tight little intervals
suboperads.

The first two structures are responsible for Gerstenhaber and BV algebras on the
homology level. This is what gives rise to string topology brackets and operators as
well as solutions to various forms of Deligne’s conjecture. In our approach we get a
version of these algebras up to homotopy on the cell level which has all homotopies
explicitly given. One nice upshot is the new symmetry of the BV equation which
now manifests itself as a completely symmetric 12 term identity which is geometrically
nicely described by a Pythagorean like triangle, see Figure 11.

On the topological level these operads give rise to loop space structures. Going a bit
further the stabilization of the Arc operad gives rise to a filtered sequence of so–called
Ek, k ∈ N ∪ {∞}, operads. These detect k-fold loop spaces respectively infinite loop
spaces, see the Background section 3.1.1 below.

Without the stabilization Arc contains a E2 in the form of spineless cacti and an
E1 operad in the form of corollas, both which are defined below.

There is one technical detail, namely, whether or not to include a 0 component in
the operad. We will call operads with such a component pointed.1 For the chain level
and the algebraic structures it is enough to have the non–pointed version of E2. For
the topological level and e.g. loop space detection it is necessary to have the pointed
versions. For this one has to enlarge the setup by “fattening” the operads. The details
are given in §5.1.

Theorem 3.1. The Arc operad contains suboperads Cor, Cact and Cacti. Cor is an
E1 operad that is it is equivalent to the little intervals, Cact is an E2 operad equivalent

1Another common name for these are unital operads. This is however confusing, since this could
also mean that there is a unit in the 1 component of the operad. This is the case for all the operads
we consider.
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to the little discs, Cacti are equivalent to the framed little discs. This is as non–pointed
operads.

Corollary 3.2.

(1) On the topological level: Any algebra over the group completion of FatCor is of
the homotopy type of a loop space. Any algebra over the group completion of
FatCact is of the homotopy type of a double loop space. Any algebra over the
group completion of FatArc is of the homotopy type of a double loop space.

(2) On the homology level: Any algebra over H∗(Cact) is a Gerstenhaber algebra.
Any algebra over H∗(Cacti) is a BV algebra. Any algebra over H∗(Arc) is a BV
algebra.

(3) On the chain level: Any algebra over Chain(Cor) is a homotopy associative
algebra. Any algebra over Chain(Cacti) is a homotopy Gerstenhaber algebra
Any algebra over Chain(Cacti) is a homotopy BV algebra. Any algebra over
Chain(Arc) is a homotopy BV algebra.

(4) Cellular chains: For Cor, Cact and Cacti there exist CW–models where the up to
homotopy structures of the relevant algebras are given by explicit chains.

3.1.1 Background One role of linear operads, that is those based on (complexes
of) vector spaces, is that they can encode certain algebraic structures. Among these
are associative, commutative, Lie, but also more complicated algebras like pre–Lie,
Gerstenhaber algebras and BV algebras. We will say that an operad represents a type
of algebra, if the algebras over this operads are precisely of the given type. For a vector
space to be an algebra over an operad means that for each element of the operad there
is an associated multi-linear operation and these operations are compatible with all the
operad structures.

Moreover some of these linear operads are actually the homology of a topological
operad. This provides the geometric reason for the appearance of certain types of
algebras. If the topological operad acts on a space at the topological level, the homology
of this operad acts on the homology of this space. This provides algebraic structures
on these homologies. In this type of setup it is clear that one can replace the operad
by a different one if they have the same homology operad. The correct notion for this
type of equivalence is the one induced by quasi–isomorphism. One of the questions
that arises is to what extent linear actions can be lifted to the chain or topological
level. On the chain level we are dealing with a dg structure and the algebras are of the
type of the algebra over the homology, but only up to homotopy.

The two classical examples we will consider are the little discs and the framed little
discs.

Theorem 3.3. [C, Gz] An algebra is a Gerstenhaber algebra if and only if it is an
algebra over the homology of the little discs operad D2.

An algebra is a Gerstenhaber algebra if and only if it is an algebra over the homology
of the framed little discs operad fD2.
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On the topological level the relevant theorems are:

Theorem 3.4. [St, BV, May1] A connected space has the homotopy type of a loop
space if and only if it is an algebra over the A∞ operad with base point.

If a connected space is an algebra over an Ek operad, it has the homotopy type of a
k–fold loop space, for k ∈ N ∪ {∞} with base point.

Here the Ek are the little k–cubes operads and being an Ek operad means that the
operad is equivalent to an Ek operad. For instance the little discs are an E2 operad.
There is a subtlety here wether or not to include the base point, see §5.1.

The Arc operad itself contains E0, E1 and E2 operads as well as the framed versions.
To obtain the higher Ek operads one can stabilize as in [K7] and §5.1. We will now make
the structures present inArc explicit. Note that this gives an explicit chain level version
of these operads which in turn gives explicit∞ or better “up to homotopy”–versions of
the respective algebras. That is for example an explicit notion of Gerstenhaber algebra
up to homotopy or BV algebra up to homotopy. These explicit up to homotopy versions
are extremely adapted to describe natural actions. This is one of the “miracles” of the
theory: “The geometry of foliations chooses the correct algebraic model”.

The Sullivan quasi–PROP is a rigorous incarnations of the idea of Chas–Sullivan on
string topology. This is a PROP up to homotopy, which contains homotopy versions of
the two suboperads above. It is designed to furnish even more operations on homology
of loop spaces. This meshes well with the above results. In particular, we will exhibit
such an action by using the Hochschild co–chain approach. The main Theorem being

Theorem 3.5. [Jo, CJ] If M is a simply connected manifold then

H∗(LM) ' HH∗(S∗(M), S∗(M))

.

The fact that the suboperads act are versions of Deligne’s Hochschild conjecture.
We will give the details below.

3.2 (Framed) little discs and (spineless) Cacti

The operad of framed little discs appears as a suboperad as follows.

Definition 3.6. The operad Cacti is the suboperad of DArc given by the surfaces with
weighted arc families, which satisfy

(1) g = s = 0

(2) there are only arcs which run from ∂0 to ∂i, where i 6= 0.

The operad Cact is the suboperad of Cacti where additionally

(3) For any two arcs e1, e2 incident to ∂i with e2 <i e1 we have e1 <0 e2.
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The operad Cor is the suboperad of Cact where each element has exactly one arc
per boundary i > 0 that runs to the boundary 0.

Theorem 3.7. [K1] The operad Cacti as well as its image in Arc are equivalent to
the framed little discs operad.

The operad Cact as well as its image in Arc are equivalent to the little discs operad.

Remark 3.8. The theorem about Cacti was first stated by Voronov. This and the
theorem for Cact were proven in [K1]. The method of proof is to show that there is
a forgetting map, which essentially fills in the nth boundary component and that this
map is a quasi–fibration. The proof itself is quite subtle and lengthy.

Remark 3.9. These are not the original definitions of Cacti and Cact. These were
given in [Vo2] and [K1]. They are however isomorphic operads as shown in [KLP, K1].
In [KLP] the images of these operads in Arc where called T ree and LTree.

Immediate consequences are:

Corollary 3.10.

(1) The Arc operads detects loop spaces. That is: a connected space that is algebra
over the Arc operad has the homotopy type of a two–fold loop space.

(2) The group completion of the Arc operad has the homotopy type of a double loop
space.

3.2.1 Cactus terminology. One arrives at the usual pictures, resembling succulents,
if one considers the images under the loop map L or the dual graphs. The conditions
(1) and (2) translate to the fact that this graph is topologically a planar tree of S1s
—one S1 for each cycle corresponding to the boundaries ∂1, . . . , ∂n— with a marked
point on each of them and a global marked point on the “outside circle”, that is the
cycle corresponding to ∂0. The cycles are indeed parameterized via the maps li or
simply by using the weights on the edges as lengths. The cycle ∂0 traverses each edge
exactly once. This is what is combinatorially taken to be the definition of treelike for
ribbon graphs.

The S1’s are usually called lobes and the marked points are indicated by tick marks
which are called spines. The marking on the outside circle is usually called the root or
global marked point. Spineless cacti have the feature that all the spines are at inter-
section points and moreover they are at the unique intersection point along the outside
circle, were the outside circle first intersects the respective lobe. In the combinatorial
version this is just the point before the first arc, which is uniquely determined by the
order <0. Hence, the information about the spines is redundant and can be omitted,
whence the name spineless.
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Figure 7. A Cactus and a spineless Cactus

3.2.2 Bi-crossed structure The relationship between the little discs and the framed
little discs is given by the statement that the framed little discs are a semi–direct
product of the little discs operad and the operad built on the circle group S1 [SW].

The corresponding relationship for Cact and Cacti is a bit more complicated. Cacti
is a bi–crossed product of Cact and the operad built on the circle group S1 [K1].

This fact was used by Westerland and Salvatore for their further study of actions
[W, ?].

The general algebraic structure is lengthy to describe, but its geometrical content
becomes clear when one thinks about twists. The condition for Cact means that the
elements are untwisted at all boundaries 1, . . . , n. This together with all the other
conditions allows us to unambiguously reconstruct the marked points on the boundary.
Now when we are gluing the twist on the 0-th boundary “propagates” through the
surface which is why there is a bi–crossed product.

3.3 Cellular structure

The suboperads Cact and Cacti are not CW complexes per se, but they retract to CW
complexes. The CW complexes are given by the condition

wt(∂i) = 1 for i = 1, . . . , n (*)

Given the conditions of Cacti, this automatically makes wt(∂0) = n. We denote the
respective subspaces of Cact and Cacti by Cact1 and Cacti1. As topological spaces
Cact(n) = Cact1(n) × Rn>0 and Cacti(n) = Cacti1(n) × Rn>0, where the R>0 factors
simply keep track of wt(∂i).
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Dropping the R>0 factors, the spaces loose their operadic structure, since the con-
dition (*) is not preserved upon gluing. The way out is to use the local scaling version
of the gluing.

For two elements α ∈ Cacti1(n) and β ∈ Cacti1(m) we define α ◦1i β to be the
weighted arc family obtained by scaling all weights of arcs incident to ∂i of α homoge-
neously by the factor m.

Proposition 3.11. [K1] The operation ◦′i preserves the condition (∗) and it also pre-
serves the conditions of spineless cacti. Thus ◦′i : Cact1(n) × Cact1(m) → Cact1(m +
n− 1) and ◦′i : Cacti1(n)× Cacti1(m)→ Cacti1(m+ n− 1).

Theorem 3.12. [K1] Both Cact1 and Cacti are CW complexes.
The operations ◦′j are symmetric group invariant, associative up to homotopy and

cellular. Moreover, the induced operations CC∗(◦′j) induce a bona fide operad structure
on the collection of cellular chains.

Finally the induced operad structure on homology agrees with the one induced from
DArc.

3.3.1 Explicit representatives for the bracket and the BV equation The
points in Arc00(1) = Cacti(1) are parameterized by the circle, which is identified with
[0, 1], where 0 is identified to 1. As stated above, there is an operation associated to
the family δ. For instance, if F1 is any arc family F1 : k1 → Arc00, δF1 is the family
parameterized by I × k1 → Arc00 with the map given by the picture by inserting F1

into the position 1. By definition,

∆ = −δ ∈ C1(1).

In C∗(2) we have the basic families depicted in Figure 8 which in turn yield opera-
tions on C∗.

To fix the signs, we fix the parameterizations we will use for the glued families as
follows: say the families F1, F2 are parameterized by F1 : k1 → Arc00 and F2 : k2 →
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Arc00 and I = [0, 1]. Then F1 · F2 is the family parameterized by k1 × k2 → Arc00 as
defined by Figure 8 (i.e., the arc family F1 inserted in boundary a and the arc family
F2 inserted in boundary b).

Interchanging labels 1 and 2 and using ∗ as the explicit chain homotopy given in
Figure 9 yields the commutativity of · up to chain homotopy

d(F1 ∗ F2) = (−1)|F1||F2|F2 · F1 − F1 · F2 (3.1)

Notice that the product · is also associative up to chain homotopy.
Likewise F1 ∗ F2 is defined to be the operation given by the second family of figure

8 with s ∈ I = [0, 1] parameterized over k1 × I × k2 → Arc00.
By interchanging the labels, we can produce a cycle {F1, F2} as shown in Figure 9

where now the whole family is parameterized by k1 × I × k2 → Arc00.

{F1, F2} := F1 ∗ F2 − (−1)(|F1|+1)(|F2|+1)F2 ∗ F1.

Remark 3.13. We have defined the following elements in C∗:
δ and ∆ = −δ in C1(1);



30

· in C0(2), which is commutative and associative up to a boundary.
∗ and {−,−} in C1(2) with d(∗) = τ · −· and {−,−} = ∗ − τ∗.
Note that δ, · and {−,−} are cycles, whereas ∗ is not.

3.4 The BV operator

The operation corresponding to the arc family δ is easily seen to square to zero in
homology. It is therefore a differential and a natural candidate for a derivation or a
higher order differential operator. It is easily checked that it is not a derivation, but it
is a BV operator.

Proposition 3.14. The operator ∆ satisfies the relation of a BV operator up to chain
homotopy.

∆2 ∼ 0

∆(abc) ∼ ∆(ab)c+ (−1)|a|a∆(bc) + (−1)|sa||b|b∆(ac)−∆(a)bc

−(−1)|a|a∆(b)c− (−1)|a|+|b|ab∆(c) (3.2)

Thus, any Arc algebra and any Arccp algebra is a BV algebra.

Lemma 3.15.

δ(a, b, c) ∼ (−1)(|a|+1)|b|bδ(a, c) + δ(a, b)c− δ(a)bc (3.3)

Proof. The proof is contained in Figure 10. Let a : ka → Arc00, b : kb → Arc00
and c : kc → Arc00, be arc families then the two parameter family filling the square
is parameterized over I × I × ka × kb × kc. This family gives us the desired chain
homotopy.

Given arc families a : ka → Arc00, b : kb → Arc00 and c : kc → Arc00, we consider
the two parameter families given in Figure 11, where the families in the rectangles are
the depicted two parameter families parameterized over I × I × ka × kb × kc and the
triangle is not filled. Its boundary is the operation δ(abc).

From the diagram we get the chain homotopy for BV. The threefold operation
consists of three terms from the boundary of the inner triangle, and this is homotopic
to nine terms given by the outside sides of the three rectangles. This makes the BV
equation a highly symmetric twelve term equation.

Remark 3.16. The fact that the chain operads of Arc and as we show below Cact(i)
or Cact1(i) all possess the structure of a G(BV) algebra up to homotopy means that for
any algebra V over them the algebra as well as HomV have the structure of G(BV). If
one is in the situation that one can lift the algebra to the chain level, then the G(BV)
will exist on the chain level up to homotopy.
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Remark 3.17. We would like to point out that the symbol • in the standard super
notation of odd Lie–brackets {a • b}, which is assigned to have an intrinsic degree of 1,
corresponds geometrically in our situation to the one–dimensional interval I.

3.5 The associator

It is instructive to do the calculation in the arc family picture with the operadic no-
tation. For the gluing ∗ ◦1 ∗ we obtain the elements in C2(2) presented in figure 12 to
which we apply the homotopy of changing the weight on the boundary 3 from 2 to 1
while keeping everything else fixed. We call this normalization.

Unraveling the definitions for the normalized version yields figure 13, where in the
different cases the gluing of the bands is shown in figure 14.

The gluing ∗◦2 ∗ in arc families is simpler and yields the gluing depicted in figure 15
to which we apply a normalizing homotopy — by changing the weights on the bands
emanating from boundary 1 from the pair (2s, 2(1 − s)) to (s, 1 − s) using pointwise
the homotopy ( 1+t

2 2s, 1+t
2 (1− s)) for t ∈ [0, 1]:

Combining figures 13 and 15 while keeping in mind the parameterizations we can
read off the pre–Lie relation:

F1 ∗ (F2 ∗ F3)− (F1 ∗ F2) ∗ F3 ∼
(−1)(|F1|+1)(|F2|+1)(F2 ∗ (F1 ∗ F3)− (F2 ∗ F1) ∗ F3) (3.4)

which shows that the associator is symmetric in the first two variables and thus fol-
lowing Gerstenhaber [G] we obtain:

Corollary 3.18. {F1, F2} satisfies the odd Jacobi identity.
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4 Moduli space, the Sullivan–PROP and (framed) little discs

One of the applications of the arc operad is to CFT and string topology. In principle,
moduli space is a “suboperad” of the arc operad and the Sullivan–PROP is a quasi–
PROP generalization that works for a partial compactification of a subset of the arc
operad in its ambient spaces Asg,r. This quasi–PROP is also a generalization of two
bona–fide suboperads of the arc operad which are equivalent to the well known little
discs and framed little discs operads. These operads are responsible for the preeminent
algebraic structures found in CFT and string topology, the Gerstenhaber bracket and
the BV operator.

In order to set up everything completely rigorously for the compositions a little
finesse is needed.

4.1 Moduli Spaces

Let M1,...,1
g,r,s be the subset of elements of Asg,r whose arc families are quasi–fillings. Here

the superscript 1 is repeated r times.
If s = 0 we simply write M1,...,1

g,r . From the description in terms of the dual ribbon
graphs 1.5.1 the following theorem can be obtained using Strebel differentials (see e.g.
[K3])

Theorem 4.1. The space M1,...,1
g,r is proper homotopy equivalent to the moduli space

of Riemann surfaces of genus g with n marked points and a tangent vector at each
point modulo the free and proper scaling action of R>0 which scales all tangent vectors
simultaneously.

The homotopy equivalence can be lifted to the product with R>0 thus lifting M1,...,1
g,r

to D0
g,r and reversing the quotient by R>0 on the moduli space side.

In fact using the hyperbolic approach Penner was able to identify the moduli space
corresponding to M1,...,1

g,r,s for arbitrary s. Define the “moduli space” M = M(F ) of
the surface F with boundary to be the collection of all complete finite-area metrics
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of constant Gauss curvature -1 with geodesic boundary, together with a distinguished
point pi in each boundary component, modulo push forward by diffeomorphisms. There
is a natural action of R+ on M by simultaneously scaling each of the hyperbolic lengths
of the geodesic boundary components.

Theorem 4.2. [P1] The space M1,...,1
g,r,s is proper homotopy equivalent to the quotient

M/R+

Theorem 4.3. If 3g − 2n + 3 > 0 the coinvariants of the subspace M1,...,1
g,r is homeo-

morphic to the moduli space Mg,r.????!!!!

4.2 Operad Structure on Moduli Spaces

A natural question to ask is, if the operad structure on Arc can be restricted to the
quasi–filling families given by the subspaces M1,...,1

g,r,s . This is not true on the nose. In
fact on a codimension 1 set, the gluing of two quasi–filling families might take us to a
non–quasi–filling family. Generically this does not happen, though. A careful analysis
was given in [K3]. The upshot is that if α has k arcs and β has l arcs then generically
α ◦i β has k + l − 1 arcs. And in this case, essentially by an Euler–characteristic
argument, the resulting family is again a quasi–filling. In order for the number of arcs
on α◦i β to drop we need that two of the points which form the boundary of the bands
in the construction §2.1.2 coincide. We introduced new terminology for this type of
situation. A rational (cyclic) operad is an operad structure on a dense open subset.

Theorem 4.4. The collection M(r − 1) := qgM1,...,1
g,r,s ⊂ Arc(r − 1) form a rational

cyclic operad.

Things really work out on the chain level after passing to an associated graded.

4.2.1 Cell level for the moduli spaces As in the case of the arc operad the moduli
space is the disjoint union of open cells Ċ([Γ] where now there is one cell for any given
quasi–filling [Γ].

We let C∗o (Arc0#) be the subgroup of C∗o (Arc) generated by the cells corresponding

to quasi-filling arc families with no punctures and write GrC∗o (Arc0#) for the image
of this subgroup on GrC∗o (Arc). Notice that on this subset the cells indexed by an
arc graph Γ can be equivalently thought of as indexed by the ribbon graph Γ̂. The
differential that removes arcs in Γ acts on Γ̂ by contracting the corresponding edge.

Definition 4.5. Following the usual arguments [Ko2, P1, P2, CV], the graph complex
of marked ribbon graphs is the Hopf algebra whose primitive elements are connected
marked ribbon graphs and whose product is the disjoint union. Its differential is given
by the sum of contracting edges dΓ =

∑
e∈E′(Γ)±Γ/e, where E′(Γ) is the subset of
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edges e s.t. the topological type of Γ coincides with that of Γ/e and the sign is the
usual sign.

Theorem 4.6. [K3] The complex (GrC∗o (Arc0#)(F 0
g,r), d) is isomorphic to the graph

complex of marked ribbon graphs and they both compute H∗(PMC(Fg,s0)), the coho-

mology of the pure mapping class group and the spaces H∗(M1,...,1
g,r,0 ).

The induced operad structure on the collection GrC∗o (Arc0#)(r−1) = qg,sGrC∗o (Arc0#)(F 0
g,r)

is a cyclic dg–operad structure which descends as a cyclic operad to H∗(M1,...,1
g,r,0 ).

These are the cellular operads which give rise to that Hochschild actions for moduli
space, see §6.4.

4.3 The Sullivan quasi–PROP

The arc operad or even the spaces Asg,r are inherently symmetric in all boundaries. This
symmetry was a bit broken by designating the boundary 0 as special. The idea is that
this is the output boundary, while the other n boundaries are the input boundaries.
The full symmetry is restored in the cyclic setting.

Keeping with the in– and output picture, we can add additional information by
specifying input and output boundaries on F sg,r. Technically this marks the move from
operads to PROPs. In the PROP setting one composes, by gluing all inputs of one
element to all outputs of another if their number matches. This setup is used to describe
the string topology of Chas and Sullivan [CS, CS2, S2, ?, CHV].

Furthermore in the PROPic setting one usually does not demand that the surfaces
are connected. This ensures the existence of so–called horizontal compositions (see
below §4.3.3 and the appendix). To spell this out in our situation, using the standard
models, we can consider disjoint unions F s1g1,r1 q · · · q F

s1
gk,rk

and consider their PMCs
which are the products of the individual PMCs. The number of boundaries r of such
a not necessarily connected surface is just the sum of the ri. An arc family on such a
disjoint union is just the disjoint union of arc families on the individual surfaces.

The slightly subtle points are (1) that the disjoint union is not strictly symmetric
monoidal and (2) the enumeration of the boundaries. Given a possibly non–connected
surface as above with r boundaries. We also fix n,m such that n + m = r and now
separately enumerate n of the boundaries from 1 to n calling them input boundaries and
enumerate the remaining m boundaries from 1 to m calling them output boundaries.

We let D(n,m) be the set of PMC orbits of weighted arc families on such surfaces.
Technically, we again enumerate components by the total genus and the total number
of punctures to get a break down of the space into finite dimensional spaces and then
take the colimit. Moreover, the components are indexed by k and further by tuples
(g1, . . . , gk), (s1, . . . , sk), (r1, . . . , rk). To get a CW complex we could quotient out by
a global scaling action.

The space D(n,m) has an Sn×Sm action which permutes the input and the output
boundaries. We let D0(n,m) be the families on surfaces without punctures.
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4.3.1 The spaces

Definition 4.7. The spaces of Sullivan type arc families Sull(n,m) ⊂ D0(n,m) are
the subspaces which satisfy

(1) arcs only run from inputs to the output or from the outputs to outputs.

(2) all input windows are hit.

We furthermore define the following subspaces

(1) the strict Sullivan arc families Sullst(n,m) which is the subset of families with
arcs only from in to out boundaries.

(2) Sull1(n,m) ⊂ Sullst(n,m) where the condition is that the weight of each of the
n input boundaries is 1.

These spaces have the following properties:

(1) Sull(n,m), has an Sn × Sm action which permutes the input and the output
boundaries (separately).

(2) Sull(n,m) retracts onto Sullst(n,m) simply by scaling the weights of all the arcs
from output to output to zero.

(3) The dual ribbon graphs of the arc graphs of Sull(n,m) are Sullivan Chord di-
agrams in the sense that the cycles corresponding to the in boundaries can be
disjointly embedded up to finitely many points of intersection. These circles are
joined by edges corresponding to the arcs going from outputs to outputs. These
are not present in Sullst(n,m).

Remark 4.8. Notice as the arc families neither have to be quasi–filling nor exhaustive
these dual graphs do not necessarily determine topological type of even the number
of boundaries of the surface they lie on. One can add this extra information if one
chooses to do so. We will continue with the arc graphs since these are unambiguous as
the surface they lie on carries this extra information.

Notice that if DArc(n,m) again denotes the exhaustive families in D(n,m), then
Sull(n,m) * DArc(n,m), and Sull(n,m) + DArc(n,m) but also Sull(n,m)∩DArc(n,m) 6=
∅. In the same fashion the quasi–filling families M(n,m) ⊂ D(n,m) have non–zero in-
tersection but have no containment relation with DArc(n,m).

4.3.2 A CW model: Sull1

Proposition 4.9. The spaces Sull(n,m) deformation retracts to Sullst(n,m) and this
in turn deformation retracts onto a smaller subspace Sull1(n,m) which is a CW com-
plex.
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The cells are indexed by the classes of arc graphs [α]2. And the dimension of a
cell is given by the |[α]| − n. To see that these are cells and yield a CW complex, we
can proceed as before. Given [α] with n inputs, the arc families with that type and
non–zero weights given the restriction are a product of n open simplices. The face
maps are given as before by identifying the face with the open simplex corresponding
to the family where an arc has been removed. Notice that since the total weight on
each input boundary is one, the condition of all input boundaries being hit is stable
under taking the boundary of the simplex — some arc always remains. The retraction
is simply given as follows. First we can retract by scaling the weights of arcs going form
outputs to outputs as before. Since there are no arcs from input to input boundary
each remaining arc is incident to a unique boundary component. For each boundary
component we now simultaneously scale the weights of all the arcs incident to it to
make their sum equal to one. We can do this at each boundary separately or we can
do it at all the boundaries at once.

4.3.3 (Quasi)–PROPic gluing As mentioned above a PROP P is similar to an
operad, but there are two main differences.

The first is that there is a simultaneous gluing of all inputs to all outputs ◦ :
P(n,m)⊗P(m, p)→ P(n, p) which are associative and equivariant with respect to the
various symmetric group actions. The intuitive example is again based on a vector
space V over a field k: HomV (n,m) := Homk(V ⊗n, V ⊗m) with composition. The
composition will be given by local scaling version of the scaling and its extension
by erasing. As we have mentioned before, the local scaling version usually does not
produce associative structures and this happens here as well. We do get a structure that
is associative up to homotopy, however, which is what we defined to be a topological
quasi–PROP.

The second difference is that in the proper definition of a PROP there is also a
horizontal composition • : P(n,m) ⊗ P(k, l) → P(n + k,m + l) again associative
and compatible with ◦ and the symmetric group actions. For HomV the horizontal
composition is given by the tensor product.

In our case of Sull as well as in most topological examples we add a horizontal
composition by taking it to be the disjoint union. For this reason, we enlarged the
spaces to include not necessarily connected components.

The composition in Sull is given as follows. Let a ∈ Sull(n,m) and b ∈ Sull(m, p)
then we first prepare b so that the input boundary i of b has the same weight as the
output boundary i of a. We do this by using the local scaling action as before. This
action is naturally given by a flow which scales all the weights of the arcs incident to a
given input boundary in the same fashion. Again we can prepare all input boundaries
simultaneously, since each arc that hits an input boundary hits a unique such boundary.
After this preparation step the weights on the boundaries 1, . . . , n of a and b that are to
be glued coincide and we just glue the surfaces and the foliations at all these boundaries.

2we keep the same notation also in the non–connected case
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This type of gluing is not associative, but using the fact that the preparation step
is given by a flow, ensures that there is a homotopy between two different ways of
associating. Basically by using the flow in the reverse direction. The condition that
there are no arc from outputs to outputs is preserved, since we only glue together arc
that run from inputs to outputs. Also neither the flow nor the gluing changes the total
weights on the input boundaries of a so that the spaces Sull1(n,m) are stable.

Theorem 4.10. [K3] The composition ◦ : Sull(m,n) × Sull(n, p) → Sull(m, p) is
homotopy associative, symmetric group invariant and compatible with the horizontal
composition q : Sull(m,n)×Sull(k, p)→ Sull(m+ k, n+ p); that is these spaces form
a topological quasi–PROP.

The subspaces Sull1(m,n) form a topological sub–quasi–PROP.
The cellular chains CC∗(Sull1) form a (strict) PROP.

The last statement is not straightforward, it relies on an analysis of the gluing maps
as in the case of cacti.

Corollary 4.11. The Sn × Sm modules H∗(Sull(n,m), k) form a PROP.

Tradler recently Wahl and Westerland

5 Stops, Stabilization and the Arc spectrum

5.1 Stops: Adding a Unit

5.1.1 The litte discs operad case When considering the little discs operad D2(n),
one has to be a bit careful whether or not one considers it pointed or not. In practice
this means that one either includes D2(0) in the sequence of the D2(n) or not. D2(0)
is just the big discs without any little discs inside. Notice that an element in the 0
component of an operad has no inputs. Gluing it into another element decreases the
number of inputs by one. In the particular case of D2, the zero component D2(0) is
just a point and composition with it just erases the little disc it is glued into. This
point is taken to be the base point of the operad. We will call D2 with the 0 component
the little discs with base point.

On the homology level, the inclusion of H∗(D0, k) = k has the effect that the
algebras over the little discs with base point are unital Gerstenhaber algebras. The
unit of the algebra is just the image of 1 ∈ k, while without the base point the algebras
are not required to have a unit.

This is a general phenomenon. Including a contractible 0 component, mostly just
a (base) point, to an operad whose algebras are some known type of algebra, restricts
the algebras over it to be unital.
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On the topological level, especially for detecting loop spaces, the base point is needed
as most of the construction work in pointed topological spaces. Indeed in theorem 3.4
the versions of the Ek operads with base points are needed.

5.2 Adding a Unit in the Arc Formalism

We will show how to add a unit in this sense to the suboperads GTree of Arc as in [K7]
and also give the generalization, to the PROP Sull(n,m). The latter generalization
has not formally appeared. GTreeg(n) ⊂ Arc0g(n) is defined to be the suboperad which
has arcs only running from the input boundaries i to the output boundary 0. This is
the condition (2) of Definition 3.6. It was called the operad of Chinese trees in [KLP],
the G stands for “higher genus”. We take GTree(n) = qgGTree(n). This is the same
space as Sullst(n, 1)/R>0.

There is an operadic inclusion of Cacti into GTree as the components of genus 0.
The straightforward generalization to higher genus of Cact is the suboperad LGT ree
which is comprised of the arc families satisfying the condition 3.6 of Definition 3.6.

5.2.1 Basic Idea As a first approximation to the unit, we could add a 0 component to
Cacti by setting Cacti(0) = pt. This point could represents a disc, without an arc family
considered as having no inputs, but an output. If we simply erase the foliation upon
gluing the result will not be associative. It can be seen that it is homotopy associative,
by using a flow argument. That would be enough for the chain and homology level,
but to get access to the topological theorems about loop spaces, one needs to have to
have a strict operad structure. This is achieved through the process of wilting. So the
unit will be a disc with wilted leaves on the boundary, see §2.9.3. The scaling action
of R>0 is retained and thus we can assume the measure or the weight to be 1. When
gluing in these discs, the leaves that are wilted are glued in the same fashion as in the
standard gluing see §2.9.3.

If we add this point then by gluing, we have to allow replace any sub–band of leaves
of an element of GTree by wilted leaves.

In particular, to extend units to all of GTree, we also have to add one point for each
genus GTreeg(0) = pt represented by the surface of genus g with one output boundary
and only wilted leaves at that boundary.

5.2.2 Details and Results For any of the spaces considered thus far, we define the
fattened version by allowing wilting weights on the outputs as defined in §2.9.3 and
denote the result by adding superscript Fat on the left.

Proposition 5.1. [K7] The spaces FatGtree(n) together with FatGTree(0) = qgFatGTreeg(0)
where GTreeg(0) consists of a point which represents a surface of genus g with one
boundary and a wilting weight (scaled to 1) on that boundary, form an operad under
the gluing of §2.9.3.
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The reason that this works is that there are only arcs from the inputs to the output.
Upon gluing some of these may wilt, but then the wilted leaves are again only part of
the foliation near the output.

In the same manner one can check that the conditions that (1) all the input bound-
aries are hit and that (2) unless the surface is just a disc, there is at least one arc, are
stable under the gluing.

Remark 5.2. We could also lift GTree to DArc then the 0 component of genus g
would be R>0, representing the choice to allowing any weight for the wilted foliations.
We would simply get a homotopy equivalent operad.

In this spirit, we let FatCact and FatCacti be the respective whose arc families are
in Cact respectively Cacti for n > 0 and whose 0 component is R>0.

Theorem 5.3. FatCact is equivalent to the pointed version of the little discs. FatCacti
is equivalent to the pointed version of the framed little discs.

The first part of the theorem is contained in [K7] and the second follows similarly.

Corollary 5.4. FatCact as well as GTree detect double loop spaces.

5.2.3 Cacti with stops If we regard the map loop L as defined in 2.9.3 the subspaces
FatCact and FatCacti get a very nice geometrical interpretation as cacti with stops. This
just means that the parameterization of the outside circle may be constant for certain
intervals.

This point of view was explained in [K10] used by Salvatore [Sal] to provide the
details of the announcement made by McClure and Smith [McCS1]. This is the topo-
logical version the cyclic Deligne conjecture.

5.2.4 PROP Version ! The same type of analysis leads to the PROP version of the
above proposition.

Proposition 5.5. The spaces FatSullst(m,n) as well as SullFat(m,n) form a quasi–
PROP.

These statements have not appeared so far, but they follows in the same manner as
the operadic counterparts.

5.2.5 The E1 case Above we have treated the full E2 case. For reference we also
give the E1 restriction. The restriction is given by FatCor. It is easily seen that Cor
are isomorphic to the tight little intervals, that is partitions of the unit interval, while
FatCor are isomorphic to the little intervals operad, which is the same as the little
1–cubes.
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5.2.6 Further generalizations One can also fatten the Arc as a cyclic operad to
obtain the unital cyclic operad FatArc .

When adding the necessary families obtained by gluing one quickly realizes by gluing
two cylinders one can produce a cylinder whose boundaries both are only hit by wilted
leaves. This then allows one given any arc family to let all its leaves wilt resulting in a
surface with only wilted leaves. So in addition to the wilting weights the condition of
Arc that every boundary is hit by an arc is changed to

every boundary is hit by an arc or at least has a non–vanishing wilting weight.

Proposition 5.6. The spaces StFat obtained by adding wilting weights and using the
condition above form a cyclic operad FatArc called the unital arc operad.

The proof is straightforward.

5.3 Stabilization

Stabilization is a process in which the Arc operad or its suboperads are glued together
along the not–quasi filling families. We will call such families unstable.

5.3.1 Basic Idea The basic idea is that given an unstable family, we just delete any
topology from the complementary region. This is easy to grasp if we only have one
boundary component in a complementary region. In that case which we call a genus
defect, we wish to just replace the complementary region with a disc. The other case
that can appear is that there are more boundary components, we call this a boundary
defect. Again, we wish to just forget about such defects. This idea can be made
rigorous by taking a colimit over a system of maps, which introduce boundary and
genus defects.

The result is then that the operad structure descends and we obtain the stabilized
operad. If we restrict to the tree–like setting and add an identity, the resulting operad
contains an E∞ sub–operad. This fact leads to loop space detection and the Arc
spectrum.

5.3.2 Technical details As shown in [K7], for GTree all the unstable elements can
be obtained by gluing an unstable element from GTree(1) onto quasi–filling one. That
is every a ∈ GTree can be decomposed as a1 ◦1 a′ with a1 ∈ GTree(1) and a′ quasi–
filling, we can furthermore decompose a1 into a sequence of standard generators and a
quasi–filling element. The standard generators are T−a ◦1 Hb ◦1 Ta and T−a ◦1 G ◦1 Ta,
where Ta is an element in GTree0(1) and G,Ha are given in Figure 16. Gluing on these
generators to the boundary 0 gives maps stgH(a, b) : GTreeg(n) → GTreeg+1(n) and
stgG(a) : GTreeg(n)→ GTreeg+1(n).



44

1 a 1ïa

Figure 16. The two basic unstable arc graphs G and Ha.

Definition 5.7. We define StGTree(n) := colimSGTree(n) where the colimit is taken
over the system of maps S generated by stgG(a) and stgH(b, c) with a, b ∈ [0, 1) and
c ∈ (0, 1). We will denote the image of a subspace by the prefix St, e.g. StLGT ree.

Theorem 5.8. [K7] The operad structure of GTree descends to StGTree. Moreover
StLGT ree is a suboperad. Furthermore, the elements in StGTree have a unique quasi–
filling representative.

The proof goes through a standard form argument using the decomposition men-
tioned above.

5.4 Generalization to all of Arc

The arguments of [K7] generalize to the full arc operad by using the colimit over
gluing at all boundaries. So for i = 1, . . . , n let stgG(i; a) and stgH(i; b, c) be the maps of
Arcg(n)→ Arcg+1(n) given by α 7→ α◦i (T−a ◦1G◦1Ta) and α 7→ α◦i (T−b ◦1Hc ◦1Tb).
For stgG(0; a) we use the same definition as for stgG(a), now extended to all of Arc and
likewise for stgH(0; a, b).

Theorem 5.9. The spaces StArc(n) := colimSArc(n) where the colimit is taken over
the system of maps S generated by stgG(i; a) and stgH(i; b, c) with a, b ∈ [0, 1) and c ∈
(0, 1) form an operad called the stabilized arc operad.

5.5 Stabilization and Moduli space

The situation about representatives is more complicated, the stabilization with respect
to the two types of elements above still allows for non–quasi filling representatives.
The new type of degeneracy comes from being able to find closed curves that do not
intersect any of the arcs. We call a maximal choice of a system of such curves which
are mutually non–intersecting a curve degeneracy system.



45

If we cut along the curve degeneracy system, we will get elements in the spaces
Asg,r, since there will be some boundaries which are not hit. This is a partial operadic
decomposition if we allow to glue along empty boundaries. It also becomes operadic, if
we allow boundaries with only wilting leaves. By shrinking the curves in the degeneracy
system they become double points and the representatives live in a Deligne–Mumford
type setup of the space M1,...,1

g,r,s . The precise details will be given elsewhere, and they
should be compared to [LP].

5.6 Stabilization and adding a unit. The E∞ and Ek structures

Combining the two procedures, stabilization and adding a unit, we end up with the
operad versions FatSt. Here it is inessential in which order we do the two procedures.
If we fatten first, then we wish to point out that in the stabilization step all elements
in operad degree 0 become identified to the disc with wilted leaves on the boundary.
That is FatStGTree(0) = pt is a point and so is FatStArc(0). For the latter operad
the resulting fattened spaces FatStArcs(n) are contractible to the representative given
by F s0,n+1 with no arcs, but some constant wilting weight on the boundary. Notice
that these surfaces are fixed points under the Sn+1 action. If we restrict to s = 0 the
spaces FatStArc0(n) are contractible, but as the Sn action is not free we do not get
E∞ operads. Staying within FatStGTree however we obtain an E∞ operad and along
with it a filtration by Ek operads.

We define FatLGT ree analogously to its non–thickened counterpart.

Theorem 5.10. [K7] The operad structure of FatGTree descends to FatStGTree and
FatStLGT ree is a suboperad.

Using the same arguments as in loc. cit. one obtains:

Theorem 5.11. The operad structure of FatArc descends to FatStArc and FatStGTree
is a suboperad.

The most important structure theorem is then.

Theorem 5.12. [K7] There is a filtration of FatStLGT ree by suboperads FatStLGT reek.
The operads FatStLGT reek are Ek operads and the operad FatStLGT ree is an E∞ op-
erad.

The proof uses Fiedorowicz’s theorem [B, Theorem 1.16]. For this one constructs
co–called cellular Ek operads k ∈ N ∪ {∞} and according to [B] these are Ek operads.

Corollary 5.13. The sub–operads {StLGT reek(n), n > 0} with zero wilted weights
are equivalent to {Ck(n), n > 0} where Ck are the non–pointed k cubes and the operad
{StLGT ree, n > 0} is an E∞ operad without a 0–term.
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Moreover FatStLGT ree acts on FatStArc and thus.

Theorem 5.14. The group completion of FatStArc is homotopy equivalent to an infi-
nite loop space and hence gives rise to an infinite loop space spectrum, the Arc spectrum.

The analogous statement holds true for FatStGTree as stated in [K7]

5.6.1 The Ek–operads in detail: The hemispherical decomposition of S∞

In order to identify the Ek suboperads, one uses so–called degeneracy maps. These
are simply given by gluing in the element ∗ of StGTree(0) into the i–th position. In
particular, if one glues ∗ into all but the ith and jth position, one obtains a map
φij : StLGT ree(n) → StLGT ree(2). This space retracts to S∞. We let E±k be the
upper and lower hemisphere of Sk ⊂ S∞. As is well known these are the cells of a CW
decomposition of S∞.

Proposition 5.15. [K7] StLGT ree(2) is retracts to S∞ × R2
>0. Under this homeo-

morphism E±k ×R2
>0 are arc families whose underlying graphs for E+

k ×R2
>0 are those

given in Figure 17, while those for E−k ×R2
>0 are simply the image under interchanging

the labels 1 and 2. The factor of R2
>0 is simply the weight wt(∂i) on the boundaries 1

and 2.
This implies that FatStLGT ree(2) retracts onto S∞ by scaling the wilting weights

to zero.

Definition 5.16. StLGT reek(n) =
⋂
i,j∈{1,...,n} φ

−1
ij (Sk×R2

>0). This means these are

those stabilized arc families which land in Sk × R2
>0 ⊂ S∞ × R2

>0 under all the maps
φi,j .

We set FatStLGT reek(n) to be those arc families which lie in StLGT reek(n) after
forgetting the wilting weights. Or equivalently those families which under the above
retraction land in Sk.

The theorem above also asserts that these are indeed suboperads.

5.7 CW decomposition and ∪i products

For StLGT ree there is a CW model, given simply again by normalizing the weight
on the input boundaries to be 1. Since FatStLGT ree(n) retracts onto its suboperad
StLGT ree(n) for n > 0, we also get a chain model for the fattened version. If we want
to include a 0 component on the chain level, we simply take it to be k, the ground field,
represented by the disc with the empty graph and the action given by erasing arcs.

This CW model for StLGT ree(2) is exactly S∞ in its hemispherical decomposition.
The cells of the upper hemispheres give the chain representatives for the ∪i products.

These are given in Figure 17. Recall that ∪i+1 is a homotopy between ∪i and τ12(∪i).
This is again an incarnation of S∞ with S0 being the two orders of the multiplication
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21 2 1

Figure 17. The ∪i operations for i even and i odd, These are also the cells for upper
hemispheres of S∞ in its hemispherical decomposition.

µ. This is made explicit in the figures 18 before the stabilization and 19 after applying
stabilization. This may also serve as a good general example of how the stabilization
works.

6 Actions

6.1 Algebras

One of the main application of the Arc operad and its derivates are chain and homology
level actions on the Hochschild complexes of an algebra A. There are several types of
algebras one considers. The algebras are either taken to be strictly associative or A∞.
The latter is an algebra with a multiplication µ2 : A ⊗ A → A, a differential d and
is associative up to homotopy with all higher homotopies explicitly given by higher
multiplications µn : A⊗n → A. We also take the algebras to be unital for simplicity.

The next choice is if these algebras have a suitable duality. In the associative case
this means that the algebras are Frobenius algebras, that is they have a non–degenerate
symmetric (even) bilinear form 〈 , 〉 which is invariant: 〈a, bc〉 = 〈a, bc〉. In the A∞ case
one postulates the symmetry of all the µn: 〈a0, µn(a1, . . . , an)〉 = 〈an, µn(a0, . . . an−1)〉.
We remark that we can also use the category of graded algebras and their graded duals
where we can get a duality if the graded pieces are finite dimensional.

Since the algebras are unital, we will use the following notation∫
a := 〈a, 1〉 (6.1)

where 1 is the unit. In this notation the symmetry and invariance becomes cyclicity
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∫
a0a1 . . . an =

∫
a1 . . . ana0 (6.2)

The techniques for cases with or without a duality are a bit different. Without
a duality, we have an asymmetry between inputs and outputs. To a given action or
better an algebra V over an operad or a PROP, we need a map in Hom(V ⊗n, V ) or
Hom(V ⊗n, V ⊗m) for each element of the operad or PROP. This asymmetry is reflected
in the geometry by restricting the arc families we can use to give cellular actions. The
actions in this case are given by flow charts.

If there is a duality, we can also ask that V has such a duality which is compatible.
This means that we can construct maps in Hom(V ⊗n+1, k) or Hom(V ⊗n+m, k) which
we call correlation functions. These are defined with the help of the co–unit

∫
.

We can actually define these correlation functions even in absence of a duality, but
without it there is no way to compose unless we choose extra data, such as special
elements or propagators in physics parlance in V ⊗ V which are otherwise provided by
the Casimir element of the non–degenerate bilinear form, see the Appendix A.1.9 for
the formulas.

6.2 Deligne’s conjecture

Deligne’s conjecture is the statement.

Theorem 6.1. There is an operadic cell model of the little discs operad that acts on the
Hochschild cochains CH∗(A,A) of an associative algebra in such a way that its induced
action of the homology of the little discs operad gives rise the known Gerstenhaber
algebra structure on HH∗(A,A).

The theorem has been proved in many variants [Ko1, Ta, McCS1, Vo1, KS1, McCS2,
BF]

Notice that is has two main statements.

(1) there is a chain level action which induces the Gerstenhaber structure on (co)homology
and

(2) the chain level operad is an operadic chain model for the little discs.

The second statement means that (a) the chains compute the right homology and (b)
that the induced structure on homology coincides with the one from the little discs. In
some of the variants the second statement is not proven, we will call such a solution to
the problem a weak solution.

Theorem 6.2. The operad of spineless cacti are equivalent to the little discs and its
chain model CC∗(Cact1) solves Deligne’s conjecture.
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Figure 20. I An element of Cact, II its dual graph, III its intersection graph

We give an outline of the proof. First, notice that indeed CC∗(Cact1) is an operadic
chain model for spineless cacti; for details see [K1]. The action will be given by a flow
chart.

6.2.1 Intersection graph trees Given a cell indexed by an arc family [α] its flow
chart τ([α)] is given by the intersection graph of the dual graph. The intersection graph
is a bipartite rooted planar tree. Here “rooted planar tree” which is sometimes also
called planted planar tree means that there is a marked vertex called root and at each
vertex there is a cyclic order of the adjacent edges and a linear order at the root 3. A
dual graph of an element of Cact is a ribbon graph which has one cycle that contains
all edges in exactly one orientation, call this cycle the outside cycle or loop — the one
corresponding to the boundary 0. The intersection graph for such a graph has black
vertices corresponding to the vertices of the graph. It has white vertices corresponding
to the cycles of the graph except for the outside cycle. There is an edge connecting a
white and a black vertex if the respective vertex lies on the respective cycle. For an
example, see Figure 6.2.1.

This graph can be shown to be a tree. The cyclic order at each vertex is induced
by the ribbon graph structure. For the black vertices this is the identical order and for
the white vertices the order induced on the directed edges of a cycle. The root is taken
to be the vertex which we called the global zero. That is the one corresponding to the
marked point on the boundary 0. Finally, the linear order at this root vertex is given
by saying that its first edge is the one corresponding to the first arc on the boundary
0. Since each other vertex has a unique edge pointing towards the root, declaring this
to be the last edge.

3It is enough to give a linear order on all vertices. At any non–root vertex there is a unique edge
going towards the root. This edge is set to be the last one.
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Since this data only depends on the incidence conditions of the arcs on the boundary,
it is clear that this tree only depends on the class of α. The white vertices are also
numbered from 1, . . . , n corresponding to the boundary components they represent.

6.2.2 Flow chart of the tree The action is simply given by decorating τ([α]) with el-
ements fi ∈ CH∗(A,A) and performing brace operations at each white vertex and mul-
tiplication at each black vertex. More precisely, the action is defined for homogeneous
elements and then extended by linearity. For the basis element of CC∗(Cact(m)) given
by a cell indexed by [α] the action on (f1, . . . , fn) with fi ∈ CHni(A,A), i = 1, . . . , n is
zero unless m = n. In the case that these numbers match: Decorate the white vertex i
with fi. Now τ([α]) is planar and has a flow toward the root. The outermost vertices
or leaves are white. We start with these functions. If the flow hits a black vertex, we
multiply the incoming functions in the linear order given by this vertex. The product
is the outgoing function. If the flow hits a white vertex i, we take the brace operation
of fi with the product of all incoming functions (again in the order dictated by the
linear order on the vertex) and make this the outgoing function.

In the example is given in figure 6.2.1 the operation would be f1{f2{f3f4}, f5}.

6.2.3 The A∞–version The A∞ version of Deligne’s conjecture was first proven in
[KS1]. The action was given by means of a homotopy argument and was not explicit.
The basic idea is that there is a naturally acting operad called the minimal operad and
that this operad is quasi–isomorphic to the little discs. To build the quasi–isomorphism
one goes through a very large model and proves existence of the quasi–isomorphisms
by homotopy theory without having to construct them.

In [KSchw] the A∞ version was proven in a minimal constructive way. The method
used are again flow charts given by planted planar two colored stable trees. The colors
on the vertices are again black and white and stability means that each black vertex is
at least three valent. Also the white vertices are numbered. These form the minimal
operad of [KS1] and their action is given by using the multiplication µn at a black
vertex that is n− 1 valent and the brace operations at the white vertices.

Theorem 6.3.

The trees above with fixed numbering from 1, . . . , n index the cells of a CW com-
plex K1(n).

(1)(2) The CW complexes K1(n) are a cell model for the little discs operad.

(3) The cellular chains of K1(n) form an operad isomorphic to the minimal operad
of [KS1] and hence give operations on CH∗(A,A) for any A∞ algebra A in such
a way that the induced action is the usual Gerstenhaber structure on HH∗(A,A).

The proof of the second statement uses spineless cacti as a reference model. The
tertium comparationis is third cell model called Kht, which is shown to be a subdivision
of K1 and retractable to the spineless cacti.
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The connection to the arc picture and thus to moduli spaces, foliations and moduli
spaces comes from Kht. It is given in the Appendix of [KSchw]. The basic upshot is
that the trees are again the intersection graphs of dual graphs of arc families. Again,
the genus is zero and arcs are allowed to run from boundaries i = 1, . . . , n to the
boundary 0 or from 0 to 0. All boundaries i are hit and there is no arc from 0 to 0
that is homotopic to the union of another arc and a boundary.

Tracing through the definitions, one sees that the arcs from 0 to 0 give rise to
edges between two black vertices and the last condition ensures that there are no black
vertices of valence less that 3.

One upshot of this treatment is an arc indexed subdivision of Stasheff polytopes
and a new subdivision of cyclohedra by cells indexed by arc families, which leads to a
new explicit blowup procedure starting at a simplex, see [KSchw].

6.3 The cyclic Deligne conjecture

There cyclic Deligne conjecture which was actually conjectured by [TT] states that

Theorem 6.4. There is an operadic cell model of the framed little discs operad that
acts on the Hochschild cochains CH∗(A,A) of a Frobenius algebra in such a way that
its restriction to the operadic chain model for the sub–operad of the little discs operad
gives rise the known Gerstenhaber algebra structure on HH∗(A,A).

This conjecture was first proven in [K6] using spineless cacti and their CW model
Cact1. A consequence of this statement is

Corollary 6.5. For a Frobenius algebra HH∗(A,A) has the structure of a BV algebra,
for which the induced bracket is the Gerstenhaber bracket.

This statement was first proved by [Men] without the chain level version. During
the publication process of [K6] several other versions of actions yielding a BV structure
on homology provide weak solutions in the sense of §6.2 were produced [TZ, KS2, Co].
Many of these construct actions of even bigger operads or PROPs. Newer versions are
given in [WW].

The proof in [K6] again uses a tree picture for the actions. We will give these actions
in a different but equivalent guise when discussing the Sullivan PROP in 6.4.4. This
makes the fundamental role of foliations in the solution more apparent.

In the Frobenius case we also have an isomorphism of complexes CH∗(A,A) and
CC∗(A), the cyclic cohomology chain complex, see e.g. [K4].

6.3.1 The A∞–version A solution to the A∞ generalization of the cyclic conjecture
(and not just a weak one) was announced in [K8] and just fully proven in [Wa]. The
method of proof is to extend the action of [KSchw] to the case of trees with spines of
marks as in [K6].
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Theorem 6.6. [Wa] The cyclic A∞ conjecture holds.

The weak statement of this can be found in [KS2].

6.4 Moduli space action and the Sullivan PROP aka. String
Topology action

6.4.1 Correlation functions Fix a commutative unital Frobenius algebra A with
multiplication µ and paring 〈 , 〉. Set

∫
a := 〈a, 1〉 and let e be the Euler element of A

that is

e = µ∆(1)

where ∆ is the adjoint of µ, see the Appendix.
The actions will be given on CH := CH∗(A,A). Now since A is a Frobenius algebra,

then CHn(A,A) ' A⊗n+1 so that we may use an isomorphism of the Hochschild
cochains with the tensor algebra CH∗(A,A) ' TA, where TA =

⊕∞
n=1A

⊗n is the
reduced tensor algebra. Furthermore in the graded sense TA is Frobenius by using the
tensor product of the Frobenius algebra structures.

Thus suitably dualizing, we can represent any Φ ∈ Hom(CH⊗n, CH⊗m) as an

element Y ∈ Hom(TA
⊗n+m

, k) and vice versa. The multi–linear maps Y are called
correlators and are fixed on homogenous element of TA.

We will define basic correlators Y depending on the cells of Asg,r. For homoge-

nous elements φi ∈ TA, i = 0, . . . , r these will be multilinear maps to k denoted by
〈φ0, . . . , φr〉[α] for any cell given by a PMC class [α].

6.4.2 Basic idea The action is roughly given as follows: fix α an arc graph with k
arcs on some F sg,r and fix homogenous φi ∈ TA, i = 0, . . . , r − 1.

(1) Duplicate edges so that the number of incoming edges at the vertex i = deg(φi).
We sum over all possibilities to do this, if this is not possible then the operation
is zero.

(2) Assume the φi are pure tensors. Pull apart the edges and decorate the pieces
of the boundary with the elements of φ. Cut along all the edges of the graph
and call the set of disjoint pieces of surface P . Let I(F ) be the index set of the
components aj of the φi decorating edges belonging to a piece S ∈ P and let
χ(S) be the Euler characteristic of the surface S.

(3) For each S integrate over the product over all the boundary decorations and a
factor of e−χ(S)+1.

(4) Multiply together all the local contributions of (3).

An example is given in Figure 21.
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Figure 21. A partitioned arc graph with decorations by elements of A and one of its
decorated polygons. The bold line corresponds to the bold edge.

6.4.3 Technical Details Given any arc graph α on F = F 0
g,r, let e1, . . . , ek be its

arcs enumerated in their order. For any tuple of positive numbers n = (n1, . . . , nk),
ni ∈ N>0 let αn the arc graph obtained from α by replacing each edge ei by ni parallel.
This can be for instance done in some rectangle with spine ei.

Consider ∂F \ (αn ∩ ∂F ) = qr−1
i=0 qj∈Ji Iij , which is a disjoint union of intervals or

simply the whole boundary components and Ji indexes the components sitting inside
∂i. Ji has a natural cyclic order, which we upgrade to a linear order by declaring the
unique interval containing the marked point of ∂i to be the first interval.

Likewise, let F 0
g,r \αn = qF∈PF . Each surface F ∈ P has a boundary in which each

boundary component is a 2k-gon whose sides alternate between the arcs and pieces of
the boundary, or simply the whole boundary, if the boundary has no incident arc.

Consider homogenous elements φi =
⊗

j∈Ji ∈ A
⊗Ji .

For S ∈ P let B(S) be the subset of those boundary indices (i, j) such that Iij is a
part of the boundary of S

〈φ0, . . . φr−1〉S :=

∫ ∏
(i,j)∈B(S)

aije
−χ(S)+1

and finally set

〈φ0, . . . , φr−1〉F 0
g,r,α

:=
∏
S∈P
〈φ1, . . . , φn〉S
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where

〈φ1, . . . , φn〉p =

∫ ∏
i∈I(S)

aie
−χ(S)+1 (6.3)

Combining these correlators with the map P:

Theorem 6.7. Let A be a Frobenius algebra and let CH∗(A,A) be the Hochschild
complex of the Frobenius algebra, then the cyclic chain operad of the open cells of Arc
acts on CH∗(A,A) via correlation functions.

In the same fashion all the suboperads, di–operads and sub–PROPs of [K3] act. In
particular the total graph complex GrC∗o (Arc0#) of the moduli spaces M1,...,1

g,r,s of pointed
curves with fixed tangent vectors at each point acts.

6.4.4 String Topology For string topology there is a modification of the basic corre-
lators above, which amounts to inserting the unit element in certain places, depending
on the choice of in and out boundaries.

Consider ∂F \ (αn ∩ ∂F ) = qr−1
i=0 qj∈Ji Iij as above. These elements are called

angles in [K4]. On each boundary there is one angle that contains the marked point.
This angle is called the outer angle. If Iij has as its endpoints of two parallel arcs of
αn (and is not outer) it is called a partitioning angle.

All the other angles, that is neither outer and nor partitioning, are called inner
angles. These are the angles corresponding to the angles of α that are not outer angles.

Let F i/o be a surface together with designated in and out boundaries, as in the
Sullivan PROP situation.

Given φi ∈ CHni(A,A) we let φ̃i = φ for all in boundaries i and for an out
boundary k, given φk ∈ CHnk(A,A), we let φ̃k ∈ CH |Jk|(A,A) the element obtained
from φk by inserting the unit 1 in all the positions j for which Ikj is an inner angle.
This is accomplished by the use of degeneracy maps. Given φk = φi1 ⊗ · · · ⊗ φini

set
sj(φi) = φi1 ⊗ · · · ⊗ φij−1 ⊗ 1⊗ φij ⊗ · · · ⊗ φini

.

That is φ̃k = sj1 . . . sjlφk, where j1 < · · · < jk are the positions of the inner angles.

〈φ0, . . . , φr−1〉F i/o,α := 〈φ̃0, . . . , φ̃r−1〉F,α (6.4)

Notice that this expression is 0 unless ni = |Ji| for all in boundaries and nk = |Jk|−
the number of inner angles.

An example of this type of decoration is given in Figure 22.

Theorem 6.8. [K4] The Y (α) defined in equation (6.4) give operadic correlation func-
tions for the chain model CC∗(Sull1) of the Sullivan PROP Sull and induce a dg–

action of the dg-PROP CC∗(Sull1) on the dg–algebra CH
∗
(A,A) of reduced Hochschild

co-chains for a commutative Frobenius algebra A.
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Figure 22. Examples of the partitioned families yielding ∪, ◦i in the string topol-
ogy/Deligne setting and t and �i in the moduli setting. The outer angles are the ones
with the dot, the bold angles are the non–partitioning inner angels are marked in bold.

By restricting to genus 0 and Sull(n, 1) one gets an action of Cacti, this together
with the quasi–isomorphism of Cacti and the framed little discs yields:

Theorem 6.9. The cyclic Deligne conjecture holds.

The connection to string topology is as follows. Let M be a simply connected
compact manifold M and denote the free loop space by LM and let C∗(M) and C∗(M)
be the singular chains and (co)-chains of M . We know from [J, CJ] that C∗(LM) =
CH∗(C∗(M,C∗(M))) and H∗(LM) ' HH∗(C∗(M), C∗(M)). Moreover C∗(M) is an
associative dg algebra with unit, differential d and an integral (M was taken to be a
compact manifold)

∫
: C∗(M)→ k such that

∫
dω = 0. By using the spectral sequence

and taking field coefficients we obtain operadic correlation functions Y for Cacti on
E1 = CH∗(H,H) which converges to HH∗(C∗(M)) and which induces an operadic
action on the level of (co)-homology. Except for the last remark, this was established
in [K6].

Theorem 6.10. When taking field coefficients, the above action gives a dg action
of a dg–PROP of Sullivan Chord diagrams CC∗(Sull1) on the E1–term of a spectral
sequence converging to H∗(LM), that is the homology of the free loop space of a simply
connected compact manifold and hence induces operations on this loop space.

Remark 6.11. There is also a lift to co–cycles of a dg–algebra whose cohomology is
Frobenius, see [K4].

6.4.5 Moduli space and Arc action The basic correlators compose completely
algebraically, see A.1.9. This will give an algebraic action, if one leaves out the mod-
ification in the operad composition that the closed leaves are erased as discussed in
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Remark 2.2. Also in this version, one uses no extra signs in the discretization. Notice
that in the string topology gluing, no closed leaves can appear.

For the case of the relative chains ofArc or in the moduli space case, viz.GrC∗o (Arc0#),
we need the signs. In order to get a map of operads, we therefore first have to account
for the signs in the operad Hom(CH∗), this is implicitly done in string topology and
the various versions of Deligne’s conjecture. Here if one wishes to phrase the fact
that the action exists in operadic terms, the target of the morphism of operads is not
Hom(CH∗) but the so–called brace operad Brace which is formed by certain sub-
spaces of the endomorphism operad, but has different sign rules. This is what we
called a twisted Hom–operad structure. Moreover in our solution to Deligne’s conjec-
ture Brace is in a sense the tautological recipient of the operad map, since it is the
isomorphic image of CC∗(Cact). This is however only a posteriori and not true in all
solutions of Deligne’s conjecture — albeit this type of statement is a special feature
in all forms of the conjecture coming from chains of the Arc operad. A priori Brace
is defined to be spanned by the multiplication and brace operations. The signs then
come from a new natural grading. Since any Hom(V ) operad is already graded this is
actually a bi–grading. The theorem below gives identification of such a Hom–operad
for the moduli space case. That is there is an isomorphic image of GrC∗o (Arc0#) of
subspaces MCS in Hom(CH∗(A)) which is naturally (bi)graded, thus providing the
signs.

Furthermore in the case at hand on the geometric side, there is also a modification
in the combinatorial gluing coming from the use of cellular chains, namely that if the
dimension of the chain is not additive under the gluing, the result is 0. On the geometric
side this was handled by passing to the associated graded (see §2.5) and likewise on
the algebraic side we analogously pass to the associated graded.

Theorem 6.12. Let A be a Frobenius algebra and let CH∗ = CH∗(A,A) be the
Hochschild complex of the Frobenius algebra.

There are subspaces MCS ⊂ Hom(CH∗), defined in terms of natural operation
below, such that for all αn for α a quasi–filling, the correlation functions (6.3) suitably
dualized are elements of MCS.

FurthermoreMCS has a natural grading, such that the correlation functions Y (P(α))
for α ∈ GrC∗o (Arc0#) yield an operad morphism of cyclic operads to GrMCS, viz they
are operadic correlation functions with values in GrMCS.

Pushing forward the differential this action becomes dg.

Remark 6.13. Again there is a lift to the chain/cycle level.

Remark 6.14. Unlike in the previous cases, the differential is not the natural one on
the Hochschild side. This is actually the case for the arc graphs with arcs running only
from input to output. We give the details below.

Although the details have to spelled out, it is fairly straightforward to obtain:
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Claim 6.15. The Theorem above also holds true in the modular operad setting.
And, by dualization the analogous theorem holds true for the PROP setting. That

is for the complex of quasi–filling families with input and output markings.

6.4.6 MCS and the operations of Cact For completeness we will briefly define
MCS. It is given as the subspace generated by three types of operations and certain
permutations. These are the maps:∫

: TA→ k

∫
(a1 ⊗ · · · ⊗ an) =

∫
a1 · . . . · an

♦ : TA→ TA⊗A⊗ TA a1 ⊗ · · · ⊗ an 7→
∑
i

(a1 ⊗ ai−1)⊗ ai ⊗ (ai+1 ⊗ · · · ⊗ an)

ηn : A⊗2n ⊗A⊗n → k η(a1 ⊗ · · · ⊗ an ⊗ · · · ⊗ b1 ⊗ · · · ⊗ bn) = ±
∏
i

∫
(aibi)

where TA is the tensor algebra and the sign is the usual Koszul sign.
To explain the shuffles, one introduces a new monoidal structure � for bimodules

[K4]. For TA this amounts to the definition TA � TA = TA ⊗ A ⊗ TA. This means
that ♦ is a co–product. ♦ : TA → TA � TA. This type of co–product also naturally
appeared in [McCS2]. The correlators Y (αn) then can be factorized as

Y (αn) : TA⊗n →
r⊗
i=0

A�mi+1 → k (6.5)

where mi is the number of inner angles at the boundary i. The shuffles are then the
shuffles of factors TA and A in the middle part. Note that

∫
is cyclically invariant, so

that only the cyclic order of the tensors matters.
More precisely for any αn with α a quasi–filling, let mi be the number of inner

angles at boundary i, ni be the entries of n then

Y (ap) = (
⊗

π∈Comp(α)

∫
π

⊗
r⊗
i=0

ηni−1) ◦ σ ◦
n⊗
i=0

♦mi (6.6)

where we identify the complementary regions Comp(α) of α with a subset of those of
αn,

∫
is applied to the cyclically ordered decorations of the fixed polygonal region π

as in 6.3, the iterated coproduct is defined by ♦l : TA → TA�l+1 is the iteration of
♦ given by (♦⊗ (idA ⊗ idTA)⊗l) ◦ ♦⊗ (idA ⊗ idTA)⊗l−1) ◦ · · · ◦ (♦⊗ idA ⊗ idTA) ◦ ♦,
and σ is a shuffle of the factors A and TA in the image of the ♦ operations, that is⊗r

i=0A
�mi+1.

MCS is then the space dual to the one generated by operations of the type (6.6).
The degree of such an operation is l = 1

2

∑
(mi + 1)− 1. If the operation comes from

some α then this is exactly the dimension of the cell given by α.



60

For the basic cells from Cact given by the diagrams in Figure 22 we obtain the
operations

t : (A⊗ Ǎ⊗n) � (A⊗ Ǎ⊗m)
�◦σ→ A⊗A⊗ (Ǎ⊗n � Ǎ⊗m)

µ→ A⊗ Ǎ⊗n+1+m (6.7)

and

�i(f, g)(a1, . . . , an+m+2) =

f(a1, . . . , ai−1, aig(ai+1, . . . aim)ai+m+1, ai+m+2, . . . , an+m+2). (6.8)

These type of operations have also appeared in other work on the Deligne conjecture.

Proposition 6.16. The operations of the suboperad Cact correspond to the operations
t and �i induced by Ξ2 as defined in [McCS2].

6.4.7 Stabilization and the action Given the results of the previous paragraph,
we can ask, when does the action pass to the stabilization? The answer [K5] is that this
is the case if and only if A is a normalized semi–simple Frobenius algebra. Semi–simple
means that there are generators ei with the multiplication eiej = δijei. It follows that
1 =

∑
i ei and if λi =

∫
ei then e =

∑
i λiei. The algebra is normalized if in addition

e = 1 ∈ A which is equivalent to all
∫
λi = 1. Any semi–simple Frobenius algebra can

be normalized by rescaling the metric.
Moreover, if the algebra is just semi–simple the all unstable correlators are com-

pletely determined by the stabile ones.
In bath cases the action of the Sullivan PROP on the homology level is of course

trivial, since the Hochschild cohomology of a semi–simple algebra is trivial. The chain
level gives such a preferred trivialization. But there is an interesting action of the
moduli spaces. This could be related to a similar story of stabilization discussed by
Teleman [Te]. The connection is given by Gromov–Witten invariants with semi–simple
quantum cohomology such as that of projective spaces and conjecturally a class of Fano
varieties.

7 Open/Closed version

There is an open/closed version of the whole story. This is given in details in [KP]
and [K9]. For this one introduces marked points on the boundaries and brane labels
for these as well as any marked points in the interior. Here the brane label can be ∅
to indicate the closed sector or some element of an indexing set to indicate an open
brane label. One major difference is that in that setting, basically due to the Cardy
equation, one cannot restrict to the case of no marked point in the interior.
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The theory again is completely natural from the foliation aspect. Geometrically
there is one simple rule in the background. Points with the closed label are considered
as marked points in the surface, but points with an open label are considered as deleted
from the surface.

One upshot is a short topological proof of the minimality of the Cardy/Levellen
axioms.
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A Glossary

A.1 Operads and PROPs

An operad basically formalizes combinations of flow diagrams. The individual pieces
have n inputs and 1 output.

Let C be one of the following: (chain complexes of dg) vector spaces with tensor
product, topological spaces with Cartesian product or chain complexes of Abelian
groups with tensor product over Z. In general C will be a symmetric monoidal category.

Definition A.1 (Short definition). An operad in C is a sequence of objects O(n) ∈ C
together with an Sn action on O(n) and morphisms

◦i : O(n)⊗O(m)→ O(m+ n− 1), for i = 1, . . . n

which are equivariant for the symmetric group actions and associative.
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Remark A.2. In the full definition, C should be a symmetric monoidal category. The
categories above are such categories.

A.1.1 Functors and operads

Remark A.3. It is clear that (weak) symmetric monoidal functors transform operads
to operads. The ones that we care about are H∗ and S∗ as well as CC∗ (cellular chains
for CW complexes with cellular maps).

A.1.2 Standard Example The standard example are multivariable functions. From
this example one can also make precise how the associativity and symmetric group
equivariance can be written in formulas. We will make this concrete in two examples.
Let X be a locally compact Hausdorff space. We let Hom(X)(n) := C(X×n, X); an
element is just a continuous function f of n variables. f ◦i g just substitues g in the
i–th variable of f . If f has n variables and g has m variables then f ◦i g has n+m− 1
variables. The Sn action is given by permuting the variables of the function. Given two
permutations σn and σm there is a unique permutation σm ◦i σn of the new n+m− 1
variables such that σm(f) ◦σm(i) σn(g) = σm ◦i σn(f ◦i g). The interested reader is
referred to e.g. [MSS] or encouraged to work out the combinatorial formula.

The associativity states that if we have three functions f, g, h then it does not matter
in which way we make the substitutions. Writing down the explicit formula is again
a bit subtle, since the indexing of the variables changes. The encouraged to work out
the combinatorial formula which is in general given by

A.1.3 Associativity For opk ∈ O(k), op′l ∈ O(l) and op′′m ∈ O(m)

(opk ◦i op′l) ◦j op′′m =


(opk ◦j op′′m) ◦i+m−1 op

′
l if 1 ≤ j < i

opk ◦i (op′l ◦j−i+1 op
′′
m) if i ≤ j < i+ l

(opk ◦i−l+1 op
′
l) ◦j op′′m if i+ l ≤ j

A.1.4 Remarks and fine print In general, Example A.1.2 extends in any closed
monoidal category C. This means that the sets Hom(X,Y ) can also be regarded as
objects in C. If viewed in this way they are called inner homs and denoted Hom(X,Y ).
To be closed then means that Hom(X ⊗ Y,Z) ' Hom(X,Hom(Y,Z)). In this case,
for any object X: Hom(X)(n) := Hom(X⊗n, X) forms an operads just as above.

This is the reason we restricted the category of topological spaces to the full sub-
category locally compact Hausdorff spaces. Namely, if we restrict to these spaces the
category is closed. This means that C(X⊗n, X) is again in the category and we have
the duality C(X×Y,Z) = C(X,C(Y, Z)). One can make more elaborate constructions
to extend this property to a larger set of spaces. For this one has to alter the product
structure slightly, see e.g. [May2].
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A.1.5 Cyclic operads For a cyclic operad O(n) has an Sn+1 action extending the
Sn action. This action has to satisfy one compatibility equation. For this let ∗ denote
the action by the long cycle (1 · · ·n+ 1) then if b ∈ O(k)

(a ◦1 b)∗ = b∗ ◦k a∗ (1.1)

The standard example isHom(V ) where V has non–degenerate bi-linear form. Then

Hom(V )(n) = V ⊗ V̌ ⊗n ' V̌ ⊗n+1 ' Hom(V ⊗n+1, k)

has a natural Sn+1 action.
In terms of flow diagrams, this means that we can dualize inputs and outputs. The

particular dualization we used it to have n+ 1 inputs and no output.

A.1.6 Modular operads The technical definition for modular operads is too long
to reproduce here. One can define them by making the following statements precise.
They have an underlying cyclic operad. They also have a genus grading, that is they
are a collection O(n, g) each having an Sn+1 action. Usually one imposes stability,
3g − 3 + n > 0.

One should think of elements of O(n, g) as having n+1 inputs. There are two types
of compositions:
• Non–self gluings. Just like in cyclic operads glue two inputs on two separate

elements together, by dualizing one of them to an output. These are subadditive
in n and additive in g.

• Self–gluings. Glue together two inputs of one element. These decrease n by 2
and increases g by one.

These should be compatible, associative and symmetric group equivariant. A good
example to keep in mind is to glue topological surfaces of genus g together at the
boundaries.

A.1.7 PROPs Just like operads PROPs are a collection of symmetric group modules.
More precisely, again fix C a symmetric monoidal category

Definition A.4. (short) A PROP is a collection O(m,n) of Sn×Sm modules together
with

(1) Vertical compositions

O(m,n)⊗O(n, k)→ O(m, k)

(2) Horizontal compositions

O(m,n)⊗O(k, l)→ O(m+ k, n+ l)

which are associative, symmetric group equivariant and compatible.

A paradigmatic example is O(m,n) = Hom(V ⊗n, V ⊗m). The vertical composition
is just composition and the horizontal one is given by tensoring the maps.
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A.1.8 Algebra over an operad Let C be a closed monoidal category.

Definition A.5. An algebra over an operad O is an object X in the same category
and a morphism ρ of operads ρ : O → Hom(X).

For a cyclic operad, one needs that X has a duality. We will only use algebras over
linear cyclic operads.

Definition A.6. An algebra over a linear cyclic operad is a morphism of cyclic operads
to Hom(V ), where V is a vector space with non–degenerate bi–linear form.

A.1.9 Operadic correlation functions Let C be a linear category. By this we mean
that the objects of the category have the property that they are finite dimensional
vector spaces or graded vector spaces which are finite dimensional in each degree over
a field k, for instance finite dimensional algebras.

Let V be an object of C and let ∆i be a basis for V . Fix a non–degenerate bilinear
paring 〈 , 〉, set gij = 〈∆i,∆j〉 and gij the inverse matrix. The Casimir element is
C =

∑
ij ∆ig

ij∆j . This is independent of the choice of basis. It is the dual of 〈 , 〉
considered as an element of V̌ ⊗ V̌ .

With the help of this element we can dualize any φ ∈ Hom(V ⊗n, V ⊗m) via

Y (φ)(v0 ⊗ v1 ⊗ · · · ⊗ vn〉 := 〈v0, φ(v1 ⊗ · · · ⊗ vn) (1.2)

The composition ◦i then satisfies

Y (φ ◦i ψ)(v0 ⊗ · · · ⊗ vm+n−1) =
∑
kl

Y (φ)(v0 ⊗ · · · ⊗ vi−1∆k ⊗ vi+1 ⊗ · · · ⊗ vn)

gkl⊗Y (ψ)(∆k ⊗ vn+1 ⊗ · · · ⊗ vm+n−1)

=: Y (φ) ◦i Y (ψ)(v0 ⊗ · · · ⊗ vm+n−1) (1.3)

and this defines the composition on correlators.

Remark A.7. There are invariant ways to write this using tensor products indexed by
sets. We used the Casimir to compose. An additional structure is given by replacing
the Casimir by some other element, a propagator. This is done in [K4] to lift from the
cohomology to the chain level.

A.2 Standard operads and their algebras

A.2.1 Standard algebras For the readers convenience, we list the definition of the
algebras we talk about. Let A be a graded vector space over k and let |a| be the degree
of an element a. Let’s fix char k = 0 or at least 6= 2.
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(1) Pre–Lie algebra. (A, ◦ : A×A→ A) s.t.

a ◦ (b ◦ c)− (a ◦ b) ◦ c = (−1)|a||b|[a ◦ (c ◦ b)− (a ◦ c) ◦ b]

(2) Odd Lie. (A, { • } : A⊗A→ A)

{a • b} = (−1)|a|−1)(|b|−1){b • a} and Jacobi with appropriate signs

(3) Odd Poisson or Gerstenhaber. (A, { • }, ·) Odd Lie plus another associative mul-
tiplication for which the bracket is a derivation with the appropriate signs.

(4) (dg)BV. (A, ·,∆). (A, ·) associative (differential graded), ∆ a differential of degree
1: ∆2 = 0 and

{a • b} := (−1)|a|∆(ab)− a∆(b)− (−1)|a|∆(a)b

is a Gerstenhaber bracket.

(5) (dg)GBV. This name is used if a priori there is a BV operator and a given
Gerstenhaber bracket and a posteriori the given Gerstenhaber bracket coincides
with the one induced by the BV operator.

A.2.2 Reference table for types of operads. Typical operads:
operad Hom(V )
odd operad näıve suspension of a graded linear operad.
cyclic operad Hom(V ), V with symmetric non–degenerate bi–linear form
anti–cyclic operad Hom(V ), V with anti–symmetric non–degenerate bi–linear form
modular operad H∗(M̄gn)
K modular Feynman transform of modular operad;

H∗(M̄
KSV
g,n )4

A.3 Hochschild Cohomology

LetA be an associative algebra over a field k. We define CH∗(A,A) :=
⊕

q≥0 CH
q(A,A)

with CHq(A,A) = Hom(A⊗q, A).
There are two natural operations

◦i : CHp(A,A)⊗ CHq(A,A) → CHp+q−1(A,A)

∪ : CHn(A,A)⊗ CHm(A,A) → CHm+n(A,A)

where the first morphism is for f ∈ CHp(A,A) and g ∈ CHq(A,A):

f ◦i g(x1, . . . , xp+q−1) = f(x1, . . . , xi−1, g(xi, . . . , xi+q−1), xi+q, . . . , xp+q−1) (1.4)

4M̄KSV
g,n is the real blow up of the DM compactification defined in [KSV].
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and the second is given by the multiplication

f(a1 . . . , am) ∪ g(b1, . . . , bn) = f(a1 . . . , am)g(b1, . . . , bn) (1.5)

A.3.1 The differential on CH∗ The Hochschild complex has a differential which
is derived from the algebra structure.

Given f ∈ CHn(A,A) then

∂(f)(a1, . . . , an+1) := a1f(a2, . . . , an+1)− f(a1a2, . . . , an+1)+

· · ·+ (−1)n+1f(a1, . . . , anan+1) + (−1)n+2f(a1, . . . , an)an+1 (1.6)

Definition A.8. The Hochschild complex is the complex (CH∗, ∂), its cohomology is
called the Hochschild cohomology and denoted by HH∗(A,A).

A.3.2 The Gerstenhaber structure Gerstenhaber [Ge] introduced the ◦ opera-
tions: for f ∈ CHp(A,A) and g ∈ CHq(A,A)

f ◦ g :=

p∑
i=1

(−1)(i−1)(q+1)f ◦i g (1.7)

and defined the bracket

{f, g} := f ◦ g − (−1)(p−1)(q−1)g ◦ f (1.8)

and showed that this indeed induces what is now called a Gerstenhaber bracket, i.e. an
odd Poisson bracket for ∪, on HH∗(A,A). Here odd Poisson bracket means odd Lie
bracket and the derivation property of the bracket with shifted (odd) signs.

A.3.3 Reduced Hochschild cohomology The subcomplex of reduced chains CH
∗
(A,A) ⊂

CH∗(A,A) is the subcomplex generated by functions f which vanish if one of the vari-
ables is 1. That is f(a1 ⊗ · · · ⊗ ai ⊗ 1ai+1 ⊗ · · · ⊗ an) = 0.

This sub–complex is quasi–isomorphic to the full complex, that is its cohomology
is HH∗(A,A).

A.4 Frobenius algebras

A Frobenius algebra A is a unital associative algebra with a non–degenerate symmetric
bilinear form 〈 , 〉 which satisfies 〈ab, c〉 = 〈a, bc〉.

A.4.1 Comultiplication, Casimirs and Euler elements in Frobenius algebras
For explicit formulas, fix a basis ∆i of A, set gij := 〈∆i,∆j〉 and let gij be the inverse
matrix.
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A.4.2 Tensor powers Let A be a Frobenius algebra, then A⊗A is also a Frobenius
algebra for the multiplication (a ⊗ b)(c ⊗ d) = (−1)|b||c|ac ⊗ bc where |.| is the degree
in the graded case. The bilinear form is defined by 〈a⊗ b, c⊗ d〉 = (−1)|b||c|〈a, c〉〈b, d〉.
Notice this makes the tensor algebra TA =

⊕
n≥0A

⊗n into a graded Frobenius algebra.
Here we are using the graded dual, and the internal degree and not the total degree
for the signs.

A.4.3 Comultiplication The comultiplication ∆ is the adjoint to the multiplication.
It is defined by5

〈∆(a), b⊗ c〉 = 〈a, bc〉 (1.9)

The comultiplication satisfies the Frobenius condition

(µ⊗ id)(id⊗∆) = ∆µ = (id⊗ µ)(∆⊗ id) (1.10)

A.4.4 Casimir The Casimir element C ∈ A ⊗ A is the dual to the element 〈 , 〉 ∈
Ǎ⊗ Ǎ. It is also given by C = ∆(1) =

∑
ij g

ij∆i ⊗∆j where 1 is the unit.

A.4.5 Euler element The Euler element of a Frobenius algebra is defined to be
e = µ∆(1) =

∑
ij g

ij∆i∆j =
∑
ijk g

ijckij∆k.
Notice that if A = H∗(V ) where V is a compact oriented manifold or variety then∫

V
e = χ(V ) and e is the Euler class. In general this type of equation is true if A is

Gorenstein.
There is another important equation. Applying equation (1.10):

µ∆(a) = µ∆(a1) = µ∆µ(a⊗ 1)µ(µ⊗ id)(a⊗∆(1)) = ae (1.11)

5In the graded situation, one should of course insert the appropriate signs obtained from switching
the middle two factors of A where the above formula is though of as about morphisms from A⊗4 → k.
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A.5 Reference for Symbols

Spaces
Asg,r space of projectively weighted arc families
Ds
g,r space of weighted arc families

Operads/PROPs
Arc operad of exhaustive(all boundaries are hit) projectively weighted arc families
DArc operad of exhaustive weighted arc families
M1,...,1
g,r,s subspace of quasi–filling arc families. These form a rational operad
Cacti suboperad of DArc equivalent to framed little discs.

Conditions: g = s = 0, all arcs from 0 to i
Cact suboperad of Cacti equivalent to little discs. Extra condition: linear orders compatible
Cor suboperad of Cact equivalent to little intervals.

Extra condition: Exactly one arc each from boundary i to boundary 0.
GTree suboperad of DArc. Condition: all arcs from 0 to i.
LGT ree suboperad of GTree. Extra condition: linear orders compatible
StO stabilized version of O
FatO Fattened/pointed/unital version of O
Sull Sullivan quasi–PROP. Surfaces with in/out markings, arcs from in to out or out to out.

Chain models
Cact(i)1 CW models for Cact(i). Condition: all boundaries i 6= 0 have weight 1.
Sull1 CW model for Sull: Only arcs from “in” to “out” and all in boundaries have weight 1
C∗o (Arc) complex of open cells of Arc.
GrC∗o (Arc) Associated graded of C∗o (Arc). The same as CC∗(A

s
g,r, A

s
g,r \ Arcsg(r − 1)).

GrC∗o (Arc0#) Image of the cells of M1,...,1
g,r,s in GrC∗o (Arc).
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