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Abstract. In this note, the scattering operator of an asymptotically hyperbolic manifold is only
allowed to act on functions supported on the source set R × O, where O is an open subset of the
boundary, and the resulting functions are then restricted to the observation set R × Γ, where Γ
is open. When Γ is the complement of the closure of O, we call the corresponding operator the
off-diagonal scattering operator with respect to O. We prove that for a non-empty open proper
subset O, such that the intersection of its closure and its complement is not empty, the off-diagonal
scattering operator with respect to O determines the manifold modulo isometries which are equal to
the identity at the boundary. We also prove there is no analogue of the L2 boundary controllability
from an open subset of the boundary for radiation fields, which presents a possible obstacle to
extending the inverse result for arbitrary disjoint subsets O and Γ.

1. Introduction

We continue our work on inverse scattering on asymptotically hyperbolic manifolds started in
[23, 41]. In this paper, the scattering operator only acts on functions supported on the source set
R×O, where O is an open subset of the boundary and the resulting functions are then restricted to
the observation set R×Γ, where Γ is open. We pose the problem of recovering the asymptotically
hyperbolic manifold from this operator. The case where O and Γ are the whole boundary of the
manifold was solved in [41], while the case where O is a proper subset, but O∩Γ ̸= ∅ was solved in
[23]. The next natural question is to consider the problem for arbitrary disjoint O and Γ. We show
that this question has very serious additional difficulties. We also prove that if Γ is the complement
of the closure of O and Γ ∩O ̸= ∅, the restriction of the scattering operator to O and Γ determine
the manifold modulo isometries. See Theorem 1.1 below for the precise statement. The condition
that O intersects its complement says that O cannot be the union of whole connected components
of the boundary of the manifold.

The scattering matrix is obtained by conjugation of the scattering operator with the Fourier
transform, so this problem can be interpreted as an inverse problem for the scattering matrix at
all energies acting between two disjoint open subsets. For fixed energy, the scattering matrix is a
pseudo-differential operator, so the Schwartz kernel of the restriction of the scattering matrix to
two disjoint open subsets is a smooth function. This particular result for the case where Γ = Oc

case shows that the smooth part of the scattering matrix, when all energies are taken into account,
determines the manifold modulo invariants. But the condition that the intersection of the closure
of O and its complement is not empty is used to obtain information about the limit of a suitable
function at one point of the diagonal and for one energy.

As far as we know, with the exception of situations where the inverse scattering problems can
be reduced to a problem about the Dirichlet-to-Neumann map, such as the case of compactly
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supported perturbations of hyperbolic space, this is the first result about the determination of the
manifold from off-diagonal information on the kernel of the scattering operator. We also show that
there is no analogue of the L2 boundary controllability from an open subset of the boundary for
radiation fields. This presents a possible obstacle to extending Theorem 1.1 to arbitrary disjoint
subsets O and Γ.

Throughout this paper (X̊, g) denotes a C∞ manifold equipped with a C∞ Reimannian metric

g.We shall assume that X = X̊ is a C∞ manifold with boundary and that ρ is a C∞ function on X
such that ρ ≥ 0, ρ−1(0) = ∂X and dρ(0) ̸= 0. Such a function will be called a defining function of
the boundary. We assume that (X, ρ2g) is a C∞ compact Riemannian manifold and furthermore,
we will assume that if h0 = ρ2g|∂X , then |dρ|∂X |h0 = 1. According to Mazzeo & Melrose [36],
this guarantees that the sectional curvatures converge to −1 along any curve that goes towards
the boundary. The manifold (X̊, g) will be called an asymptotically hyperbolic manifold (AHM).

The prototype of this class is the hyperbolic space X̊ = {z ∈ Rn : |z| < 1} equipped with the
metric g0 = 4(1 − |z|2)−2dz2 of constant curvature −1. Quotients of hyperbolic space by convex
co-compact groups also fall in this category.

The metric g defines a conformal structure on ∂X and Graham [15] has shown that fixed a
representative of ρ2g|∂X , there exists a unique function x defined in a collar neighborhood Uε of
∂X such that

x2g = dx2 + h(x) on [0, ε)× ∂X, h(0) = x2g|∂X ,(1.1)

where h(x) is a C∞ family of metrics on ∂X for x ∈ [0, ε). From now on we will use such the
identification Uε ∼ [0, ε)x×∂X. The function x is in principle defined only on a collar neighborhood
of ∂X, but it can be extended to the whole manifold as a boundary defining function, but of course
(1.1) only holds near ∂X.

The study of scattering theory of AHM started with the work of Fadeev, Fadeev & Pavlov [9, 14]
and Lax & Phillips [32, 33], Agmon [1], Guillemin [19], and Perry [38, 39]. Mazzeo & Melrose [36]
constructed a parametrix for the resolvent for the Laplacian on general AHM and used it to show
that the resolvent continues meromorphically to the complex plane with the exception of a discrete
set of points. Guillarmou [18] completed their program by showing that the resolvent can have
essential singularities at the points excluded in the construction of Mazzeo and Melrose and by
characterizing the metrics for which the resolvent continues to the entire complex plane. The work
of Mazzeo and Melrose made it possible to study stationary scattering theory on AHM. Melrose
[37] studied the scattering matrix on general AHM, while Guillopé [20] analyzed the scattering
matrix on Riemann surfaces. Joshi and the second author [28] began the study of the inverse
scattering theory on AHM. They showed that the scattering matrix at a fixed energy determines
the Taylor series of the metric at infinity. Graham and Zworski [16] identified some conformal
invariants in terms of residues of the scattering matrix. If an AHM manifold is also Einstein,
Guillarmou and Sá Barreto [8] showed that the scattering matrix at one energy determines the
manifold. Isozaki and Kurylev [25] and Isozaki, Kurylev and Lassas [24, 26, 27] studied inverse
scattering on more general classes of manifolds, but they assume the metric is known (modulo
isometries) in a neighborhood of one of the ends of the manifold.

Lax and Phillips [32, 33] studied the time dependent scattering theory in certain non-Euclidean
spaces which included some examples of AHM. The second author [41] constructed the Friedlander
radiation fields on general AHM and used it to prove that the scattering operator of an asymp-
totically hyperbolic manifold determines the manifold (including its topology and C∞ structure)
modulo isometries which are equal to the identity at the boundary. The current authors [23]
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showed that if the interiors of the source and observation sets intersect, then (X̊, g) is determined
modulo isometries which are equal to the identity at the intersection. Guillarmou and the second
author [17] extended the result of [41] to the case of complex hyperbolic manifolds.

For non-compact manifolds, the scattering operator plays the role of the Dirichlet-to-Neumann
Map (DTNM) for the wave equation. In fact one can show, see for example [37], that for compactly
supported perturbations of the Euclidean, or hyperbolic spaces, the scattering operator determines
the DTNM on a ball that contains the support of the perturbation. The surge of interest on
inverse problems for the DTNM on compact manifolds with boundary started with the celebrated
work of Calderón [7], see for example Uhlmann’s survey [44] and references cited there for a
historical account. The anisotropic Calderón’s problem questions whether that a compact C∞

Riemannian manifold X with boundary ∂X can determined modulo isometries from the DTNM
for its Laplacian. This is a very difficult problem that has been studied by many people, and
we again refer to Uhlmann’s survey for a detailed account. We want to point out that Daudé,
Kamran and Nicoleau [10, 11, 12, 13] have recently shown that the anisotropic Calderón problem
in the case where the DTNM acts between two disjoint open subsets O and Γ of he boundary ∂X
such that O ∩ Γ = ∅ and O ∪ Γ ̸= ∂X is false. They construct examples of conformal metrics and
non-isometric metrics which have the same DTNM acting between O and Γ. It is interesting this
work excludes precisely the case we discuss here. It is not clear the techniques of Daudé, Kamran
and Nicoleau can be used to construct counter-examples in the time dependent problem discussed
in this note.

The problem of determining a C∞ Riemannian manifold modulo isometries from the DTNM
for the wave equation was first studied by Belishev and Kurylev [4] using the boundary control
method. This method relied on a unique continuation theorem proved by Tataru [43]. One can
consult the book by Katchalov, Kurylev and Lassas [29] for a thorough account.

Lassas and Oksanen [30, 31] studied the question for the Dirichlet-to-Neumann map for the
wave equation with source and data subsets having disjoint interiors. In [30] Lassas and Oksanen
prove that if the closure of the source set and the closure of the observation set intersect, the
manifold and the metric are determined modulo diffeomorphisms. In [31], they do not assume
that closure of the sets intersect, but they have to assume that “enough information” from the
source set arrives at the observation set, and this translates into the assumption that the wave
equation is exactly controllable from the set of sources or the set of measurements or one of these
sets satisfy the Hassell-Tao condition [21, 22]. Here we prove that L2 boundary controllability for
the wave equation from radiation fields restricted to any open subset of the boundary at infinity
does not hold. This is somehow expected because of the results of Bardos, Lebeau and Rauch [2] –
unlike the situation of compact manifolds with boundary, in the scattering case, bicharacteristics
do not reflect at the boundary at infinity.

We from now on we assume (X̊, g) is a C∞ AHM. We use ∆g to denote the Laplacian with

respect to the metric g and we work with the wave operator associated with ∆g − n2

4 –the factor
n2

4 serves to shift the continuous spectrum of ∆g to [0,∞)– and consider solutions of the Cauchy
problem

(D2
t −∆g −

n2

4
)u = 0, on R± × X̊,

u(0, z) = f1, Dtu(0, z) = f2, f1, f2 ∈ C∞
0 (X̊).

(1.2)
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The spectrum of ∆g is was studied by Mazzeo [35] and Mazzeo & Melrose [36], and by Bouclet [5];

it consists of two parts σpp ∪ σac. The point spectrum σpp is finite and contained in (0, n
2

4 ), while

the continuous spectrum σac = [n
2

4 ,∞). The conserved energy

E(u, ∂tu)(t) =

∫
X

(
|du(t)|2 − n2

4
|u(t)|2 + |∂tu(t)|2

)
dvolg =

∫
X

(
|df1|2 −

n2

4
|f1|2 + |f2|2

)
dvolg

(1.3)

is only coercive only when projected onto L2
ac(X). We then define the projector

Pac : L
2(X) −→ L2

ac(X)

f 7−→ f −
N∑
j=1

⟨f, ϕj⟩ϕj ,

where {ϕj , 1 ≤ j ≤ N} are the eigenfunctions of ∆g, We define the energy space Eac(X) to be

the closure of (φ,ψ) ∈ C∞
0 (X̊)× C∞

0 (X̊) that are orthogonal to the eigenfunctions of ∆g and for
which with norm

||(ϕ, ψ)||E =

∫
X
(|ψ|2 + |dgφ|2 −

n2

4
|φ|2) d volg <∞.

This definition makes sense in view of Corollary 6.3 of [41]. We will also need to introduce the
space

Ḣ1
ac(X) = {φ : 0 ≤

∫
X
(|dgφ|2 −

n2

4
|φ|2) d volg <∞},

with norm ||φ||2
Ḣ1

ac
=

∫
X
(|dgφ|2 −

n2

4
|φ|2) d volg .

We shall fix a product decomposition z = (x, y) ∈ Uε ∼ [0, ε)×∂X, in which (1.1) holds and our
definitions will depend on such choice. One can remove this dependence by working on appropriate
vector bundles, but we will not do this here.

Let u satisfy (1.2) with initial data (f1, f2) ∈ (C∞
0 (X̊)×C∞

0 (X̊))∩Eac(X). It was shown in [41]
that

V±(x, s±, y) = x−n/2u(s± ± log x, x, y) ∈ C∞([0, ε)x × Rs± × ∂X).(1.4)

The forward and backward radiation fields of (f1, f2) ∈ C∞
0 (X̊)× C∞

0 (X̊) are defined to be

R± : C∞
0 (

◦
X)× C∞

0 (
◦
X) −→ C∞(R× ∂X),

R±(f1, f2)(s, y) = Ds±V±(0, s±, y)
(1.5)

and it was shown in [41] that R± extend to unitary operators

R± : Eac(X) −→ L2(R× ∂X),

(f1, f2) 7−→ R±(f1, f2),
(1.6)

where the measure on ∂X is the one induced by the metric h0 defined in (1.1).
The scattering operator is defined to be the map

S : L2(R× ∂X) −→ L2(R× ∂X),

S = R+ ◦ R−1
− .

(1.7)
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Since R± are unitary, S is unitary in L2(∂X×R) and commutes with translations in the s variable.
The second author and Wang [42] showed that S is a Fourier integral operator that quantizes the
scattering relation.

If U ⊂ ∂X is an open subset, we shall denote

L2(R× U) = {F ∈ L2(R× ∂X) : F is supported in R× U}.
If Oj ⊂ ∂X, j = 1, 2 are open subsets of ∂X.We define the scattering operator with sources placed
on O1 and measurements made on O2 as the map

SO2O1 : L2(R× O1) −→ L2(R× O2)

F 7−→ (SF )|R×O2

(1.8)

Given a non-empty open subset O ⋐ ∂X, we defined the off-diagonal scattering operator with
respect to O to be the operator SOcO.

The following is the main result of this paper:

Theorem 1.1. Let (X̊j , gj), j = 1, 2, be connected AHM. Suppose that M = ∂X1 = ∂X2 and
that the conformal representatives h0,j = ρ2jgj |M satisfy h0 = h0,1 = h0,2. Let Sj denote the

scattering operator with respect to (X̊j , gj), for the particular choice of h0. Let O ⊂ M be a non-

empty open subset such that Oc = M \ O is not empty. Moreover assume that O ∩ Oc ̸= ∅.
If the corresponding off-diagonal scattering operators satisfy S1,OcO = S2,OcO, then there exists a
diffeomorphism Ψ : (X1, g1) −→ (X2, g2) such that Ψ|M = id, and Ψ∗g2 = g1.

Notice that Theorem 1.1 can be interpreted in the following way:

Theorem 1.2. Let (X̊j , gj , ) j = 1, 2, be connected AHM. Suppose that M = ∂X1 = ∂X2 and that
the conformal representatives h0,j = ρ2jgj |M satisfy h0 = h0,1 = h0,2. Let O ⊂ M be a non-empty

open subset such that Oc =M \ O is not empty. Moreover assume that O ∩ Oc ̸= ∅. Let Sj denote

the scattering operator with respect to (X̊j , gj), for this particular choice of h0 and let KSj denote
the Schwartz kernel of Sj , j = 1, 2. Suppose that KS1(s, s

′, y, y′) = KS2(s, s
′, y, y′) as distributions

on R×R×Oc×O, then there exists a diffeomorphism Ψ : (X1, g1) −→ (X2, g2) such that Ψ|M = id
and Ψ∗g2 = g1.

The analogue of this result for S∂X∂X = S was proved in [41] and the case SOO was proved in [23].
In Proposition 2.10, we will show that SOcO determines S∂X∂X . Therefore, the proof of Theorem
1.1 is reduced to an application of the result of [41]. We remark that the results of [23, 41] were
based on an adaptation of the boundary control method of Belishev [3], Belishev & Kurylev [4]
and Tataru [43].

2. The Local Support Theorem and its Consequences

The key ingredient in the proof of Theorem 1.1 is the following support theorem proved in [23]:

Theorem 2.1. Let O ⊂ ∂X be a nonempty open subset, let f ∈ L2
ac(X) and let s0 ∈ R. Let

ε > 0 be such that (1.1) holds in (0, ε) × ∂X, and let ε = min{ε, es0}. Then R+(0, f)(s, y) = 0 in
{s < s0, y ∈ O} if and only if for every z = (x, y) ∈ (0, ε)× O =Wε

dg(z, supp f) > log(
es0

x
),(2.1)

where dg denotes the distance function with respect to the metric g, and supp f denotes the support
of f.
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The following result is a consequence of Theorem 2.1 which is fundamental in the proof of
Theorem 1.1:

Corollary 2.2. Let (X, g) be a connected AHM and let O ⊂ ∂X be open, O ̸= ∅. If f ∈ L2
ac(X)

and R+(0, f)(s, y) = 0 in R × O, then f = 0. Similarly, if (h, 0) ∈ Eac(X) and R+(h, 0)(s, y) = 0
in R× O, then h = 0.

Proof. If R+(0, f)(s, y) = 0 in R× O, then for every z = (x, y) ∈Wε̄, d(z, supp f) > s0 − log x for
every s0. Since the distance between any two points in the interior of X is finite, it follows that
supp f is empty and f = 0.

Suppose F = R+(h, 0)(s, y) = 0 in R × O. By taking convolution of F with ϕ ∈ C∞
0 (R), even,

we may assume that (∆g − n2

4 )kh ∈ L2
ac(X) for every k ≥ 0, see section 3.1 of [23] for a proof.

Then ∂sF = R+

(
0, (∆g − n2

4 )h
)
(s, y) = 0 in R × O. But as we have shown, this implies that

(∆g − n2

4 )h = 0, and hence ∂sF = 0. Since F ∈ L2(R × ∂X), it follows that F = 0 and hence
h = 0. □

This result allows us to define the following operators: Let ψ ∈ L2
ac(X) and φ ∈ Ḣ1

ac(X) be such
that R+(φ,ψ) is supported in R× O, and let

(2.2)
TO : L2

ac(X) −→ Ḣ1
ac(X) T−1

O : Ḣ1
ac(X) −→ L2

ac(X)

ψ 7−→ φ φ 7−→ ψ,

First we show these are densely defined and closed operators

Lemma 2.3. Let (X̊, g) be a connected AHM manifold. Let O ⊂ ∂X be a nonempty open subset

such that Oc = ∂X \ O ̸= ∅. For any ψ ∈ L2
ac(X) there exists at most one φ ∈ Ḣ1

ac(X) such that

R+(φ,ψ) is supported in R×O, and for any φ ∈ Ḣ1
ac(X) there exists at most one ψ ∈ L2(X) such

that R+(φ,ψ) is supported in R× O. Let

C(O) = {ψ ∈ L2
ac(X) : there exists φ ∈ Ḣ1

ac(X) such that R+(φ,ψ)(s, y) is supported in R× O},

E(O) = {φ ∈ Ḣ1
ac(X) : there exists ψ ∈ L2

ac(X) such that R+(φ,ψ)(s, y) is supported in R× O}.

(2.3)

Then C(O) is the domain of TO and is dense in L2
ac(X). Similarly, E(O) is the domain of T−1

O and

is dense in Ḣ1
ac(X).

Proof. First, if R+(φ1, ψ) and R+(φ2, ψ) are supported in R×O, then R+(φ1−φ2, 0) is supported
in R × O, but this implies that R+(φ1 − φ2, 0) = 0 in R × Oc, and so Corollary 2.2 implies that
φ1 = φ2. The uniqueness of ψ for a fixed φ follows from the same argument.

We will prove the density of C(O) in L2
ac(X), the proof of the density of E(O) in Ḣ1

ac(X) is
identical. Let v ∈ L2

ac(X) be such that ⟨v, ψ⟩L2(X) = 0 for all ψ ∈ C(O). Then, since R+ is unitary
this implies that in particular

0 = ⟨v, ψ⟩L2(X) = ⟨R+(0, v),R+(φ,ψ)⟩L2(R×∂X), for all R+(φ,ψ) supported in R× O.

It follows that R+(0, v) = 0 on R× O and by Corollary 2.2, v = 0. □

Next we show that if O is a proper subset of ∂X, TO and T−1
O are unbounded.
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Lemma 2.4. Let (X̊, g) be an AHM. If O ⊂ ∂X and Γ ⊂ ∂X are nonempty open subsets such
that O ∩ Γ = ∅, and ∂X \ (O ∪ Γ) is not empty, then C(O) ∩ C(Γ) = ∅ and E(O) ∩ E(Γ) = ∅, where
C(•) and E(•), • = O,Γ are the spaces defined in (2.3).

Proof. Suppose ψ ∈ C(O) ∩ C(Γ), ψ ̸= 0, then there exist φ and φ̃ such that

R+(φ,ψ) is supported in O, and R+(φ̃, ψ) is supported in Γ,

but then R+(φ − φ̃, 0) is supported in O ∪ Γ. Since ∂X \ (O ∪ Γ) is a non-empty open subset,
Corollary 2.2 implies that φ = φ̃, but this is not possible since O ∩ Γ = ∅. □

Proposition 2.5. Let (X̊, g) be an AHM. If O ⊂ ∂X is a non-empty open subset such that
Oc = ∂X \ O ̸= ∅, then the operators TO and T−1

O are closed and unbounded.

Proof. Let Γ ⋐ Oc be an open subset. Therefore ∂X \ (O∪ Γ) ̸= ∅. If TO were defined everywhere,
then its domain C(O) = L2

ac(X) and in particular C(O) ∩ C(Γ) = C(Γ), which would contradict
Lemma 2.4.

If ψn ∈ C(O), ψn → ψ in L2
ac(X) and φn = TOψn → φ in Ḣ1

ac(X), then R+(φn, ψn) → R+(φ,ψ)
in L2(R× ∂X). Since R+(φn, ψn) are supported on R× O, then R+(φ,ψ) is supported on R× O

and therefore φ = TOψ.
This argument also applies in the case of T−1

O . □

There is an important consequence of Proposition 2.5, which implies that even though R± are
unitary, one cannot control the norm of ψ ∈ L2

ac(X) from the L2 norm of R±(0, ψ)|R×O for any
open subset O ⊂ ∂X such that ∂X \ O ̸= ∅.

Proposition 2.6. Let O ⊂ ∂X be an open subset such that Oc = ∂X \O is not empty. Then there

exist sequences ψn ∈ L2
ac(X) and φn ∈ Ḣ1

ac(X) such that

||ψn||L2(X) = 1, ||R+(0, ψn)|R×O||L2 ≤ 1

n
,

||φn||Ḣ1
ac(X) = 1, ||R+(φn, 0)|R×O||L2 ≤ 1

n
.

(2.4)

Proof. Let Γ ⋐ ∂X \O, then ∂X \ (O∪Γ) is a non-empty open subset of ∂X. Let TΓ be the linear
operator defined by (2.2). As observed above, TΓ is an unbounded operator and so there exists a
sequence ψn ∈ L2

ac(X) such that

||ψn||L2
ac(X) = 1, ||TΓψn||Ḣ1

ac(X) ≥ n.

But, on the other hand, from the definition of TΓ, R+(TΓψn, ψn) = 0 in R× O. Therefore

||R+(TΓψn, 0)|R×O||L2(R×∂X) = || − R+(0, ψn)|R×O||L2(R×∂X) ≤ ||ψn||L2
ac(X) = 1.

If one divides this equation by ||TΓψn||Ḣ1
ac(X) ≥ n, it follows that

||R+(
TΓψn

||TΓψn||L2(X)
, 0)|R×O||L2(R×∂X) ≤

||ψn||L2
ac(X)

||TΓψn||Ḣ1
ac(X)

≤ 1

n
.

Thus φn = TΓψn

||TΓψn||L2(X)
satisfies the second part of (2.4). One can use T−1

Γ to construct the

sequence ψn ∈ L2
ac(X) that satisfies (2.4). □
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One can interpret this as the lack of L2 boundary controllability from an open subset of the
boundary for radiation fields. In other words, for any open set O ⊂ ∂X such that O ̸= X, one
cannot have

||R+(0, ψ)|R×O||L2(R×∂X) ≥ C||ψ||L2(X) for all ψ ∈ L2
ac(X),

||R+(φ, 0)|R×O||L2(R×∂X) ≥ C||φ||Ḣ1
ac(X) for all φ ∈ Ḣ1

ac(X).

The necessary and sufficient geometric condition for boundary controllability from an open
subset of the boundary of a compact Riemannian manifold was established by Bardos, Lebeau and
Rauch [2] and by Burq and Gérard [6] and it says that every generalized bicharacteristic of the
wave operator intersects this set at a non-diffractive point. In our setting geodesics do not reflect
and it somehow explains why one should not expect to be able to control the wave equation from
the radiation fields restricted to an open subset of ∂X.

One can also interpret this result as

Corollary 2.7. Let (X̊, g) be an AHM. Let O,Γ ⋐ ∂X be disjoint open subsets. The operator SOΓ
defined in (1.8) is injective, has dense range, but it is not onto.

Proof. Suppose F ∈ L2(R × ∂X) is supported in R × Γ. Let (φ,ψ) ∈ Eac(X) be such that F =
R−(φ,ψ). Since F is supported in R× Γ, so is F ∗(s, y) = F (−s, y). But we know that F ∗(s, y) =
R+(−φ,ψ) and therefore, since Γ and O are disjoint, R+(−φ,ψ)|R×O = 0. On the other hand
SOΓF = R+(φ,ψ)|R×O, and hence SOΓF = 2R+(0, ψ)|R×O. If SOΓF = 0, it would follow that
R+(0, ψ)|R×O = 0, and in view of Corollary 2.2, ψ = 0. But then F = R−(φ, 0) is supported in
R× Γ, and hence again by Corollary 2.2, F = 0. So SOΓ is injective.

Suppose there exists G = R+(f, h) ∈ L2(R× O) such that

⟨G, SOΓF ⟩L2(R×O) = 0 for all F ∈ L2(R× Γ).

If F = R+(φ,ψ), then
1
2SOΓF

∗ = R+(0, ψ)|R×O. Therefore,

⟨R+(f, h),R+(0, ψ)⟩L2(R×O) = ⟨ψ, h⟩L2(X) = 0 for all ψ ∈ C(O).

Since C(O) is dense, this implies that h = 0. But then G = R+(f, 0) is supported in R × O. But
we know from Corollary 2.2 this implies that G = 0. Therefore the range of SOΓ is dense.

If SOΓ were onto, then it would be invertible, by the open mapping theorem. This would imply
that for every F ∈ L2(R× Γ),

||SOΓF ||L2(R×∂X) = ||2R+(0, ψ)|R×O||L2(R×O) ≥ C||F ||L2(R×∂X) ≥ C||ψ||.

So in particular,

||2R+(0, ψ)|R×∂X ||L2(R×O) ≥ C||ψ||, for all ψ ∈ C(Γ).

Since C(Γ) is dense in L2(X). This would hold for every ψ ∈ L2
ac(X), which would contradict

Proposition 2.6. □
Next we analyze the adjoints of TO and T−1

O .

Proposition 2.8. Let (X̊, g) be an AHM and let O ⊂ ∂X be such that Oc = ∂X \O is not empty.
Then T ∗

O = −T−1
Oc and T−1∗

O = −TOc .

Proof. Let f ∈ Ḣ1
ac(X) be such that there exists f∗ ∈ L2

ac(X) such that

⟨TOψ, f⟩Ḣ1
ac(X) = ⟨ψ, f∗⟩L2(X), for all ψ ∈ C(O).
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But since R+ is an isometry, and by definition of TO, we arrive at two identities:

⟨ψ, f∗⟩L2
ac(X) = ⟨R+(TOψ,ψ),R+(0, f

∗)⟩L2(R×∂X),

⟨TOψ, f⟩Ḣ1
ac(X) = ⟨R+(TOψ,ψ),R+(f, 0)⟩L2(R×∂X).

So we conclude that

⟨R+(TOψ,ψ),R+(f,−f∗)⟩ = 0 for all ψ ∈ C(O).

This of course implies that R+(f,−f∗) = 0 in R × O, and therefore, R+(f,−f∗) is supported in
R× Oc. By definition, it follows that f ∈ E(Oc), f∗ ∈ C(Oc) and f∗ = −T−1

Oc f.
□

The Proposition 2.10 below reduces the proof of Theorem 1.1 to an application of the result
of the second author [41] which states that (X̊, g) is determined by S modulo isometries of (X, g)
that fix ∂X. In the proof of Proposition 2.10 we need the following well known result due to Von
Neumann, see for example section 118 of [40]:

Lemma 2.9. Let H1 and H2 be Banach spaces and let T : H1 −→ H2 be a densely defined closed
operator with domain D(T ). Let T ∗ denote the adjoint of T and let D(T ∗) denote the domain of
T ∗. Then the subspace U = {h ∈ D(T ) : Th ∈ D(T ∗)} is dense in H1 and T ∗T : H1 −→ H1 is
self-adjoint. Moreover B = (I + T ∗T )−1 : H1 −→ H1 is a bounded operator and ||B|| ≤ 1.

If we apply this Lemma to TO : L2
ac(X) −→ Ḣ1

ac(X), where O ⊂ ∂X is open and ∂X \ O ̸= ∅
and if we define v = (I + T ∗

OTO)
−1ψ, then, ψ = (I + T ∗

OTO)v and one can use this to write

R+(0, ψ) = R+(TOv, v)− R+(TOv,−T ∗
OTOv).(2.5)

By definition R+(TOv, v) is supported in R × O and since T ∗
O = −T−1

Oc , R+(−TOv, T ∗
OTOv) is sup-

ported in R × O
c
. This shows that E(O) ∩ E(Oc) contains the set {TOv, v ∈ L2

ac(X)}, which
according to Lemma 2.9 is dense in Ḣ1

ac(X). This is in contrast with Lemma 2.4 which shows that
E(O) ∩ E(Γ) = ∅, provided O ∪ Γ ̸= ∂X.

Proposition 2.10. Let (X̊, g) be an AHM. Let O ⊂ ∂X be an open subset such that Oc = ∂X \O
is not empty and assume that O ∩ Oc ̸= ∅. Let SOcO be the scattering operator with sources on
O and data on Oc defined in (1.8). Then SOcO determines SOOc , SOcOc and SOO. In particular it
determines S = SOO + SOcO + SOOc + SOcOc .

Proof. First we check that SOcO determines SOOc . Let F = R+(f, h) be supported in R×O and let

G = R+(φ,ψ) be supported in R× O
c
. Then F ∗ = R−(−f, h) and G∗ = R−(−φ,ψ) and so

SOcOF
∗ = 2R+(0, h)|R×O

c and SOOcG∗ = 2R+(0, ψ)|R×O.

Therefore,

⟨SOcOF
∗, G⟩L2(R×∂X) = 2⟨h, ψ⟩L2(X),

⟨SOOcG∗, F ⟩L2(R×∂X) = 2⟨ψ, h⟩L2(X),

and so

⟨SOcOF
∗, G⟩L2(R×∂X) = ⟨SOOcG∗, F ⟩L2(R×∂X) = ⟨F, SOOcG∗⟩L2(R×∂X),

and since F and G are arbitrary, this proves our first claim.
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Let G(s, y) = R+(φ,ψ)(s, y) be supported in R×O
c
and let F = 1

2SOOcG∗ = R+(0, ψ)|R×O. We

apply Lemma 2.9 to the operator TO : L2
ac(X) −→ Ḣ1

ac(X), and let ψ be as in (2.5). Therefore

F = R+(0, ψ)|R×O = R+(TOv, v) and R+(0, ψ)|R×O
c = R+(−TOv, T ∗

OTOv).(2.6)

We will show that SOcO and SOOc determine R+(0, ψ)|R×Oc = R+(−TOv, T ∗
OTOv) for the class of

G ∈ L2
ac(X) such that G = R+(φ,ψ) ∈ C∞(R × O

c
) ∩ L2(R × O

c
), with Ĝ(λ, y) ∈ C∞(∂X),

for every λ ∈ R, where Ĝ(λ, y) denotes the Fourier transform of G(s, y) in the variable s. This

family includes G ∈ C∞
0 (R × Oc) and therefore is dense in L2(R × O

c
). This would show that

given G in this class, SOOc and SOcO determine R+(0, ψ)|R×O
c = 1

2(G + (SG∗|R×O
c)). Therefore

SG∗|R×O
c = SOcOcG is determined for this class of G, and by density for all G ∈ L2(R×O

c
). This

argument of course also shows that SOOc determines SOO. So from SOOc and SOcO we determine
SOO and SOcOc . This would prove the Proposition. Now we need to prove our claim.

Let G ∈ C∞(R × ∂X) ∩ L2(R × O
c
) and suppose that Ĝ(λ, y) ∈ C∞(∂X) for each λ. Let

F = 1
2SOOcG∗. We want to find the maximum of the quantity∣∣∣∣⟨12SOcOF

∗,H⟩L2(R×O
c
)

∣∣∣∣(2.7)

for functions H(s, y) that satisfy the following properties:

P.1. H(s, y) is supported in R× O
c
.

P.2. Ĥ(λ, y) ∈ C∞(R× O
c
).

P.3. Ĥ(λ, y) = −F̂ (λ, y) for at least one value of λ, and one y ∈ O ∩ O
c
.

Here we are using properties of the stationary scattering operator, i.e. the scattering matrix which
is defined by conjugating S with the Fourier transform in the s-variable A = FSF−1f, where F

denotes the Fourier transform in the variable s. For fixed λ, A is a pseudodifferential operator [28],

and since Ĝ(λ) is C∞, therefore so is F̂ . So property P.3. makes sense.
We claim that the maximum of (2.7) in the class of functions H satisfying P.1, P.2 and P.3 is

achieved for the function H0(s, y) = −R+(0, ψ)|R×Oc .
As above, let v ∈ L2

ac(X) be such that v = (I+T ∗
OTO)ψ, and so in view of (2.6) F = R+(TOv, v).

If H = R+(f, h) ∈ L2(R× O
c
), then

⟨1
2
SOcOF

∗,H⟩L2(R×Oc) = ⟨R+(−TOv, 0),R+(f, h)⟩L2(R×Oc) = −⟨TOv, f⟩H1(X).

Therefore, by the Cauchy-Schwartz Theorem,

|⟨1
2
SOcOF

∗,H⟩L2(R×Oc)| ≤ ||TOv||Ḣ1
ac(X)||f ||Ḣ1

ac(X),

and the equality occurs if and only if f = κTOv, κ ̸= 0. In this case, since T ∗
O = −T−1

Oc , it follows

that h = T−1
Oc f = −κT ∗

OTOv and hence

H = R+(f, h) = κR+(TOv,−T ∗
OTOv),

We deduce from (2.6) that

H = −κR+(−TOv, T ∗
OTOv) = −κR+(0, ψ)|R×O

c .

In view of property P.3, κ = 1. This proves that the maximum of (2.7) for a fixed G ∈ C∞(R ×
∂X)∩L2(R×Oc), Ĝ(λ, y) ∈ C∞(∂X) and for H in the class of functions satisfying P.1, P.2 and P.3,
is achieved if and only if H = −R+(0, ψ)|R×O

c . This uniquely determines R+(0, ψ)|R×O
c , proves

our second claim and ends the proof of the Proposition. □
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Comm. Partial Differential Equations 20, no. 5–6, (1995), 855–884.
[44] G. Uhlmann. Inverse problems: seeing the unseen. Bull. Math. Sci. 4 (2014), no. 2, 209–279.
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