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We study the general theory of Frobenius algebras with group actions. These structures
arise when one is studying the algebraic structures associated to a geometry stemming
from a physical theory with a global finite gauge group, i.e. orbifold theories. In this
context, we introduce and axiomatize these algebras. Furthermore, we define geometric
cobordism categories whose functors to the category of vector spaces are parameterized
by these algebras. The theory is also extended to the graded and super-graded cases.
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singularities and their symmetries.
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0. Introduction

The subject of this exposition is the general theory of Frobenius algebras with

group actions. These structures arise when one is studying the algebraic structures

stemming from a geometry associated to a physical theory with a global finite gauge

group [6, 5, 11, 22]. The most prominent example of this type in mathematics is

the Gromov–Witten theory of orbifolds [2], which are global quotients. The use

of orbifold constructions is the cornerstone of the original mirror construction [9].

The orbifolds under study in that context are so-called Landau–Ginzburg orbifold

theories, which have so far not been studied mathematically. These correspond to

the Frobenius manifolds stemming from singularities and are studied as examples

in detail in the present paper.

A common aspect of the physical treatment of quotients by group actions is the

appearance of so called twisted sectors. This roughly means that if one wishes to

take the quantum version of quotient by a group action, one first has to construct

an object for each element in the group together with a group action on this object
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and in a second step take invariants in all of these components. Whereas classically

one considers only the G-invariants of the original object which constitutes the

sector associated to the identity, the untwisted sector.

We give the first complete axiomatic treatment, together with a natural

geometric interpretation for this procedure, which provides a common basis for

applications such as singularities with symmetries or Laundau–Ginzburg orbifolds,

orbifold cohomology and quantum cohomology of global quotients and in a sense

all other string-orbifold versions of classical theories.

Our treatment shows that the construction of twisted sectors is not merely an

auxiliary artifact, but is essential. This is clearly visible in the case of the Frobenius

algebra associated to the singularity of type An together with a Z/(n+ 1)Z action

and the singularity of type A2n−3 with Z/2Z action, which are worked out in detail

in the last paragraph. In particular, the former example exhibits a version of mirror

symmetry in which it is self-dual. The twisted sectors are the key in this mirror

duality, since it is the sum of twisted sectors that is dual to the untwisted one.

In the present work, we develop the theory of orbifold Frobenius algebras

along the now classical lines of Atiyah, Dijkgraaf, Dubrovin and Segal. That is,

we start by introducing the algebraic structures in an axiomatic fashion. There

is an important difference to the theory with trivial group in that there are two

structures with slightly different G-action to be considered which are nevertheless

present. These versions differ by a twist with a character. In the singularity version,

on the non-twisted level, they correspond to the different G-module structures on

the cohomology and the Milnor ring [24]. In physical terms, these two structures

are related by spectral flow. To be even more precise, one structure carries the

natural multiplication and the other the natural scalar product. The next step is a

cobordism realization of the theory. In the case of a trivial character our cobordism

theory reduces to that of [21], where the same structure independently appeared

from a homotopy rather than an orbifold point of view. For another approach see

also [8]. The triviality of the character is, however, not necessary and in the case of

the most interesting examples worked out in the last paragraph, this is not the case.

The key structure here is a non-commutative multiplication on the sum of

all the twisted sectors before taking invariants which after taking G invariants is

commutative. This is a novel approach to global quotients which we first presented

at WAGP 2000.

In order to apply our theory to Landau–Ginzburg models or singularity

theory — in a sense the original building blocks for mirror symmetry — we introduce

a large class of examples, so-called special G-Frobenius algebras.

This class contains the class of Jacobian G-Frobenius algebras which in turn

encompass the singularity examples and those of manifolds whose cohomology ring

can be described as a quotient by a Jacobian ideal. Here it is important to note

that everything can be done in a super (i.e. Z/2Z-graded) version. This introduces

a new degree of freedom into the construction corresponding to the choice of parity

for the twisted sectors. Lastly, we explicitly work out several examples including

the transition from the singularity A2n+3 to Dn via a quotient by Z/2Z, this is the
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first purely mathematical version of this correspondence avoiding path integrals.

In this situation the presence of the Ramond algebra explains the results obtained

by [24] in the situation of singularities with symmetries as studied by Arnold. We

furthermore show that ∗/G leads to (twisted) group algebras.

For Jacobian Frobenius algebras, we also introduce a duality transformation

which allows us to show that orbifolding plays the role of mirror symmetry. We show

that the pair (An, A1) is mirror dual to (A1, An) via orbifolding by Z/(n + 1)Z.

In this way, we find the underlying Frobenius algebra structure for the A-model

realization of An [12, 23].

In the case that the Frobenius algebra one starts out with comes from a semi-

simple Frobenius manifold and the quotient of the twisted sector is not trivial, there

is unique extension to the level of Frobenius manifolds. This is the case in the above

example of A2n+3 and Dn.

The general theory presented here applies to the orbifold cohomology of global

quotients. Indeed our postulated non-commutative structure, which is discussed

here and had first been presented in detail at WAGP2000, has been found by [7].

Moreover, we have recently given an interpretation of this multiplication in terms

of moduli spaces of maps of pointed admissible G-covers [13] where we consider the

G-CohFT extension of non-projective G-Frobenius algebras. This can be viewed as

the G-equivariant counterpart of the correspondence between Frobenius algebras,

CohFT and Gromov–Witten invariants.

Furthermore the theory of special G-twisted Frobenius algebras in the case

where G is the symmetric group sheds new light on the construction of [19], adding

a new uniqueness result and simplifying the general structure of the multiplication

[16]. Recently, we uncovered the structure of discrete torsion and explained its

role in [17]. It can be realized via the forming of tensor products — in the sense

introduced below — with twisted group rings. The synthesis of these results and

an application to the Hilbert scheme can be found in [18]. The discrete torsion

also comes in a super-version which explains the freedom to choose a sign in the

reconstruction for Jacobian Frobenius algebras discussed in Sec. 5.

1. Frobenius Algebras and Cobordisms

In this section, we recall the definition of a Frobenius algebra and its relation to

the cobordism-category definition of a topological field theory [1, 3, 4].

1.1. Frobenius algebras

Definition 1.1. A Frobenius algebra (FA) over a field K of characteristic 0 is

〈A, ◦, η, 1〉, where

A is a finite dim K-vector space,

◦ is a multiplication on A : ◦ : A⊗A→ A,

η is a non-degenerate bilinear form on A, and

1 is a fixed element in A — the unit

satisfying the following axioms:
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(a) Associativity:

(a ◦ b) ◦ c = a ◦ (b ◦ c) .

(b) Commutativity:

a ◦ b = b ◦ a .

(c) Unit:

∀ ∈ a : 1 ◦ a = a ◦ 1 = a .

(d) Invariance:

η(a, b ◦ c) = η(a ◦ b, c) .

Remark 1.1. By using η to identify A and A∗ — the dual vector space of A —

these objects define a one-form ε ∈ A∗ called the co-unit and a three-tensor µ ∈

A∗ ⊗A∗ ⊗A∗.

Using dualization and invariance these data are interchangeable with η and

◦ via the following formulas. Explicitly, after fixing a basis (∆i)i∈I of A, setting

ηij := η(∆i,∆j) and denoting the inverse metric by ηij ,

ε(a) := η(a, 1) ,

µ(a, b, c) := η(a ◦ b, c) = ε(a ◦ b ◦ c) ,

a ◦ b =
∑

ij

µ(a, b,∆i)η
ij∆j and

η(a, b) = ε(a ◦ b) .

We call ρ ∈ A the element dual to ε. This is the element which is Poincaré dual

to 1.

Definition 1.2. We call two Frobenius algebras 〈A, ◦, η, 1〉 and 〈A′, ◦′, η, 1′〉

isomorphic if there is an isomorphism ψ of unital algebras between A and A′ and

ψ∗η′ = λη for some λ ∈ K∗. We call two Frobenius algebras strictly isomorphic if

λ = 1.

1.1.1. Grading

A graded Frobenius algebra is a Frobenius algebra together with a group grading

of the vector space A : A = ⊕i∈IAi where I is a group together with the following

compatibility equations: denote the I-degree of an element by deg.

(1) 1 is homogeneous; 1 ∈ Ad for some d ∈ I .

(2) η is homogeneous of degree d+D, i.e. for homogeneous elements a, b η(a, b) = 0

unless deg(a) + deg(b) = d+D.

This means that ε and ρ are of degree D.
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(3) ◦ is of degree d, this means that µ is of degree 2d+D, where again this means

that

deg(a ◦ b) = deg(a) + deg(b) − d .

Definition 1.3. An even derivation E ∈ Der(A,A) of a G twisted Frobenius

algebra A is called an Euler field, if it is conformal and is natural w.r.t. the

multiplication, i.e. for some d, D ∈ K it satisfies:

η(Ea, b) + η(a,Eb) = Dη(a, b) (1.1)

and

E(ab) = Ea b+ aEb− d ab . (1.2)

Such a derivation defines a grading on A by its set of eigenvalues.

Remark 1.2. For this type of grading, we will use the group Q. There are two

more versions of grading: (1) a Z/2Z super-grading, which will be discussed in

Sec. 1.1.6 and (2) a grading by a finite group G, which is the content of Sec. 2.1.

Definition 1.4. Given an I-graded Frobenius algebraA, we define its characteristic

series as

χA(t) :=
∑

i∈I

dim(Ai)t
i . (1.3)

We refer to the set {d,D; i : dimAi 6= 0} as the (I-)spectrum of A.

1.1.2. Scaling

If the group indexing the grading has the structure of a Λ-module, where Λ is a

ring, we can scale the grading by an element λ ∈ Λ. We denote the scaled Frobenius

algebra by λA := ⊕i∈IAλi where (λA)i = Aλi

χλA(t) :=
∑

i∈I

dim(λA)it
i = tλχA(t) . (1.4)

It is sometimes — but not always — convenient to normalize in such a way that

deg(1) = 0 where 0 is the unit in I . In the case that the grading is given by Q, this

means degQ(1) = 0 and in the finite group case degG(1) = e where now e is the

unit element of G.

1.1.3. Operations

There are two natural operations on Frobenius algebras, the direct sum and the

tensor product. Both of these operation extend to the level of Frobenius manifolds,

while the generalization of the direct sum is straightforward, the generalization of

the tensor product to the level of Frobenius manifolds is quite intricate [14].

Consider two Frobenius algebras A′ = 〈A′, ◦′, η′, 1′〉 and A′′ = 〈A′′, ◦′′, η′′, 1′′〉.
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1.1.4. Direct sum

Set A′ ⊕ A′′ := 〈A, ◦, η, 1〉 = 〈A′ ⊕ A′′, ◦′ ⊕ ◦′′, η′ ⊕ η′′, 1′ ⊕ 1′′〉, for example,

(a′, a′′) ◦ (b′, b′′) = (a′ ◦′ b′, a′′ ◦′′ b′′). The unit is 1 = 1′ ⊕ 1′′ and the co-unit is

ε = (ε′, ε′′).

Lemma 1.1. If both Frobenius algebras are graded by the same I then their direct

sum inherits a natural grading if and only if the gradings can be scaled such that

D′ + d′ = D′′ + d′′ := D + d (1.5)

where

D = D′ = D′′ (1.6)

in this scaling.

Furthermore, the unit will have degree d′ = d′′ = d.

Proof. Equation (1.5) ensures that the three tensor µ is homogeneous of degree

D+2d. The homogeneity of η yields the second condition: for η to be homogeneous,

it is necessary that after scaling ρ′ and ρ′′ are homogeneous of the same degree

D′ = D′′ = D. The two equations together imply the homogeneity of 1 = (1′, 1′′)

of degree d = d′ = d′′.

1.1.5. Tensor product

Set A′ ⊗ A′′ := 〈A, ◦, η, 1〉 = 〈A′ ⊗ A′′, ◦′ ⊗ ◦′′, η′ ⊗ η′′, 1′ ⊗ 1′′〉, for example,

(a′, a′′) ◦ (b′, b′′) = (a′ ◦′ b′, a′′ ◦′′ b′′). The unit is 1 = 1′ ⊗ 1′′ and the co-unit is

ε = ε′ ⊗ ε′′.

There are no conditions for grading, i.e. if both Frobenius algebras are I-graded

there is a natural induced I-grading on their tensor product. The unit is of degree

d = d′ + d′′, the co-unit has degree D′ +D′′ and the multiplication is homogeneous

of degree d = d′ + d′′.

1.1.6. Super-grading

For an element a of a super vector space A = A0 ⊕A1 denote by ã its Z/2Z degree,

i.e. ã = 0 if it is even (a ∈ A0) and ã = 1 if it is odd (a ∈ A1).

Definition 1.5. A super Frobenius algebra over a field K of characteristic 0 is

〈A, ◦, η, 1〉, where

A is a finite dim K-super vector space,

◦ is a multiplication on A : ◦ : A⊗ A→ A,

which preserves the Z/2Z-grading

η is a non-degenerate even bilinear form on A, and

1 is a fixed even element in A0 — the unit,
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satisfying the following axioms:

(a) Associativity:

(a ◦ b) ◦ c = a ◦ (b ◦ c) .

(b) Super-commutativity:

a ◦ b = (−1)ãb̃b ◦ a .

(c) Unit:

∀ ∈ a : 1 ◦ a = a ◦ 1 = a .

(d) Invariance:

η(a, b ◦ c) = η(a ◦ b, c) .

The grading for super Frobenius algebras carries over verbatim.

1.2. Cobordisms

Definition 1.6. Let COB be the category whose objects are one-dimensional

closed oriented (topological) manifolds considered up to orientation preserving

homeomorphism and whose morphisms are cobordisms of these objects, i.e. Σ ∈

Hom(S1, S2) if Σ is an oriented surface with boundary ∂Σ ≡ −S1 q S2.

The composition of morphisms is given by gluing along boundaries with respect

to orientation reversing homeomorphisms.

Remark 1.3. The operation of disjoint union makes this category into a monoidal

category with unit ∅.

Remark 1.4. The objects can be chosen to be represented by disjoint unions of

the circle with the natural orientation S1 and the circle with opposite orientation

S̄1. Thus a typical object looks like S = qi∈IS
1 qj∈J S̄

1. Two standard morphisms

are given by the cylinder, and thrice punctured sphere.

Definition 1.7. Let VECT K be the monoidal category of finite dimensional K-

vector spaces with linear morphisms with the tensor product providing a monoidal

structure with unit K.

Theorem 1.1. (Atiyah, Dijkgraaf, Dubrovin [1, 3, 4]). There is a 1–1 corre-

spondence between Frobenius algebras over K and isomorphism classes of covariant

functors of monoidal categories from COB to VECT K , natural with respect to ori-

entation preserving homeomorphisms of cobordisms and whose value on cylinders

S × I ∈ Hom(S, S) is the identity.

Under this identification, the Frobenius algebra A is the image of S1, the

multiplication or rather µ is the image of a thrice punctured sphere and the metric

is the image of an annulus.
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2. Orbifold Frobenius Algebras

2.1. G-Frobenius algebras

We fix a finite group G and denote its unit element by e.

Definition 2.1. AG-twisted Frobenius algebra (FA) over a fieldK of characteristic

0 is 〈G,A, ◦, 1, η, ϕ, χ〉, where

G finite group;

A finite dim G-graded K-vector space,

A = ⊕g∈GAg , Ae is called the untwisted sector and the

Ag for g 6= e are called the twisted sectors;

◦ a multiplication on A which respects the grading:

◦ : Ag ⊗Ah → Agh;

1 a fixed element in Ae-the unit;

η non-degenerate bilinear form, which respects grading

i.e. g|Ag⊗Ah
= 0 unless gh = e;

ϕ an action of G on A (which will be by algebra automorphisms),

ϕ ∈ Hom(G,Aut(A)), s.t. ϕg(Ah) ⊂ Aghg−1 ;

χ a character χ ∈ Hom(G,K∗);

satisfying the following axioms:

We use a subscript on an element of A to signify that it has homogeneous group

degree — e.g. ag means ag ∈ Ag — and we write ϕg := ϕ(g) and χg := χ(g),

(a) Associativity:

(ag ◦ ah) ◦ ak = ag ◦ (ah ◦ ak) .

(b) Twisted commutativity:

ag ◦ ah = ϕg(ah) ◦ ag .

(c) G-invariant unit:

1 ◦ ag = ag ◦ 1 = ag and ϕg(1) = 1 .

(d) Invariance of the metric:

η(ag , ah ◦ ak) = η(ag ◦ ah, ak) .

(i) Projective self-invariance of the twisted sectors

ϕg |Ag = χ−1
g id .

(ii) G-invariance of the multiplication:

ϕk(ag ◦ ah) = ϕk(ag) ◦ ϕk(ah) .
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(iii) Projective G-invariance of the metric:

ϕ∗
g(η) = χ−2

g η .

(iv) Projective trace axiom:

∀ c ∈ A[g,h] and lc left multiplication by c:

χh Tr(lcϕh|Ag
) = χg−1 Tr(ϕg−1 lc|Ah

) .

An alternate choice of data is given by a one-form ε, the co-unit with ε ∈ A∗
e and

a three-tensor µ ∈ A∗ ⊗ A∗ ⊗ A∗ which is of group degree e, i.e. µ|Ag⊗Ah⊗Ak
= 0

unless ghk = e.

The relations between η, ◦ and ε, µ are analogous to those of the Remark 1.1.

Again, we denote by ρ ∈ Ae the element dual to ε ∈ A∗
e and Poincaré dual to

1 ∈ Ae.

Remark 2.1. (1) Ae is central by twisted commutativity and 〈Ae, ◦, η|Ae⊗Ae
, 1〉 is

a Frobenius algebra.

(2) All Ag are Ae-modules.

(3) Notice that χ satisfies the following equation which completely determines

it in terms of ϕ. Setting h = e, c = 1 in Axiom (iv)

dimAg = χg−1 Tr(ϕg |Ae
) (2.1)

by Axiom (iii) the action of ϕ on ρ determines χ up to a sign

χ−2
g = χ−2

g η(ρ, 1) = η(ϕg(ρ), ϕg(1)) = η(ϕg(ρ), 1) . (2.2)

(4) Axiom (iv) forces the χ to be group homomorphisms, so it would be enough

to assume in the data that they are just maps.

Proposition 2.1. The G invariants AG of a G-Frobenius algebra A form an

associative and commutative algebra with unit. This algebra with the induced

bilinear form is a Frobenius algebra if and only if
∑

g χ
−2
g = |G|. If K = C and

χ ∈ Hom(G,U(1)) this implies ∀ g : χg = ±1.

Proof. Due to Axiom (ii), the algebra is associative and commutative. And since

1 is G invariant, the algebra has a unit.

Now suppose
∑

g χ
−2
g = |G|. Then η|AG⊗AG is non-degenerate: let a ∈ AG and

choose b ∈ A such that η(a, b) 6= 0. Set b̃ = 1
|G|

∑
g∈G ϕg(b) ∈ AG. Then

η(a, b̃) =
1

|G|

∑

g∈G

η(a, ϕg(b)) =
1

|G|

∑

g∈G

η(ϕg(a)ϕg(b))

=
1

|G|

∑

g∈G

χ−2
g η(a, b) = η(a, b) 6= 0 .
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On the other hand if η|AG⊗AG is non-degenerate then let a, b ∈ AG be such that

η(a, b) = 1. It follows:

1 = η(a, b) =
1

|G|

∑

g∈G

η(ϕg(a), ϕg(b)) =
1

|G|

∑

g∈G

χ−2
g η(a, b) =

1

|G|

∑

g∈G

χ−2
g

so that
∑

g χ
−2
g = |G|.

The last statement follows from the simple fact that since ∀ g ∈ G : |χg| = 1

and if
∑

g χ
−2
g = |G| then χ−2

g = 1 and hence χg ∈ {−1, 1}.

Definition 2.2. A G-Frobenius algebra is called an orbifold model if the data

〈AG, ◦, 1〉 can be augmented by a compatible metric to yield a Frobenius algebra.

In this case, we call the Frobenius algebra AG a G-orbifold Frobenius algebra.

2.2. Super-grading

We can enlarge the framework by considering super-algebras rather than algebras.

This will introduce the standard signs.

Definition 2.3. A G-twisted Frobenius super-algebra over a field K of charac-

teristic 0 is 〈G,A, ◦, 1, η, ϕ, χ〉, where

G finite group;

A finite dimensional Z/2Z×G-graded K-vector space;

A = A0 ⊕A1 = ⊕g∈G(Ag,0 ⊕Ag,1) = ⊕g∈GAg ,

Ae is called the untwisted sector and is even,

the Ag for g 6= e are called the twisted sectors;

◦ a multiplication on A which respects both gradings:

◦ : Ag,i ⊗Ah,j → Agh,i+j ;

1 a fixed element in Ae — the unit;

η non-degenerate even bilinear form, which respects grading

i.e. g|Ag⊗Ah
= 0 unless gh = e;

ϕ an action by even algebra automorphisms of G on A,

ϕ ∈ HomK−alg(G,A), such that ϕg(Ah) ⊂ Aghg−1 ;

χ a character χ ∈ Hom(G,K∗) or if K = C, χ ∈ Hom(G,U(1));

satisfying Axioms (a)–(d) and (i)–(iii) of a G-Frobenius algebra with the following

alteration:

(bσ) Twisted super-commutativity:

ag ◦ ah = (−1)ãgãhϕg(ah) ◦ ag .

(ivσ) Projective super-trace axiom:

∀ c ∈ A[g,h] and lc left multiplication by c:

χh STr(lcϕh|Ag
) = χg−1 STr(ϕg−1 lc|Ah

) ,

where STr is the super-trace.
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2.2.1. Operations

Restriction: If H ⊂ G and A = ⊕g∈GAg then Ã := ⊕h∈HAh is naturally a H-

Frobenius algebra.

Direct Sum: Given a G-Frobenius algebra A and an H-Frobenius algebra B then

A⊕B is naturally a G×H-Frobenius algebra with the graded pieces (A⊕B)(g,h) =

Ag ⊕Bh.

We define the direct sum of two G-Frobenius algebras to be the G-Frobenius

subalgebra corresponding to the diagonal ∆ : G → G×G in A⊕A.

Tensor product: Given a G-Frobenius algebraA and anH-Frobenius algebraB then

⊕(g,h)(Ag ⊗Bh) is naturally a G×H-Frobenius algebra (A⊗B)(g,h) = Ag ⊗Bh.

We define the tensor product of two G-Frobenius algebras to be the G-Frobenius

subalgebra corresponding to the diagonal G→ G×G in A⊗A.

Braided Tensor product: If A and B are two G-Frobenius algebras with the same

character χ, we can define a braided tensor product structure on A⊗B by setting

(A⊗B)g := ⊕k∈GAk ⊗Bk−1g . For the multiplication we use the sequence

Ak ⊗Bk−1g ⊗Al ⊗Bl−1h

(id⊗id⊗ϕ
k−1g

⊗id)◦τ2,3

−−−−−−−−−−−−−−→ Ak ⊗Ak−1glg−1k ⊗Bk−1g ⊗Bl−1h

◦⊗◦
−→ Aglg−1k ⊗Bk−1gl−1h (2.3)

and ⊕k(ϕk ⊗ ϕkh−1) for the action of h on ⊕kAk ⊗Bk−1g .

Remark 2.2. If one thinks in terms of cohomology of spaces the direct sum corres-

ponds to the disjoint union and the tensor product corresponds to the Cartesian

product. The origin of the braided tensor product, however, is not clear yet.

2.3. Geometric model spectral flow

The axioms of the G-Frobenius algebra are well suited for taking the quotient,

since the multiplication is G-invariant. However, this is not the right framework for

a geometric interpretation. In order to accommodate a more natural co-boundary

description, we need the following definition which corresponds to the physical

notion of Ramond ground states:

Definition 2.4. A Ramond G-algebra over a field K of characteristic 0 is

〈G, V, ◦̄, v, η̄, ϕ̄, χ〉,

G finite group;

V finite dim G-graded K-vector space,

V = ⊕g∈GVg ,

Ve is called the untwisted sector and the

Vg for g 6= e are called the twisted sectors;
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◦̄ a multiplication on V which respects the grading:

◦̄ : Vg ⊗ Vh → Vgh;

v a fixed element in Ve — the unit;

η̄ non-degenerate bilinear form, which respects grading

i.e. η̄|Vg⊗Vh
= 0 unless gh = e;

ϕ̄ an action by of G on V ,

ϕ̄ ∈ Hom(G,Aut(V )), such that ϕ̄g(Vh) ⊂ Vghg−1 ;

χ a character χ ∈ Hom(G,K∗);

satisfying the following axioms:

We use a subscript on an element of V to signify that it has homogeneous group

degree — e.g. vg means vg ∈ Vg — and we write ϕ̄g := ϕ̄(g) and χg := χ(g),

(a) Associativity:

(vg ◦̄vh)◦̄vk = vg ◦̄(vh◦̄vk) .

(b′) Projective twisted commutativity:

vg ◦̄vh = χgϕ̄g(vh)◦̄vg = ϕ̄g(vh◦̄vg) .

(c′) Projectively invariant unit:

v◦̄vg = vg ◦̄v = vg and ϕ̄g(v) = χgv .

(d) Invariance of the metric:

η(vg , vh◦̄vk) = η(vg ◦̄vh, vk) .

(1′) Self-invariance of the twisted sectors:

ϕ̄g |Vg = id .

(2′) Projective G-invariance of multiplication:

ϕ̄k(vg ◦̄vh) = χkϕ̄k(vg)◦̄ϕ̄k(vh) .

(3′) G-Invariance of metric:

ϕ̄∗
g(η̄) = η̄ .

(4′) Trace axiom:

∀ c ∈ V[g,h] and lc left multiplication by c:

Tr(lc ◦ ϕ̄g |Vh
) = Tr(ϕ̄h−1 ◦ lc|Vg

) .

Definition 2.5. A state-space for a G-Frobenius algebra A is a quadruple

〈V, v, η̄, ϕ̄〉, where

V is a G-graded free rank one A-module: V = ⊕g∈GVg ,

v is a fixed generator of V — called the vacuum,
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η̄ is non-degenerate bilinear form on V ,

ϕ̄ is a linear G-action on V fixing v projectively,

i.e. ϕ̄(g)(span(v)) ⊂ span(v),

such that these structures are compatible with those of A (we denote ϕ̄g := ϕ̄(g))

(a) The action of A respects the grading: AgVh ⊂ Vgh.

(b) Vh is a rank one free Ah-module and Vh = Ahv.

(c) ϕ̄g(av) = ϕg(a)ϕ̄(v) : ∀ a ∈ A, v ∈ V .

(d) For a, b ∈ A : η̄(av, bv) = η(a, b).

(e) ∀ g, h ∈ G, c ∈ A[g,h] ∀ c ∈ V[g,h] and lc left multiplication by c: Tr(lc ◦ ϕ̄g |Vh
) =

Tr(ϕ̄h−1 ◦ lc|Vg
).

Definition 2.6. We call two state spaces isomorphic, if there is an A-module

isomorphism between the two.

Since state spaces are free rank one A-modules, it is clear that all automorphisms

are re-scalings of v.

Proposition 2.2. Given a G-twisted Frobenius algebra A there is a unique state

space up to isomorphism and the form η̄ is G-invariant (i.e. ϕ̄∗
g(η̄) = η̄).

Proof. We start with a free rank one A-module V and reconstruct all other data.

The G-grading on V is uniquely determined from that of A by Axiom (b) and this

grading satisfies Axiom (a). Up to isomorphism, we may assume a generator v ∈ V

is fixed, then Axiom (d) determines η̄ from η. We denote the Eigenvalue of ϕ̄g on v

by λg : ϕ̄gv = λgv. Notice that due to (c) ϕ̄ is determined by λg . Using Axioms (b),

(c) and (e), we find that λg = χg, thus fixing the G-action ϕ̄.

Namely with c = 1 and h = e in (e):

Tr(ϕ̄g |Ve
) = λg Tr(ϕg |Ae

) = λgχ
−1
g Tr(ϕe|Ag

) = λgχ
−1
g Tr(ϕe|Vg

) .

The equality ϕ̄g = ϕgλg implies that η̄ is ϕ̄ invariant:

η̄(ϕ̄g(av), ϕ̄g(bv)) = λ2
gη(ϕg(a), ϕg(b)) = λ2

gχ
−2
g η(a, b) = η̄(av, bv) .

In general,

Tr(lc ◦ ϕ̄g |Vh
) = λg Tr(lc ◦ ϕg |Ah

)

= λgχ
−1
g χh−1 Tr(ϕh−1 ◦ lc|Ag

)

= λgχ
−1
g χh−1λ−1

h−1 Tr(ϕ̄h−1 ◦ lc|Vg
)

= Tr(ϕ̄h−1 ◦ lc|Vg
) ,

so that with this choice of ϕ̄, Axiom (e) is satisfied.
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Remark 2.3. A state space inherits an associative multiplication ◦̄ with unit from

A via

∀ a, b ∈ A : (av)◦̄(bv) := (a ◦ b)v . (2.4)

This multiplication makes it into a G-Ramond algebra.

This fact leads us to the following definitions:

Definition 2.7. The Ramond space of a G-Frobenius algebra A is the state-space

given by the G-graded vector-space

V :=
⊕

g

Vg :=
⊕

g

Ag ⊗K

together with the G-action ϕ̄ := ϕ ⊗ χ, the induced metric ḡ and the induced

multiplication ◦̄ and fixed element v = 1 ⊗ 1.

Theorem 2.1. There is a one-to-one correspondence between isomorphism classes

of G-Ramond algebras and G-Frobenius algebras.

Proof. The association of a Ramond space to a G-Frobenius algebra provides the

correspondence. The inverse being the obvious reverse twist by χ.

Remark 2.4. In the theory of singularities, the untwisted sector of the Ramond

space corresponds to the forms Hn−1(Vε,C) while the untwisted sector of the G-

twisted Frobenius algebra corresponds to the Milnor ring [24]. These are naturally

isomorphic, but have different G-module structures. In that situation, one takes

the invariants of the Ramond sector, while we will be interested in invariants of the

G-Frobenius algebra and not only the untwisted sector (cf. [18] and see also Sec. 7).

3. Bundle Cobordisms, Finite Gauge Groups, Orbifolding and

G-Ramond Algebras

In this section, we introduce two cobordism categories which correspond to G-

orbifold Frobenius algebras and Ramond G-algebras, respectively. Again G is a

fixed finite group.

3.1. Bundle cobordisms

In all situations, gluing along boundaries will induce the composition and the

disjoint union will provide a monoidal structure.

Definition 3.1. Let GBCOB be the category whose objects are principalG-bundles

over one-dimensional closed oriented (topological) manifolds, pointed over each

component of the base space, whose morphisms are cobordisms of these objects

(i.e. principal G-bundles over oriented surfaces with pointed boundary).
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More precisely, BΣ ∈ Hom(B1, B2) if Σ is an oriented surface with boundary

∂Σ = −S1 q S2 and BΣ is a bundle on Σ which restricts to B1 and B2 on the

boundary.

The composition of morphisms is given by gluing along boundaries with re-

spect to orientation reversing homeomorphisms on the base and covering bundle

isomorphisms which align the base-points.

Remark 3.1. The operation of disjoint union makes this category into a monoidal

category with unit ∅ formally regarded as a principal G bundle over ∅.

Remark 3.2. Typical objects are bundles B over S = qi∈IS
1 qj∈J S̄

1.

Let ((S1, ν) ν ∈ S1) be a pointed S1.

Lemma 3.1 (Structure Lemma). The space Bun(S1, G) of G bundles on (S1, ν)

can be described as follows:

Bun(S1, G) = (G× F )/G

where F is a generic fibre regarded as a principal G-space and G acts on itself by con-

jugation and the quotient is taken by the diagonal action. The space Bun∗(S1, G) of

isomorphism classes of pointed G bundles on S1 is in a bijective correspondence with

G, where the map is given by evaluating the monodromy. In terms of Bun(S1, G)×F

the monodromy map gives a projection of onto G whose fibre over g ∈ G are the

centralizers Z(g), which are exactly the isomorphisms in Bun∗(S1, G).

Remark 3.3. Usually one uses the identification

Bun(M,G) = Hom(π1(M), G)/G ,

which we also use in the proof. However, for certain aspects of the theory — more

precisely to glue and to include non-trivial characters — it is vital to include a

point in the bundle and a trivialization rather than just a point in the base.

Proof of Lemma 3.1. Given a pointed principal G bundle (B,S1, π, F,G), b ∈ B

we set ν = π(b) ∈ S1. The choice of b ∈ F = Bν gives an identification of F with

G, i.e. we let β : G 7→ F be the admissible map in the sense of [20] that satisfies

β(e) = b. We set g ∈ G to be the element corresponding to the monodromy around

the generator of π1(S
1). Notice that since we fixed an admissible map everything is

rigid — there are no automorphisms — and the monodromy is given by an element,

not a conjugacy class. Thus we associate to (B, b) the tuple (g, b).

Vice-versa, given (g, b) we start with the pointed space (S1, ν) and construct

the bundle with fibre G, monodromy g and marked point b = β(e) ∈ Bν .

That this construction is bijective follows by the classical results quoted

above [20].

The choice in this construction corresponds to a choice of a point b ∈ B.

Changing b amounts to changing β and the monodromy g. Moreover, moving the

point ν = π(b) and moving b inside the fibre by parallel transport keeps everything
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fixed. Moving b inside the fixed fibre by translation (once ν is fixed) corresponds

to translation by the group action in the fibre i.e. the translation action of G on

F and simultaneous conjugation of the monodromy. Hence, the first claim follows.

The second claim follows from the third which in turn follows from the observation

that evaluating the monodromy choosing two different points of F bundles yields

the same result if and only if the underlying bundles are isomorphic and the chosen

points are related by a shift with an element in the centralizer of the monodromy.

This observation leads us to the following definition:

Definition 3.2. We call a bundle over a closed one-dimensional manifold rigidified

if its components are labeled and the bundle is pointed above each component of

the base and trivializations around the projection of the marked points to the base

are fixed. We denote such a bundle (B, b) where b ⊂ B : b = (b0, . . . , bn) is the set

of base-points for each component.

Furthermore, if a given surface has genus zero we realize it in the plane as a

pointed disc with all boundaries being S1. We label the outside circle by 0.

If π is the bundle projection, we set xi := π(bi), we call b0 the base-point, the

Bxi
the special fibres and Bx0 the initial fibre.

3.2. Rigidified bundle cobordisms and G-Frobenius algebras

Definition 3.3. Let GBCOB∗ be the category whose objects are rigidified principal

G-bundles over one-dimensional closed oriented (topological) manifolds considered

up to pull-back under orientation preserving homeomorphism of the base respecting

the markings and whose morphisms are cobordisms of these objects (i.e. principal

G-bundles over oriented surfaces with boundary together with rigidification on the

boundary, a choice of base-point x0 ∈ ∂Σ compatible with the rigidification and

a choice of curves Γi from x0 to xi which identify the trivializations via parallel

transport, where we used the notation above).

That is to say objects are bundles B over S = qi∈IS
1 qj∈J S̄

1 with base-points

on the various components b̄1 = (bi ∈ B|S1
i

: i ∈ I), b̄2 = (bj ∈ B|S̄1
j

: j ∈ J) and

BΣ ∈ Hom((B1, b̄1), (B2, b̄2)) if Σ is an oriented surface with boundary considered

up to orientation preserving homeomorphism with boundary ∂Σ = −S1 q S2 —

again up to homeomorphism — and BΣ is a bundle on Σ which restricts to B1 and

B2 on the boundary together with rigidification data for the boundary i.e. (b̄1, b̄2)

with b̄1 ⊂ B1 and b̄2 ⊂ B2. We will call S1 the inputs and S2 the outputs.

The extra structure of curves and base-point allows us to identify the special

fibres with the initial fibre via parallel transport. Thus we can describe the

rigidification data in terms of b0, and the group elements gi defined via Γi(b0) = gibi.

The composition of morphisms is given by gluing along boundaries with

respect to orientation reversing homeomorphisms of the base and covering bundle

isomorphisms identifying the base-points.
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Remark 3.4. The operation of disjoint union makes this category into a monoidal

category with unit G regarded as a bundle over ∅ with base point e.

Construction 3.1. We define the pointed bundle (g, h) to be the bundle which is

obtained by gluing I×G via the identification (0, e) ∼ (1, g) and marking the point

(0, h), where I = [0, 1] the standard interval.

This produces all monoidal generators.

Remark 3.5. By the Construction 3.1 up to reversing the orientation, we can

produce the monoidal generators of objects of GBCOB∗ with the objects coming

from G×G.

A generating object can thus be depicted by an oriented circle with labels (g, h)

where (g, h) ∈ G × G. We use the notation (g, h) for positively oriented circles

and (g, h) for negatively oriented circles. We will consider functors V with an in-

volutive property. In this case V ((g, h)) ' V ((g−1, h))∗ where ∗ denotes the dual.

General objects are then just disjoint unions of these, i.e. tuples (gi, hi). The ho-

momorphisms on the generators which are given by the trivial bundle cylinder with

different trivializations on both ends represent the natural diagonal action of G by

conjugation and translation described in Lemma 3.1, so that this diagonal G-action

is realized in terms of cobordisms.

The natural G × G action, however, cannot be realized by these cobordisms

and we would like to enrich our situation to this case by adding morphisms corres-

ponding to the G action on the trivializations.

Definition 3.4. Let RGBCOB be the category obtained from GBCOB∗ by adding

the following morphisms. For any n-tuple (k1, . . . , kn) : ki ∈ G and any object

(gi, hi) : i = 1, . . . n we set

τ(k1, . . . , kn)(gi, hi)i∈{1,...n} := (gi, kihi)i∈{1,...n} .

We call these morphisms of type II and the morphisms coming from GBCOB∗

of type I. We also sometimes write IIk for τk.

Remark 3.6. There is a natural forgetful functor from RGBCOB to GBCOB.

Given a character χ ∈ Hom(G,K∗) we can form the fibre-product G×χK. This

gives a functor K[G]χ from the category VECT K to K[G]-MOD, the category of

K[G]-modules.

Definition 3.5. A Gχ-orbifold theory is a monoidal functor V from RGBCOB to

K[G]-MOD satisfying the following conditions:

(i) The image of V lies in the image of K[G]χ.

(ii) Objects of RGBCOB which differ by morphisms of type II are mapped to the

same object in K[G]-MOD.

(iii) The value on morphisms of type I does not depend on the choice of connecting

curves and associated choice of trivializations or base-point.
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(iv) The morphisms of type II are mapped to the G-action by χ.

(v) The functor is natural with respect to morphisms of the type τ(k, . . . , k).

That is, V (τ(k, . . . , k) ◦Σ) = V (τout(k
−1, . . . , k−1)) ◦V (Σ) ◦V (τin(k, . . . , k));

where τin and τout operate on the inputs and outputs respectively.

(vi) V associates id to cylinders B × I , (b, 0) ∈ B × 0, (b, 1) ∈ B × 1 considered

as cobordisms from (B, b) to itself.

(vii) V is involutive: V (S̄) = V ∗(S) where ∗ denotes the dual vector space with

induced K[G]-module structure. In accordance, the morphism of type II

commute with involution, i.e. they are mapped to the G-action by χ−1.

(viii) The functor is natural with respect to orientation preserving homeo-

morphisms of the underlying surface of a cobordism and pull-back of the

bundle.

Corollary 3.1. Gχ-orbifold theories are homotopy invariant.

Proof. By standard arguments using naturality and (vi) a homotopy of an object

S induces an identity on its image. More precisely given a homotopy of objects

ft : S 7→ S, it induces a map F : S × I 7→ S × I and the following diagram is

commutative:

V (S)
V (S×I)=id
−−−−−−→ V (S)

V (f0) ↓ ↓ V (f1)

V (S)
V (S×I)=id
−−−−−−→ V (S) .

In particular, if V (f0) = id then V (f1) = id.

Remark 3.7. Given a choice of connecting curves, we can identify all fibres over

special points. Therefore after fixing one identification of a fibre with G, we can

identify the other marked points as translations of points of parallel transport and

label them by group elements, which we will do.

The action of τ(k, . . . , k) corresponds to a change of identification for one point

and simultaneous re-gauging of all other points via this translation, i.e. a diagonal

gauging. Therefore given a cobordism, we can fix an identification of all fibres

with G.

Notation 3.1. We will fix some standard bundle cobordisms pictured in Fig. 1.

I: The standard disc bundle is the disc with a trivial bundle and positively

oriented boundary considered as a cobordism between ∅ and (e, e); it will be denoted

by D.

II: The standard g-cylinder bundle is the cylinder S1×I with the bundle having

monodromy g around ((S1, 0)) considered as a cobordism between (g, e)q(g, e) and

∅; it will be denoted by Cg .
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Fig. 1. Standard bundle cobordisms.

III: The (g, h)k-cylinder bundle is the cylinder with a bundle having monodromy

g around (S1, 0) considered as a cobordism between (g, h) and (kgk−1, kh); it will

be denoted by Ch
g,k.

IV: The standard (g, h)k-trinion bundle is the trinion with the bundle having

monodromies g around the first S1 and h around the second S1 and translations e

for τ01, τ02 considered as a cobordism between (g, k), (h, k) and (gh, k); it will be

denoted by T k
g,h.

V: The (g, h)-torus bundle is the once-punctured torus with the principal G-

bundle having monodromies g and h around the two standard cycles considered as

a cobordism between ([g, h], e) and ∅; it will be denoted by Ek
g,h.

Lemma 3.2. The bundles over a cylinder that form cobordisms between (g, e) and

(h, k) are parameterized by G; it is necessary that g = khk−1. These cobordisms are

given by the Ce
g,h.

Proof. Given such a bundle over the cylinder Σ0 := S1 × I the translation from

Bν,0 to Bν,1 along γ(t) := (ν, t) is a complete invariant. We fix this element k ∈ G.

Since in π1(Σ0, (ν, 0)) C1 = γC2γ
−1, it follows that g = khk−1.

Proposition 3.1. To fix a Gχ-orbifold theory on the objects of the type (g, e) and

to fix a Gχ-orbifold theory on the morphisms it suffices to fix it on bundles over the

standard cylinder bundle C, the (g, h)-cylinder bundles Cg,h, and on the standard

trinion T.

Proof. The first claim follows from the condition (ii) and the monoidal structure.

For the second claim, first notice that, due to the homotopy Lemma 3.1, V is

fixed on D. Also, any bundle over the cylinder is trivial, furthermore by (v), we

may regard the cylinder as a cobordism from B|S1 to itself and after applying a

morphism of type II we can assume that the boundary objects are of the type (g, e),

(h, k). Therefore we know the functor V on all bundles over cylinders. Dualizing

and gluing on cylinders, we find that once the functor is defined on the standard

trinion, it is defined on all bundles over all trinions. Lastly, given any surface, we

can choose a decomposition by a marking into discs, cylinders and trinions, then

gluing determines the value of V on this surface.
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Proposition 3.2. For any Gχ-orbifold theory V set,

V ((g, e)) = Vg ,

V (T e
g,h) = ◦̄ : Vg ⊗ Vh → Vgh ,

V (D)(1k) = v ,

V (Cg) = η̄|Vg⊗V
g−1 ,

V (Cg,h) = ϕ̄h : Vg 7→ Vhgh−1 ,

then this data together with g and χ form a Ramond-G algebra 〈G, V, ◦̄, v, η̄, ϕ̄, χ〉

which we call the associated G-Ramond algebra to V.

Proof. It is clear by Proposition 3.1 that given aGχ orbifold theory it is completely

fixed by its associated G-Ramond algebra. The converse is also true:

The Axiom (a) follows from the standard gluing procedures of TFT. That is,

the usual gluing of a disc with 3 holes from two discs with two holes in two different

ways, as shown in Fig. 2.

For Axiom (b′), we regard the following commutative diagrams

(g, e) q (h, e)
τ12−→(h, e) q (g, e) (h, e) q (g, e) (g, e) q (h, e)

↓ T e
g,h ⇒ ↓ II ⇒ ↓ III ⇒ ↓ IV

(gh, e)
id
−→ (gh, e) (gh, g) (gh, g)

⇓ V

Vg ⊗ Vh
τ12−→ Vh ⊗ Vg

id
−→ Vh ⊗ Vg

id
−→ Vh ⊗ Vg

↓ ◦̄ ↓ ϕ̄g ◦̄

Vgh
id
−→ Vgh

id
−→ Vgh

id
−→ Vgh

where we have used Axiom (viii) for the first move and Axiom (iii) for the second

and gluing for the last one of the moves depicted in Fig. 3.

e

g
gh

g h k hk ghk
ghk

kh

e

e

e e e e

e

e e

Fig. 2. Associativity.
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e

gh
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gh
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h
g

e

e

e

g

e

gh

e

e
g

hg

g

Fig. 3. Twisted commutativity.

The unit of Axiom (c) is given by D̄e. The projective invariance follows from

∅
D
→ (e, e)

↓ ‖ ↓ ‖

∅
D
→(e, e)

Ck
(e,e)

−−−→(e, k)
II

k−1

−−−→(e, e)

⇓ V

k
v
→ Ve

ϕ̄k−→ Ve
χ̄

k−1

−−→ Ve

↓ ‖ ↓ ‖

k
1e

−→ Ve

where in the third line 1k 7→ v 7→ χkv 7→ v.

Axiom (d) of the invariance of the metric is again a standard gluing argument,

shown in Fig. 4. That is, using ε̄ and associativity:

η̄(vg ◦̄vh, v(gh)−1) = ε̄((vg ◦̄vh)◦̄v(gh)−1) = ε̄(vg ◦̄(vh◦̄v(gh)−1))

= η̄(vg , vh◦̄v(gh)−1) .

For Axiom (1′), we use the following diagram:

(g, e)
id
→(g, e) (g, e)

↓ id ⇒ ↓ C̃ ⇒ ↓ C

(g, e)
id
→(g, e) (g, g)

⇓ V

Vg
id
→ Vg

id
→ Vg

↓ id ↓ ϕ̄g

Vg
id
→ Vg

id
→ Vg

where we used Axiom (viii) for the first move and Axiom (iii) for the second move

depicted in Fig. 5.

Axiom (2′) follows from the diagrams below which correspond to Fig. 6.

(g, e) q (h, e)
(Ck

(g,e),Ck
(h,e))

−−−−−−−−−−→(kgk−1, k) q (khk−1, k)
T k

kgk−1,khk−1

−−−−−−−−−−→(kghk−1, k)
Ck−1

(kghk−1 ,k)
−−−−−−−−→(gh, e)

⇓ V

Vg ⊗ Vh
ϕ̄k⊗ϕ̄k
−−−−−→ Vkgk−1 ⊗ Vkhk−1

◦
k

−→ Vkghk−1

ϕ̄
k−1

−−−→ Vgh



August 6, 2003 12:20 WSPC/133-IJM 00183

594 R. M. Kaufmann

-1

g
gh

g hh

e

e

e e e e

e

e e
e

(gh) e

g
-1

-1(gh)

Fig. 4. Invariance of the metric.

e

e

g g

e

g

I

g

e

g g

e

g

IIIII

Fig. 5. Self-Invariance of the twisted sectors.

-1

g ghh

e

e e

gh

e

e e
k k

g h

kghk

kgk khk

k

-1
-1

Fig. 6. Projective G-invariance of the multiplication.

and

(g, e) q (h, e)
T e

gh
−→ (gh, e)

↓ ‖ ↓ ‖

(g, e) q (h, e)
(IIk,IIk)
−−−−−→(g, k) q (h, k)

T k
g,h

−→(gh, k)
II

k−1
−−−→(gh, e)

⇓ V

Vg ⊗ Vh
χ̄k⊗χ̄k−−−−→ Vg ⊗ Vh

◦k

→ Vgh
χ̄

k−1

−−→ Vgh

↓ ‖ ↓ ‖

Vg ⊗ Vh
◦̄
→ Vgh .
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Axiom (3′) — G-invariance of the metric — follows from the following diagrams

below which correspond to Fig. 7:

(g, e) q (g, e)
Ae

→ K

↓ ‖ ↓ ‖

(g, e) q (g, e)
(C,C̄)
−−→ (kgk−1, k) q (kgk−1, k)

Ak

→ K

↓ (id,̄ ) ↓ (id,̄ ) ↓ (id,̄ )

(g, e) q (g−1, e)
(C,C)
−−→ (kgk−1, k) q (kg−1k−1, k)

Ak

→ K

⇓ V

Vg ⊗ Vg−1
ϕ̄k⊗ϕ̄k−−−−→ Vkgk−1 ⊗ Vkg−1k−1

ηk

→ K

and

(g, e) q (g, e)
Ae

→ K

↓ ‖ ↓ ‖

(g, e) q (g, e)
(IIk ,IIk)
−−−−−→ (g, k) q (g, k)

Ak

→ K

↓ (id,̄ ) ↓ (id,̄ ) ↓ (id,̄ )

(g, e) q (g−1, e)
(IIk ,IIk)
−−−−−→ (g, k) q (g−1, k)

Ak

→ K

⇓ V

Vg ⊗ Vg−1

χ̄k⊗χ̄
k−1

−−−−−→ Vg ⊗ Vg−1k
ηk

→ K

↓ ‖ ↓ ‖

Vg ⊗ Vg−1
η
→ K .

Lastly, Axiom (4′) comes from gluing a once punctured torus in two different

ways.

Proposition 3.3. Given a G-Ramond algebra V there is a unique Gχ orbifold

theory V such that V is its associated G-Ramond algebra.

Proof. We need to show that the data is sufficient to reconstruct the functor.

For the objects this is clear, due to the monoidal structure. For discs, annuli and

-1 -1
hg h

-1

e

e

e
h
h
e

g
g

hgh
g

g-1 -1

Fig. 7. G-invariance of the metric.
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trinions the functor is defined by its basic ingredients, gluing annuli Cg,h to the

basic trinion, and gauging with morphisms of type II. For other morphisms of type I

we notice that we can always decompose a surface into trinions, annuli and discs.

For each decomposition there are three choices. The choice of a marking for the

decomposition, a choice of orientation and a choice of pairs of points over the marked

curves. The second and the third choice can be seen to be irrelevant by inserting

two annuli Ce,k and Ak,e with suitable orientation in a normal neighborhood of

the curve in question. The first choice is unique up to two operations [10] which

correspond to associativity and the trace axiom, and is thus also irrelevant.

Combining the Propositions 3.1 and 3.3 with Proposition 3.2, we obtain:

Theorem 3.1. There is a 1-1 correspondence between isomorphism classes of G-

twisted Frobenius algebras and isomorphism classes of Gχ-orbifold theories as χ

runs through the characters of G.

Proof. In the standard way, we make the G-twisted Frobenius algebras and the

Gχ-orbifold theories into categories by introducing the following morphisms. For

G-twisted Frobenius algebras we use algebra homomorphisms respecting all the

additional structures and for Gχ-orbifold theories we use natural transformations

among functors. The map of associating a G-twisted FA to a Gχ-orbifold theory

then turns into a full and faithful functor which is by reconstruction surjective on

the objects.

An immediate consequence of this is:

Corollary 3.2. There is a 1-1 correspondence between G-orbifold FA and

isomorphism classes of monoidal functors which are identity on cylinders and satisfy

the involutive property from GBCOB to VECT which lift to RGBCOB.

3.3. Spectral flow

In the previous paragraph, we chose the geometric version to correspond to the

Ramond picture, as is suggested by physics, since we are considering the vacuum

states in their Hilbert-spaces at the punctures. From physics one expects that by

the spectral flow, the vacuum states should bijectively correspond to the chiral

algebra. In the current setting the difference only manifests itself in a change of

G-action given by a twist resulting from the character χ. We can directly produce

this G-action and thereby the G-Frobenius algebra by considering the G-action

not by Ce
e,k, but by IIk−1 ◦ Ce

e,k . This statement is proved by re-inspection of the

commutative diagrams in the proof of Proposition 3.2.

4. Special G-Frobenius Algebras

In this section, we restrict ourselves to a subclass of G-twisted Frobenius algebras.

This subclass is large enough to contain all G-Frobenius algebras arising from
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singularities, symmetric products and spaces whose cohomology of the fixed point

sets are given by restriction of the cohomology of the ambient space. The restriction

allows us to characterize the possible G-Frobenius structures for a given collection

of Frobenius algebras as underlying data in terms of cohomological data. The

restriction we will impose (cyclicity of the twisted sectors) can easily be generalized

to more generators; which will render everything matrix-valued.

Definition 4.1. We call a G-Frobenius algebra special if all Ag are cyclic Ae

modules via the multiplication Ae ⊗Ag → Ag and there exists cyclic generators 1g

of Ag such that ϕg(1h) = ϕg,h1ghg−1 with ϕg,h ∈ K∗.

The last condition is automatic, if the Frobenius algebra Ae only has K∗ as

invertibles, as is the case for cohomology algebras of connected compact manifolds

and Milnor rings of quasi-homogeneous functions with an isolated critical point

at zero.

Fixing the generators 1g , we obtain maps of Ae modules: rg : Ae → Ag by

setting rg(ae) = ae1g. This yields a short exact sequence

0 → Ig → Ae
rg

→ Ag → 0 . (4.1)

It is furthermore useful to fix sections ig of rg .

We denote their concatenation by πg := ig ◦ rg : Ae → Ae.

Lemma 4.1. Ig = Ig−1 an thus Ag ' Ag−1 as Ae modules, where the isomorphism

can be given by ψ : rg−1 ◦ ig for any choice of sections ig.

Proof. Suppose a ∈ Ig then a1g−1 6= 0 and a1g = 0. This implies that

∀ b ∈ Ae : η(a1g−1 , b1g) = ε(b1g−1a1g) = 0 and therefore by the non-degeneracy

of η a1g−1 = 0 and thus a ∈ Ig−1 . This already implies the isomorphism on

the level of vector spaces. For the isomorphism of Ae modules notice that, since

Ig = Ig−1 = Ann(1g) = Ann(1g−1) and ig(1g) ≡ 1 mod Ig , ψ(a1g) = rg−1◦ig(a1g) =

ig(a1g)1g−1 = πg(aig(1g))1g−1 = aig(1g)1g−1 = a1g−1 .

4.1. Special super G-Frobenius algebra

The super version of special G-Frobenius algebras is straightforward. Notice that

since each Ag is a cyclic Ae-algebra its parity is fixed by (−1)g̃ := 1̃g. That is

ag = ig(ag)1g and thus ãg = ĩg(ag)1̃g. In particular if Ae is purely even, Ag is

purely of degree g̃.

Proposition 4.1. Given a special G-Frobenius algebra A and sections ig. Let ◦g :

Ag ⊗Ag be defined by

ag ◦g bg := rg(ig(ag)ig(bg)) = ig(ag)ig(bg)1g

and define ηg : Ag ⊗Ag → K via

ηg(ag , bg) = η(ig(ag)1g , ig(bg)1g−1) = ε(ig(ag)ig(bg)1g1g−1) .
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Then (Ag , ◦g, 1g) is a G-Frobenius algebra. The definitions above are actually

independent of the choice of sections ig. Furthermore, for any section ig of rg : ψg :=

rg−1 ◦ ig : Ag → Ag−1 is an isomorphism of G-Frobenius algebras and Ae-modules.

Proof. That the multiplication is commutative and associative follows from the

definition, since Ae is commutative and associative. Since ig(1g) ≡ 1 mod Ig 1g is

a unit.

That ηg is a symmetric and invariant form can be seen from its expressions in

terms of ε.

The non-degeneracy follows from the non-degeneracy of η: fix ag ∈ Ag and

bg−1 ∈ Ag−1 such that η(ag , bg−1) 6= 0. Set b̃g := rg(ig−1(bg−1)).

ηg(ag , b̃g) = ε(ig(ag)ig(rg(ig−1(bg−1)))1g1g−1)

= ε(ig(ag)rg(ig(rg(ig−1(bg−1))))1g−1 )

= ε(ig(ag)ig−1(bg−1)1g1g−1)

= η(ig(ag)(ig−1(bg−1), γg,g−1)

= η(ag , bg−1) 6= 0 .

For the independence of the metric and multiplication on the choice of sections

ig , we remark that for any two sections ig and i′g: ig(ag) ≡ i′g(ag) mod Ig and

Ig1g = 0.

For the statements about the isomorphisms of algebras we calculate

ψ(ag) ◦g ψ(bg) = ig−1(rg−1 (ig(ag)))ig−1(rg−1 (ig(ag)))1g1g−1

= ig(ag)ig(bg)1g−1 = ψ(ag ◦g bg) ,

and

ηg−1(ψ(ag), ψ(bg)) = ε(ig(ag)ig(bg)1g−11g)

= χgε(ig(ag)ig(bg)1g1g−1) = χgηg(ag , bg) .

For the Ae module isomorphism, notice that ψg(abg) = rg−1(ig(abg)) =

rg−1 (πg(aig(bg))) = rg−1(aig(bg)) = arg−1 (bg).

Remark 4.1. We can also pull back ηg and ◦g to ig(Ag) which will make ig(Ag)

into a sub-Frobenius algebra.

Definition 4.2. A special reconstruction datum is a collection of Frobenius

algebras (Ag , ηg , 1g) : g ∈ G together with an action of G by algebra automor-

phisms on Ae and the structure of a cyclic Ae module algebra on each Ag with

generator 1g such that Ag and A−1
g are isomorphic as of Ae modules algebras.

We can fix the isomorphism ψg : Ag → Ag−1 via ψg(1g) = 1−1
g . This makes ψ

into an isomorphism of G-Frobenius algebras.
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Definition 4.3. Let A be a special G-twisted Frobenius algebra A. We define a

G-graded 2-cocycle with values in Ae to be a map γ : G×G→ Ae which satisfies

γg,hγgh,k ≡ γh,kγg,hk mod Ighk . (4.2)

We call a cocycle section independent if ∀ g, h ∈ G,

(Ig + Ih)γg,h ⊂ Igh . (4.3)

Two such cocycles are considered to be the same if γg,h ≡ γ′g,h mod Igh and

isomorphic, if they are related by the usual scaling for group cocycles.

Given non-degenerate parings ηg on the Ag , a cocycle is said to be compatible

with the metric, if

řg(1g) = γ(g, g−1)

where ř is the dual in the sense of vector spaces with non-degenerate metric.

Definition 4.4. A non-abelian G 2-cocycle with values in K∗ is a map ϕ : G×G→

K∗ which satisfies:

ϕgh,k = ϕg,hkh−1ϕh,k (4.4)

where ϕg,h := ϕ(g, h) and

ϕe,g = ϕg,e = 1 .

Notice that in the case of a commutative group G this says that the ϕg,h form

a two cocycle with values in K∗.

Furthermore setting g = h−1, we find

ϕg−1,ghg−1 = ϕ−1
g,h .

Proposition 4.2. A special G-twisted Frobenius algebra A gives rise to section

independent graded G 2-cocycle γ with values in Ae which is compatible with

the metric and to a non-abelian G 2-cocycle ϕ with values in K∗. The following

compatibility equations are furthermore satisfied by these cocycles

ϕg,hγghg−1,g = γg,h (4.5)

and

ϕk,gϕk,hγkgk−1 ,khk−1 = ϕk(γg,h)ϕk,gh . (4.6)

Proof. Given a special G twisted Frobenius structure on A, we fix cyclic generators

1g of Ag and define γg,h ∈ Agh by

1g1h = γg,h1gh

and ϕg,h ∈ K∗ by:

ϕg(1h) = ϕg,h1ghg−1 .
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By associativity of the multiplication, we find that the γg,h define a graded

2-cocycle with values in A.

γg,hγgh,k1ghk = γg,h1gh1k = (1g1h)1k

= 1g(1h1k) = 1gγh,k1hk = γh,kγg,hk1ghk . (4.7)

So that

πghk(γg,hγgh,k) = πghk(γh,kγg,hk) .

Furthermore, since

(Ig + Ih)γg,h1gh = (Ig + Ih)1g1h = 0 ,

the cocycle is also section independent.

Also, ∀ a ∈ Ae,

η(a, řg(1g)) = ηg(rg(a), 1g) = η(πg(a), γg,g−1) = η(a, γg,g−1 )

which shows the compatibility with the metric.

ϕ is a group homomorphism so that

ϕgh,k1ghkh−1g−1 = ϕgh(1k) = ϕg(ϕh(1k)) = ϕg(ϕh,k1hkh−1)

= ϕg,hkh−1ϕh,k1ghkh−1g−1

which yields

ϕgh,k = ϕg,hkh−1ϕh,k . (4.8)

By G-twisted commutativity

γg,h1gh = 1g1h = ϕg(1h)1g = ϕg,h1ghg−11g = ϕg,hγghg−1,g1gh .

So γg,h and the ϕg,h satisfy

ϕg,hπgh(γghg−1,g) = πghγg,h . (4.9)

ϕ is also an algebra automorphism:

ϕk(1g)ϕk(1h) = ϕk(1g1h) .

Expressed in the ϕ’s and γ’s:

ϕk,gϕk,hγkgk−1 ,khk−1 = ϕk(γg,h)ϕk,gh (4.10)

which gives a formula for the action of ϕ on the γ’s.

Definition 4.5. We call a pair of a section independent cocycle and a non-abelian

cocycle compatible if they satisfy Eqs. (4.5) and (4.6).

Corollary 4.1. A special G-Frobenius algebra gives rise to a collection of

Frobenius-algebras (Ag , ◦g, 1g, ηg)g∈G together with a G-action on Ae, and a com-

patible pair of a graded, section independent G 2-cocycle with values in Ae that is
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compatible with the metric and a non-abelian G 2-cocycle with values in K∗. All

the Ag are cyclic Ae module algebras generated by 1g and there are Ae module al-

gebra isomorphisms Ag ' Ag−1 of Frobenius algebras. Furthermore the following

conditions are satisfied :

(i) ϕg,g = χ−1
g .

(ii) ηe(ϕg(a), ϕg(b)) = χ−2
g ηe(a, b).

(iii) The projective trace axiom ∀ c ∈ A[g,h] and lc left multiplication by c:

χh Tr(lcϕh|Ag
) = χg−1 Tr(ϕg−1 lc|Ah

) . (4.11)

Theorem 4.1 (Reconstruction). Given a special reconstruction datum the

structures of special G-Frobenius algebras are in 1-1 correspondence compatible pairs

of a graded, section independent G 2-cocycle with values in Ae that is compatible

with the metric and a non-abelian G 2-cocycle with values in K∗. Satisfying the

following conditions:

(i) ϕg,g = χ−1
g .

(ii) ηe(ϕg(a), ϕg(b)) = χ−2
g ηe(a, b).

(iii) The projective trace axiom ∀ c ∈ A[g,h] and lc left multiplication by c:

χh Tr(lcϕh|Ag
) = χg−1 Tr(ϕg−1 lc|Ah

) . (4.12)

Proof. The cyclic Ae-module structure of Ag gives rise to exact sequences (4.1).

Let ig sections of the rg of (4.1).

Define a multiplication on A := ⊕g∈GAg via

agbh := ig(ag)ih(bh)γg,h1gh .

This multiplication is associative as can be seen by using the section independence

of the cocycle. The section independence also guarantees the independence of the

choice of sections ig.

Now we use the ϕ’s to define a G-action by: ϕg(bh) := ϕg(ih(bh))ϕg,h1ghg−1 .

The compatibility and Eq. (4.6) guarantee that this is a representation and the

G action is indeed an action by algebra automorphisms.

The projective self-invariance of the twisted sectors follows from the

condition (i).

The G-twisted commutativity

agbh = ϕg(bh)ag

also follows from the compatibility.

The form η is defined the following way:

η(ag , hg−1) := ηe(ig(ag)ig−1(ba−1)γgg−1 , 1)

and

η(ag , hh) := 0 if gh 6= 1 .
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Notice that since the ψg is an isomorphism of cyclic Ae modules geberated by

1g and 1g−1 it follows that ψg = rg−1 ◦ ig.

Due to the compatibility with the metric, we obtain the following representation:

η(ag , bg−1) = ηe(ig(ag)ig−1(bg−1)γg,g−1 , 1)

= ηe(ig(ag), řg(ig
−1(bg−1)1g))

= ηg(ag, ig−1(ba−1)1g)

= ηg(ag), ψg−1 (bg−1) .

The invariance then follows using Ighγgh,(gh)−1 = 0 via:

η(agbh, d(gh)−1) = ηe(ig(ag)ih(bh)ih−1g−1(dh−1g−1)γg,hγgh,h−1g−1 , 1)

= ηe(ig(ag)ih(bh)ih−1g−1(dh−1g−1)γh,h−1g−1γg,g−1 , 1)

= η(ag , bhdh−1g−1) .

Remark 4.2. Changing the cyclic generators by elements of K∗ leads to isomor-

phic G-Frobenius algebras and to cohomologous cocycles γ, ϕ in Z2(G,Ae) and

Z2(G,K∗[G]).

Remark 4.3. By straightforward calculation it can be shown the projective trace

axiom is equivalent to

∀ g, h ∈ G; c1ghg−1h−1 ∈ A[g,h], c ∈ ihgg−1h−1(A[gh]) ,

χhϕh,g Tr(lγ
ghg−1h−1,hgh−1 cϕh|ig(Ag))

= χg−1ϕg−1,ghg−1 Tr(ϕg−1 lγ
hg−1h−1g,g−1hg

)c|ih(Ah)) . (4.13)

Notice that in the graded case (see below) this condition only needs to be checked

for deg(γghg−1h−1,hgh−1c) 6= 0 and deg(γhg−1h−1g,g−1hgc) 6= 0.

Furthermore if [g, h] = e then γghg−1h−1,hgh−1 = γhg−1h−1g,g−1hg = 1e and

ϕg−1 ,ghg−1 = ϕ−1
g,h = ϕg−1,h.

Proposition 4.3. (1) If AgAh 6= 0, the compatibility condition of Eq. (4.5) already

determines the ϕg,h ∈ K∗.

(2) In particular: γg,g = 0 unless χg = 1 and if [g, h] = e it follows that

ϕg,hϕh,g = 1 or γg,h = γh,g = 0 holds.

(3) If also AgAhAk 6= 0, the elements defined by Eq. (4.5) automatically satisfy

the conditions of non-abelian 2-cocycles and the condition of Eq. (4.6) is auto-

matically satisfied.

Proof. Without loss of generality, we may assume that 1g1h1k 6= 0. Then, due to

the condition in (4.5),

1g1h1k = (1g1h)1k = ϕgh(1k)(1g1h)

= (ϕgh(1k)1g)1h = ϕgh,k1ghkh−1g−11g1h ,
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and using associativity, we similarly obtain

1g1h1k = 1g(1h1k) = 1gϕh(1k)1h

= ϕg(ϕb,k1hkh−1)1g1h = ϕg,hkh−1ϕh,k1ghkh−1g−11g1h .

For the first statement in (2) one just needs to plug g = h into Eq. (4.5)

and for the second one has to apply the formula twice. For (3), notice that

1k1g1h = 1k(1g1h) = ϕk(1g1h)1k and on the other hand, 1k1g1h = ϕk(1g)1k1h =

ϕk(1g)ϕk(1h)1k.

A useful technical lemma to show that γg,h 6= 0 is the following

Lemma 4.2. If γg,h = 0, then πh(γg,g−1) = 0 and πg(γh,h−1) = 0.

Furthermore if γg,h = γh−1,g−1 = 1, then

γgh,(gh)−1 = γg,g−1γh,h−1 .

Proof. If γg,h = 0, then

0 = πh(γg−1,ghγg,h) = πh(γg−1,gγe,h) = πh(γg−1,g) = πh(γg,g−1)

and also

0 = πg(γg,hγgh,h−1) = πg(γg,eγh−1,h) = πg(γh,h−1) .

Furthermore

γgh,(gh)−1 = γg,hγgh,(gh)−1 = γg,g−1γh,h−1g−1 = γg,g−1γh,h−1 ,

since

πg−1(γh,h−1g−1) = πg−1 (γh−1,g−1γh,h−1g−1) = πg−1(γh,h−1γe,g−1)

and Ig−1γg,g−1 = 0.

4.1.1. Graded special G–Frobenius algebras

Now we consider a set of graded Frobenius algebras satisfying the reconstruction

data: {(Ag, ηg) : g ∈ G} with degrees dg := deg(ηg) such that Ag ' Ag−1 . For

example, in the cohomology of fixed point sets dg is given by the dimension and

for the Jacobian Frobenius manifolds (see the next section) dg fixed by the degree

of Hess(fg) = ρg . Furthermore, the reconstructed {η|(Ag⊗A
g−1

, g ∈ G} have degree

dg = dg−1 .

For a G-twisted FA the degrees all need to be equal to d := de. To achieve this,

one can shift the grading in each Ag by sg . This amounts to assigning degree sg to

1g. This is the only freedom, since the multiplication should be degree-preserving

and all Ag are cyclic.

Set s+g := sg + sg−1 ; s−g := sg − sg−1 . Then s+g := d − dg for grading reasons,

but the shift s− is more elusive.
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Definition 4.6. The standard shift for a Jacobian Frobenius algebra is given by

s+g := d− dg

and

s−g :=
1

2πi
tr(log(g)) − tr(log(g−1)) :=

1

2πi

(
∑

i

λi(g) −
∑

i

λi(g
−1)

)

=
∑

i:λi 6=0

(
1

2πi
2λi(g) − 1

)

where the λi(g) are the logarithms of the eigenvalues of g using the branch with

arguments in [0, 2π), i.e. cut along the positive real axis.

In this case we obtain

sg =
1

2
(s+g + s−g ) =

1

2
(d− dg) +

∑

i

(
1

2πi
λi(g) −

1

2

)
.

Remark 4.4. The shift s−g is canonical in the case of quasi-homogeneous

singularities upon replacing the classical monodromy operator J by Jg. This will

be discussed elsewhere [15]. In general it is possible to define the shift s− if one is

additionally given a linear representation of G, such as in orbifold cohomology [2].

The degree of γg,g−1 is s+g from comparing degrees in the equation 1g1g−1 =

γg,g−11e.

Lemma 4.3. Let A and Ag be a graded Frobenius algebras with the top degree of

Ag being dg then for a section independent cocycle γg,g−1 ⊂ L ⊂ Ae with dim(L) =

dim(A
dg
g ), where the superscript denotes a fixed degree.

Proof. By section independence

Igγg,g−1 = 0 .

Thus

γg,g−1 ∈ (ig(Ag)
∗)d−s+

g

where ∗ is the dual w.r.t. the form η and we use the splitting induced by the sections

i (N.B. if η is also positive definite, we could use an orthogonal splitting)

Ak = Ik
g ⊕ (ig(Ag))

k (4.14)

and superscripts denote fixed degree. Furthermore

dim((ig(Ag)
∗)dg) = dim(ig(Ag)

dg ) = dim(Adg ) − dim(Ig)

= dim(Adg ) − dim(Ker(rg)|Adg ) = dim(Im(rg)|Adg ) = dim(Adg
g )

where we used the non-shifted grading on Ag . Thus γg,g−1 is fixed up to a constant.
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If dimAg = 1, then γg,g−1 is fixed up to normalization by the condition of

section independence. The freedom to scale γg,g−1 is the same freedom one has in

general for choosing a metric for an irreducible Frobenius algebra. Recall that in

this case the space of invariant metrics is one dimensional.

In the Reconstruction program the presence of a non-trivial grading can greatly

simplify the check of the trace axiom. For example, if A[g,h] has no element of degree

0, then both sides of this requirement are 0 and if [g, h] = e, one needs only to look

at the special choices of c with deg(c) = 0 which most often is just c = 1, the

identity.

The grading in the Ramond-sector is by the following definition

deg(v) := −
d

2
.

This yields

deg(η̄) = 0 and deg(◦̄) =
d

2
.

5. Jacobian Frobenius Algebras

Definition 5.1. A Frobenius algebra A is called Jacobian if it can be represented

as the Milnor ring of a function f . That is, if there is a function f ∈ OAn
K

such that

A = OAn
K
/Jf where Jf is the Jacobian ideal of f . And the bilinear form is given

by the residue pairing. This is the form given by the the Hessian of f : ρ = Hessf .

If we write OAn
K

= K[x1 · · ·xn], Jf is the ideal spanned by the ∂f
∂xi

.

Definition 5.2. A realization of a Jacobian Frobenius algebra is a pair (A, f)

of a Jacobian Frobenius algebra and a function f on some affine K space An
K ,

i.e. f ∈ OAn
K

= K[x1 · · ·xn] such that A = K[x1 · · ·xn] and ρ := det( ∂2f
∂xi∂xj

).

A small realization of a Jacobian Frobenius algebra is a realization of minimal

dimension, i.e. of minimal n.

Definition 5.3. A natural G action on a realization of a Jacobian Frobenius

algebra (Ae, f) is a linear G action on An
K which leaves f invariant.

5.1. Special reconstruction data based on a

Jacobian Frobenius algebra with symmetries

Given a natural G action on a realization of a Jacobian Frobenius algebra (A, f) set

for each g ∈ G, Og := OFixg(An
K

). This is the ring of functions of the fixed point set of

g for the G action on An
K . These are the functions fixed by g: Og = K[x1, . . . , xn]g .

Denote by Jg := Jf |Fixg(An
K

)
the Jacobian ideal of f restricted to the fixed point

set of g.

Define

Ag := Og/Jg . (5.1)
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The Ag will be called twisted sectors for g 6= 1. Notice that each Ag is a Jacobian

Frobenius algebra with the natural realization given by (Ag , f |Fixg
). In particular,

it comes equipped with an invariant bilinear form η̃g defined by the element

Hess(f |Fixg
).

For g = e, the definition of Ae is just the realization of the original Frobenius

algebra, which we also call the untwisted sector.

Notice there is a restriction morphism rg : Ae → Ag given by a 7→ a|Fixg
mod Jg .

Denote rg(1) by 1g. This is a non-zero element of Ag since the action was linear.

Furthermore it generates Ag as a cyclic Ae module.

We obtain a sequence

0 → Ig → Ae
rg

→ Ag → 0 .

Let ia be any splitting of this sequence induced by the inclusion: îg : Og → Oe

which descends due to the invariance of f .

In coordinates, we have the following description. Let FixgA
n
K be given by

equations xi = 0 : i ∈ Ng for some index set Ng.

Choosing complementary generators xj : j ∈ Tg we have Og = K[xj : j ∈ Tg]

and Oe = K[xj , xi : j ∈ Tg, i ∈ Ng ]. Then Ig = (xi : i ∈ Ng)Oe
the ideal in Oe

generated by the xi and Oe = Ig ⊕ ig(Ag) using the splitting ig coming from the

natural inclusion îg : K[xj : j ∈ Tg] → K[xj , xi : j ∈ Tg, i ∈ Ng]. We also define the

projections

πg : A1 → Ag;πg = ig ◦ rg

which in coordinates are given by f 7→ f |xj=0:j∈Ng
.

Let

A :=
⊕

g∈G

Ag .

Definition 5.4. A discrete torsion for a group G is a map from commuting pairs

(g, h) ∈ G×G : [g, h] = e to K∗ with the properties:

ε(g, h) = ε(h−1, g) , ε(g, g) = 1 , ε(g1g2, h) = ε(g1, h)ε(g2, h) . (5.2)

Definition 5.5. A non-abelian 2-cocycle is said to satisfy the condition of discrete

torsion with respect to a given σ ∈ Hom(G,Z/2Z) and a linear representation

ρ ∈ Hom(G,GL(n)), if for all elements g, h ∈ G : [g, h] = e:

ε(g, h) := ϕg,h(−1)σ(g)σ(h) det(g) det(g−1|Fix(h))

is a discrete torsion.

Remark 5.1. Due to the properties of ϕ as a non-abelian cocycle, ϕ the second and

third condition of discrete torsion (5.2) are automatically satisfied. If furthermore

γg,h 6= 0, then the first condition reduces to

det(g) det(g−1|Fix(h)) det(h) det(h−1|Fix(g)) = 1 .
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5.1.1. Reconstruction for graded special G–Frobenius algebras

Definition 5.6. A cocycle γ ∈ Z2(G,Ae) is said to satisfy the condition of super-

grading with respect to a given a linear representation ρ ∈ Hom(G,GL(n)), if

γg,h = 0 unless |Nh| + |Ng| + |Ngh| ≡ 0(2). Here |Ng| := codim(Fix(ρ(g)) is the

codimension of the fixed point set of g.

Theorem 5.1. Given a natural G action on a realization of a Jacobian Frobenius

algebra (Ae, f) with a quasi-homogeneous function f of degree d and type q =

(q1, . . . , qn), let A := ⊕g∈GAg be as defined previously up to an isomorphism of

Frobenius algebras on the Ag then the structures of super G-Frobenius algebra on

A are in 1-1 correspondence with triples (σ, γ, ϕ) where σ ∈ Hom(G,Z/2Z) γ is

G-graded, section independent cocycle compatible with the metric satisfying the

condition of supergrading with respect to the natural G action, ϕ is a non-abelian

two cocycle with values in K∗ which satisfies the condition of discrete torsion with

respect to σ and the natural G action, such that (γ, ϕ) is a compatible pair.

Proof. By the Reconstruction theorem the structures of a G-Frobenius algebra

are in 1-1 correspondence with compatible pairs (γ, ϕ), where γ is compatible with

the metric and section independent, subject to the conditions

(i) ϕg,g = χ−1
g .

(ii) ηe(ϕg(a), ϕg(b)) = χ−2
g ηe(a, b).

(iii) The projective trace axiom ∀ c ∈ A[g,h] and lc left multiplication by c:

χh STr(lcϕh|Ag
) = χg−1 STr(ϕg−1 lc|Ah

) (5.3)

where we can reduce to the case that d[g,h] = 0, since the algebra is non-trivially

graded and the degree zero part of A is just k∗.

Let˜∈ Map(G,Z/2Z) be a supergrading in spe. Recall that since Ae is even and

the Ag are cyclic, to give a supergrading is equivalent to specifying the superdegrees

of 1g ; 1̃g := (−1)g̃.

Then χg are fixed by the equation

(−1)g̃ dim(Ag) = STr(id|A
g−1 ) = χg STr(ϕg |Ae

) = χg Tr(ϕg |Ae
) .

To calculate the trace on the RHS, we use the character function for a morphism g

of degree 0 on graded module V = ⊕nVn:

χVn
(g, z) :=

∑

n,µ

µ dim(Vµ,n)zn

where Vµ,n is the eigenspace of Eigenvalue µ on the space Vn. We will use the

grading induced by the quasi-homogeneity. That is, let N be such that qi = Qi/N

with Qi ∈ N and N such that |G||N . Then a monomial has degree n if its quasi

homogeneous degree is n/N . This is the natural grading for the quasi-homogeneous

map grad(f). Notice that since g commutes with f it preserves the grading. It is
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clear that this character behaves multiplicatively under concatenations of quasi-

homogeneous functions. Therefore by applying Arnold’s method, we can pass to

a cover of Kn with the projection map T : T (x1, . . . , xn) = (xq1 , . . . , xqn) and

calculate the character for T and for grad(f) ◦ T . Then repeating the argument in

a simultaneous Eigenbasis of g and the grading of [1], we obtain:

χAe
(g, z) =

n∏

i=1

(µ̃iz)
N−Qi − 1

(µ̃iz)Qi − 1

where the µ̃i are the Eigenvalues of some lift of the action of g i.e. µ̃Qi

i = µi. Notice

that since |G||N µ̃N
i = 1, so that in the limit of z → 1, we obtain:

Tr(ϕg |Ae
) =

∏

i:µi 6=1

−µ−1
i

∏

i:µi=1

1

qi
− 1 = (−1)|Ng| det(g)−1 dim(Ag) ,

so that

χg = (−1)g̃(−1)|Ng| det(g) .

We set

σ(g) := g̃ + |Ng| mod 2 (5.4)

and call it the sign of g. Thus we obtain

χg = (−1)σ(g) det(g) .

Notice that σ ∈ Hom(G,Z/2Z) since both det and χ are characters. Also notice

that a choice of sign corresponds to a choice of parity and vice-versa.

For˜to be a supergrading, it has to satisfy the condition that if γg,h 6= 0, then

g̃ + h̃ ≡ g̃h(2). In view of (5.4), this is equivalent to the condition of supergrading

of γ with respect to the natural G action.

This ensures condition (ii). Since for ρ = Hess(f):

ϕg(ρ) = det(g)−2ρ .

Now consider the direct sum

A :=
⊕

g∈G

Ag .

On this direct sum we impose the metric η := ⊕η̃g where η̃g is the scaled metric

η̃g := ((−1)g̃χg)
1/2ηg

and ηg is the metric of Ag as a Jacobian Frobenius algebra.

In order to define the root, we choose to cut the plane along the negative real

axis. This uniquely defines a square root unless (−1)g̃χg = −1. In the case that

g2 6= e, we can choose roots i and −i for g respectively g−1. The only case that has

no solution would be the case of g2 = e and (−1)g̃χg = −1, but this means that

either χg = −1 and g̃ = 1 or χg = −1 and g̃ = 0 which cannot happen, since in

this case (−1)|Ng| = det(g) and (−1)g̃(−1)|Ng| det(g) = χg.
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Since Fixg = Fixg−1 we have Ag = Ag−1 and after the shift of metrics the

algebras are still isomorphic as Frobenius algebras.

Thus the collection (Ag , η̃g , 1g) is a special reconstruction datum which satisfies

condition (i) due to the compatibiltity of the cocycles and the compatibilty of γ

with the metric.

Finally, we need to check the validity of (iii). Notice that since the multiplication

is graded the traces are 0 unless deg(γc) = 0, so that we can assume that γc = 1.

In this case, we have to show:

χh STr(ϕh|Ag
) = χg−1 STr(ϕg−1 |Ah

) .

Let xi be a basis of Ae in which g is diagonal. Then we have to compute the

trace of the action of h on the sub-algebra generated by the xi with eigenvalue 1

under the action of g. This is just the truncated version of the calculation above,

so diagonalizing h on K[xi : i ∈ Tg ] we find using the same characteristic functions

and rationale as before:

χh STr(ϕh|Ag
) = χhϕh,g(−1)g̃ Tr(ϕh|ig(Ag))

= χhϕh,g(−1)g̃
∏

j:νj 6=1

−ν−1
j

∏

j:νj=1

1

qj
− 1

= χhϕh,g(−1)g̃(−1)|Tg |(−1)|Tg∩Th| det(h|Tg
)−1 dim(ig(Ag) ∩ ih(Ah))

= ϕh,g(−1)σ(g)(−1)σ(h) det(h) det(h|Tg
)−1(−1)N (−1)|Tg∩Th|

× dim(ig(Ag) ∩ ih(Ah))

= ϕh,g(−1)σ(hg) det(h|Ng
)(−1)|Tg∩Th|+N dim(ig(Ag) ∩ ih(Ah))

= ε(h, g)T (h, g)

where νj are the eigenvalues of h on ig(Ag) and

ε(g, h) = ϕg,h(−1)σ(g)σ(h) det(g|Nh
)

and we set det(g|Nh
) := det(g) det−1(g|Th

) if [g, h] 6= e.

T (h, g) = (−1)σ(g)σ(h)(−1)σ(g)+σ(h)(−1)|Tg∩Th|+N dim(ig(Ag) ∩ ih(Ah)) .

It follows that

T (h, g) = T (g, h) = T (g−1, h) .

Notice also that if [g, h] = e,

ε(gh, k) = ε(g, k)ε(h, k)

and

T (gh, h) = T (hg, h) = T (g, h) .
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On the other hand

STr(ϕg−1 |Ah
) = ε(g−1, h)(−1)σ(g−1h)(−1)|Tg∩Th|+N dim(ig(Ag) ∩ ih(Ah))

= ϕh,g(−1)σ(g−1h) det(g−1|Nh
)(−1)g̃h̃(−1)|Tg∩Th| dim(ig(Ag) ∩ ih(Ah))

= ε(g−1, h)T (g−1, h)

where µj are the Eigenvalues of g−1 on ih(Ah).

Finally we see that the ϕ determine the ε(g, h) which have to satisfy the

equations

ε(g, h) = ε(h−1, g) , ε(g, g) = 1 , ε(g1g2, h) = ε(g1, h)ε(g2, h)

which are equivalent to the trace axiom.

This relates the freedom of choosing projective factors for the G-action to choices

of discrete torsion.

Lemma 5.1. The following statements hold :

(1) If ∀ g, h,∈ G : Jh = Jg any choice of cocycle γ with values in K∗ will give a

special G-twisted FA. There is only one choice of compatible non-abelian cocycle

ϕ. This is the case if G acts trivially.

(2) By Proposition 4.3 if [g, h] = e then γg,h = 0 or ϕg,hϕh,g = 1. This implies that

if γg,h 6= 0

det(g|Nh
) det(h)|Ng

= 1 (5.5)

must hold since ε(g, h) = ε(h−1, g) = ε(h, g)−1. Vice-versa: if (5.5) does not

hold for commuting g, h, then necessarily γg,h = 0.

Proof. For (1), notice that all πh(γg,g−1) 6= 0. Thus by Lemma 4.2, the γg,h 6= 0

and furthermore since rg = id, we see that the γg,h ∈ K∗.

For (2), we use the compatibility twice. If [g, h] = e : γg,h = ϕg,hγh,g =

ϕg,hϕh,gγg,h.

Now since by assumption γg,h 6= 0, we get the desired result using that if

[g, h] = e : ϕh−1,g = ϕ−1
h,g.

Remark 5.2. There is a universal action of tensoring with twisted (super) group

rings, which allows to recover all possible choices of σ and ε. This is discussed in

detail in [17].

6. Mirror Construction for Special G-Frobenius Algebras

6.1. Double grading

We consider Frobenius algebras with grading in some abelian group I .

A =
⊕

i∈I

Ai .
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This grading can be trivially extended to a double grading with values in I × I

in two ways

Acc =
⊕

i∈I

Ai,i

and

Aac =
⊕

i∈I

Ai,−i

corresponding to the diagonal ∆ : I → I × I and (id,−) ◦ ∆ : I → I × I .

Definition 6.1. We call bi-graded Frobenius algebras of this form of (c, c)-type

and of (a, c)-type, respectively. In the language of Euler fields this means that the

Euler field is a pair (E, Ē) that satisfies (E, Ē) = (E,E) or (E, Ē) = (E,−E).

These gradings become interesting for special G-Frobenius algebras, since in

that case the shifts will produce a possible non-diagonal grading.

Definition 6.2. Given a graded special G-Frobenius algebra, we assign the

following bi-degrees to 1g,

(E, Ē)(1g) := (sg , s̄g)

where s̄g := sg−1 = 1
2 (s+g − s−g ).

Furthermore for the Ramond-space of A we assign the following bi-degree to v,

(E, Ē)(v) :=

(
−
d

2
,−

d

2

)
.

It is clear that Ae is of (c, c)-type. All of A is however only of (c, c) type if

sg = s̄g .

6.2. Euler-twist (spectral flow)

In this section, we consider a graded special G-Frobenius algebra and construct a

new vector-space from it. We denote the grading operator by E.

Definition 6.3. The twist-operator j for an Euler-field E is

j := exp(2πiE) .

We denote the group generated by j by J.

We call a special G-Frobenius Euler if there is a special G̃-Frobenius algebra Ã

of which A is a subalgebra where G̃ is a group that has G and J as subgroups.

Definition 6.4. The dual Ǎ to an Euler special G-Frobenius algebra A of (c, c)-

type is the vector space

Ǎ :=
⊕

g∈G

Ǎg :=
⊕

g∈G

Vgj−1
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with the Ae and G-module structure determined by τ g
j : Ǎg ' Vgj−1 together with

the bi-grading

(E, Ē)(1̌g) := (sgj−1 − d, s̄gj−1 ) =: (šg , ¯̌sg)

where 1̌g denote the generator of Ǎg as Ae-module and the bi-linear form

η̌ := τ∗j (η̄)

where τj := ⊕g∈Gτ
g
j and V and η̄ refer to the Ramond-space of A.

7. Explicit Examples

7.1. Self duality of An

We consider the example of the Jacobian Frobenius Algebra associated to the

function zn+1

An := C[z]/(zn)

together with the induced multiplication and the Grothendieck residue. Explicitly:

zizj =

{
zi+j if i+ j ≤ n

0 else

with the form

η(zi, zj) = δi,n−1−j

and the grading:

E(zi) :=
i

n+ 1

which means ρ = zn−1 and d = n−1
n+1 .

We consider just the group J ' Z/(n+1)Z with the generator j acting on z by

multiplication with ζn+1 := exp(2πi 1
n+1 ). Now

Fixji =

{
C if i = 0 ,

0 else ,

and thus

Aji =

{
An if i = 0 ,

1jiK else .

Furthermore we have the following grading:

(E, Ē)(1jk ) =






(0, 0) for i = 0 ,
(
k − 1

n+ 1
,
n− k

n+ 1

)
else ,

and ρji = 1ji and dji = 0.
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Using the reconstruction theorem we have to find a cocycle γ and a compatible

action ϕ. There is no problem for the metric, since always |Ng | = 1 and if n+ 1 is

even det(ζ
n+1

2 ) = −1. Since the group J is cyclic there is no freedom of choice for

ε and if n+ 1 is even there are two choices of parity are possible corresponding to

σ(j) ± 1.

From the general considerations we know γji,jn−1−i ∈ Ae and deg(γji,jn−1−i) =

d− dji = n−1
n+1 which yields

γji,jn−1−i = ((−1)j̃iζi)1/2ρ = ((−1)j̃ζ)i/2zn−1

for the other γ notice that deg(1ji) + deg(1jk ) = i+k−2
n+1 while deg(1ji+j ) = i+k−1

n+1

if i+ k 6= n+ 1, but there is no element of degree 1
n+1 in Aji+k for i+ k 6= n+ 1.

Hence

γji,jk =

{
((−1)j̃ζ)i/2zn−1 for i+ k = n+ 1 ,

0 else .

And since Z/(n + 1)Z is Abelian and furthermore there is no non-trivial class of

discrete torsion:

ϕji ,jk = (−1)σ(ji)σ(jk)ζ−i .

Therefore the G-invariants AG = A1 are generated by the identity 1.

The Ramond grading of this algebra is

(E, Ē)(1jkv) =





(
−

n− 1

2(n+ 1)
,−

n− 1

2(n+ 1)

)
for i = 0 ,

(
k

n+ 1
−

1

2
,−

k

n+ 1
+

1

2

)
else ,

and the action of of G is given by:

ϕ̄ji,jk =

{
(−1)σ(ji)ζi for k = 0 ,

(−1)σ(ji)(σ(jk)+1) else .

Since j ∈ G the special G-Frobenius algebra is Euler and the dual is defined,

moreover G = J so that the vector-space structures of A and Ǎ coincide. The

grading is given by:

(E, Ē)(1̌jk ) =






(0, 0) for k = 0 ,
(
n− 1

n+ 1
, 0

)
for k = 1 ,

(
k − (n+ 1)

n+ 1
,
n+ 1 − k

n+ 1

)
else .

The G-action on the Ǎjk keeping in mind the shifted group grading is given by:

ϕ̌ji ,jk =

{
(−1)σ(ji)ζi for k = 1 ,

(−1)σ(ji)(σ(jk−1)+1) else .
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If σ ≡ 0(2) all sectors with k 6= 1 are invariant. These correspond to the original

twisted sectors. There are no invariants in the sector Ǎjk which corresponds to the

original untwisted sector.

In the case of n + 1 even and σ(jk) ≡ k(2), we obtain as invariants only those

twisted sectors belonging to even powers of j.

Taking into account the grading we find for trivial σ:

( ˇAn/(Z/(n+ 1)Z))Z/(n+1)Z ' An

as a small realization of the Jacobian Frobenius algebra, where more explicitly

1̌jk 7→ zn+1−k : k = 2, . . . n and 1̌j0 7→ 1 .

Notice that this An is of (a, c)-type, i.e. the bi-degree of zk is (− k
n+1 ,

k
n+1 ).

Also since J = G the form η̄ pulls back and gives a non-degenerate form on

ǍG, which is the usual form on An. Furthermore the usual multiplication on An

is compatible with everything so that we can say that An is self-dual under this

operation. We would like to point out that in the process of dualization we project

out one spurious sector, whose grading is such that there is no Frobenius structure

on all of Ǎ since we cannot find an invariant metric — although there is the pulled

back non-degenerate metric. All products with fields from the sector k = 1 (with

the exception of the identity (1̌e) have to vanish for degree reasons. Also in this

sector there neither an (a, c) nor a (c, c) type grading.

The structure of this algebra can be seen as analogous to the one found in

the r-spin curve of the An-model [12, 23], where also a spurious sector dubbed

“Ramond” appears. Both our and the r-spin picture are in mirror symmetry

parlance the A-model (as opposed to the usual Landau–Ginzburg B-model) version

of the An model. From our point of view the appearance of the sector k = 1 is,

however, not mysterious at all, but moreover necessary, since it is the dual of the

untwisted sector. This can be seen as an answer to the question of its origin posed

in [23].

7.2. Dn from a special Z/2Z-Frobenius algebra based on A2n−3

In this section, we show how to get Dn from a special Z/2Z-Frobenius algebra

based on A2n−3. The function for the Frobenius algebra A2n−3 is z2n−2. Since this

is an even function, Z/2Z acting via z 7→ −z is a symmetry. There are two sectors,

the untwisted and the twisted sector containing the element 1−1 with degree 0. The

multiplication is fixed by deg(γ−1,−1) = 2n−4
2n−2 thus

γ−1,−1 = z2(n−2)

again the group is cyclic so the Z/2Z-action only depends on the choice of parity

of the −1-sector.

In the untwisted sector we have A
Z/2Z
e = 〈1, z2, . . . , z2(n−1)〉 ' An−1, the action

of −1 on 1−1 is given by

ϕ−1,−1 = (−1)σ(−1)σ(−1)+1
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so that if σ(−1) = 1,

(A2n−3/(Z/2Z))Z/2Z ' Dn

again as a realization of the Jacobian Frobenius algebra. Notice that in this case

1̃−1 = 0 so that the algebra is purely even.

If σ(−1) = 0, we just obtain the invariants of the untwisted sector which are

isomorphic to An−1.

The untwisted sector is given by the singularity An−1 as expected upon the

transformation u = z2. Notice that the invariants of the Ramond sector yield the

singularity An−2 as expected from [24]. These are of the form uidu or z2i+1dz with

i = 0, . . . , n− 3.

7.3. Point mod G

In the theory of Jacobian Frobenius algebras there is the notion of a point played

by a Morse singularity z2
1 + · · · + z2

n. Any finite subgroup G ⊂ O(n,K) leaves this

point invariant.

The G-twisted algebra after possibly stabilizing is the following.

A =
⊕

g∈G

K1g .

And the grading is deg(1g) = ( 1
2s

−
g ,

1
2s

−
g ), since d = dg = 1.

Using Lemma 4.2, it follows that the γ cannot vanish, thus fixing ϕ and ε, so

that the possibilities are enumerated by the graded cocycles. The compatibility

equations hold automatically.

If we assume that G ⊂ O(n,C) and that s−g = 0 (i.e.
∑

i:λi 6=0
1

2πiλi =
|Ng|

2 ∈ N),

then we the cocycles lie in H2(G,K∗) and the possible algebra structures are those

of twisted group algebras.

7.3.1. Point mod Z/nZ and its dual

By the above analysis we realize Z/nZ as the sub-group of rotations of order n in

C. We have that s−g = 0 and thus we can choose the full cocycle making A into An,

multiplicatively, with trivial grading and trivial G-action if one chooses all even

sectors. The metric, however, will not be consistent with An. The identity pairs

with itself for instance. Dualizing A, we obtain the following space

Ǎ =
⊕

i

Aji−1

with again a trivial (E, Ē) grading. Choosing the generator ǰ := j−1 for J , the

metric reads

η̌(1̌ǰi , 1̌ǰk) =





1 if i+ j = n− 1 ,

1 i = j = n ,

0 else .
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This metric is compatible with the following multiplication:

1̌ǰi ◦ 1̌ǰk =





1̌ǰi+k if i+ j ≤ n− 1 ,

1̌ǰn i = j = n ,

0 else .

This can be interpreted as An−1 ⊕ A1. This is allowed since we do not have

any grading restrictions. Again by our mirror symmetry we see that we obtain

this A-model by orbifolding the Landau–Ginzburg B-model pair (An, A1) above

by Z/(n + 1)Z. We previously did this by regarding the left side of the pair and

the above calculation is for the right side of the pair. Thus we again see that the

appearance of the extra basis element can be seen as natural from this point of

view.
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