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through the appearance of evolution equations.
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1 Introduction

In reflection seismology one places point sources and point receivers on or near the earth’s
surface. Each source generates acoustic waves in the subsurface, that are reflected where the
medium properties vary discontinuously. (We allow both passive sources, in global earth ap-
plications, and active sources, in exploration seismology.) The recorded reflections that can be
observed at the receivers are used to image these discontinuities or reflectors.

Seismic reflection data, in the single scattering or Born approximation, are commonly modelled
by an integral operator mapping a medium contrast (containing reflectors), given a background
medium (velocity model), to a wavefield (containing reflections). Imaging of seismic reflection
data is then described by the adjoint of this integral operator with a given background medium.
In exploration seismology, the process of imaging is also referred to as migration, while the pro-
cess of modelling data from an image is referred to as demigration. In applications, however, the
background medium may not be accurately known, and hence it becomes desirable to develop
a family of modelling and imaging operators for a set of background media. Also, the data may
have been acquired for one particular acquisition geometry, while it can become desirable to
generate the data for different geometries, requiring the development of an associated family of
imaging and modelling operators. The latter can be viewed as a method of data regularization.

In present day applications, the volume of data can be massive, whence it becomes advanta-
geous to circumvent the repeated imaging or migration under varying background media or
the repeated modelling or demigration under varying acquisition geometries. This leads to the
introduction of the notion of seismic continuation: The continuation of an image following a
path of background media without remigrating the data, or the continuation of data following a
path of acquisition geometries without demigrating an image. The applications encompass the
exploration of discontinuities in Earth’s interior.

The notion of seismic continuation has been around for many years. Fomel introduced the con-
cept of data continuation in source-receiver offset in [1] 3 and the concept of image continuation
with velocity in [3]; this continuation assumed constant background media. Data continuation
allows, under certain conditions, to obtain zero-offset (coinciding sources and receivers) data
can be obtained from finite-offset data, as in the so-called data transformation to zero offset
(TZO) obtained after dip moveout (DMO) (see, for example, also [4,5]). An approach simi-
lar to image continuation is residual migration (see [6–8]). The concept of image continuation
in varying background media was further developed by Hubral, Tygel and Schleicher [9,10],
Fomel [11], Iversen [12,13] and Adler [14]. In the process of image continuation, one can also
track the impulse response of the imaging operator; in connection with this, Iversen [15] intro-

3 in [2] the authors erroneously attributed the equation generating this continuation, and the underlying
geometrical construction, to S.V. Goldin.
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duced the notion of isochron rays. Residual velocity DMO introduced by Alkhalifah and De
Hoop [16,17] yields TZO in conjunction with continuation following a path of anisotropic ve-
locity models and is reminiscent of both these concepts. Continuation in background velocity
can be exploited in developing a method for determining it. For the case of image continu-
ation, consistent with terminology from the seismic literature, we refer to such a method as
‘continuation-based’ migration velocity analysis. This idea was explored by Liu and Bleis-
tein [18] and Meng and Bleistein [19,20].

The above mentioned, sometimes seemingly different concepts, were developed either for con-
stant background media or under the condition of absence of caustics. In a more general setting
the theory of continuation and a question about its realization by GRT integral operators or
partial differential equations was considered by Goldin [21–23] in the context of contact ge-
ometry. His work has inspired us to develop the foundation of, and a common, comprehensive,
framework for seismic continuation while extending the earlier approaches to allow for the
formation of caustics. Furthermore, we establish that the propagation of singularities by con-
tinuation can always be expressed in terms of a canonical transformation, while we address the
question whether continuation can be described by a hyperbolic evolution system. Indeed, we
introduce necessary and sufficient conditions for the notion of continuation to be well-defined,
and show the existence of an evolution equation that dynamically generates the continuation.
The principal symbol of this equation defines a (global) Hamiltonian, the flow of which defines
continuation bicharacteristics and describes the continuation of singularities.

Our main analytical tools are taken from microlocal analysis, see e.g. [24–27]. Modelling and
imaging of seismic reflection data can be mathematically described in terms of Fourier integral
operators (FIOs) [28–32]. The basic properties of FIOs are summarized in Section 2. The class
of FIOs the canonical relations of which are graphs, and which are invertible, forms the key
building block of seismic continuation theory. For the modelling (and imaging) operators, in the
presence of caustics, to be contained in this class, these operators need to be extended (Stolk
and De Hoop [32,33]).

In Section 3 we develop a theory of continuation. For this we introduce smooth one-parameter
families of FIOs in the above mentioned class. Then we prove that such a family can be identi-
fied as solution operators to hyperbolic pseudodifferential evolution equations. (The parameter
becomes an evolution parameter – it imitates the time in wave propagation.) Thus, continua-
tion operators propagate singularities along the bicharacteristics that solve a Hamilton system,
in which the Hamiltonian is derived from the principal symbol of the evolution operator. (The
bicharacteristics are also curves in phase space determined by the canonical transformation.)
Continuation operators form a class of invertible FIOs of order 0, the canonical relations of
which are graphs. This class has a principal fiber bundle, and Lie group, structure. The base
space is formed by the canonical transformations, which reflects the central role that the geom-
etry plays in seismic continuation. Continuation can then be formalized as a curve in a section of
this principal fiber bundle. Canonical transformations are identifiable with contact transforma-
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tions, which have been used in an alternative description of propagation of singularities through
the notion of contact elements (Goldin [22]).

In Section 4 we present three interconnected approaches to the construction continuation. In
Section 4.1, we consider the approach based on the composition of canonical relations and am-
plitudes. In Section 4.2 we establish the explicit relation between the phase function in the ker-
nel representation of the original FIO, the generating function corresponding with its canonical
graph, and the pseudodifferential operator symbol appearing in the above mentioned evolution
equation. This relation can be used as a construction in applications. The Hamiltonian that gen-
erates the continuation bicharacteristics is expressed in terms of this generating function. The
continuation bicharacteristics can also be constructed directly from the evolution of fronts us-
ing the phase function. Essentially, the geometry associated to seismic continuation has been
inferred from the geometry of migration operators. In Section 4.3 we show how to obtain an
alternative geometrical description of the continuation providing continuation bicharacteristics
without explicit use of the Hamiltonian. This is done by composing the phases in the kernel rep-
resentations of the FIOs making up the continuation operator and differentiating with respect
to parameter value. In applications, often, a vector field tangent to the Hamiltonian flow can be
directly constructed; using Poincaré’s lemma, a global Hamiltonian can be obtained from such
a vector field.

In Sections 5 and 6 we conclude with showing examples of continuation in reflection seismol-
ogy. The examples in Section 5 are derived from imaging with the generalized Radon transform
(encompassing Kirchhoff migration). We give explicit expressions for phase functions and gen-
erating functions associated to the kernels of the relevant FIOs. In Section 5.3, we demonstrate
how earlier concepts are contained in our theory. In Section 5.1 we discuss the original presen-
tation (derived from the phase function) of image continuation under common-offset Kirchhoff
migration in the absence of caustics, and specialize to constant background media. One of the
motivations for developing the theory presented in this paper was indeed to establish the connec-
tion between continuation as a composition of migration with demigration and the construction
of ‘velocity rays’ to describe the propagation of singularities under continuation (Section 5.3);
a second motivation was to bring the system of ordinary differential equations for continuation
bicharacteristics in Hamilton form (Sections 5.1 and 5.2). A third motivation was to establish
the importance of canonical transformations (preserving the symplectic form) generating con-
tinuation operators.

In Section 6, we discuss the notion of image gathers and their velocity continuation in the pres-
ence of caustics. We show an example, revealing the potential of the comprehensive theory pre-
sented here (Section 4). Velocity continuation of image gathers can directly be exploited in re-
flection tomography, the problem of determining the background velocity, see [34,35,32,36,37].
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2 Representations of ‘migration’ and ‘demigration’ operators

We formulate modelling and imaging of seismic reflection data within the general framework
of linear integral operators. Let y denote a point in an acquisition manifold Y on which data
u are defined. Let x denote a point in the subsurface manifold X on which a contrast v or an
image w is defined. We let nX = dim X and nY = dim Y ; naturally, nY ≥ nX . Typically, y
consists of a combination of source and receiver points contained in ∂X , and time. We consider
the operator pair F, F ∗, where F ∗ is the adjoint of F , that is 〈u, Fv〉Y = 〈F ∗u, v〉X . For any
data u, there exists a v ∈ E ′(X) such that

u = Fv. (1)

In general, u ∈ D′(Y ). Moreover, w in

w = F ∗u, (2)

is identified as the image.

We assume that F is a Fourier integral operator (FIO) – this assumption is commonly satisfied
in seismic data applications [28–32]. Then F ∗ is an FIO as well. The action of F , microlocally,
can be written in the form

(Fv)(y) =
∫

A(y, x)v(x) dx, (3)

A(y, x) =
∫

RN
a(y, x, θ) exp[iφ(y, x, θ)] dθ, (4)

in which θ = (θ1, . . . , θN) are so-called phase variables. Here, φ is a phase function: φ is real-
valued, φ ∈ C∞(Y × X × (RN\0)), φ is positive-homogeneous of degree one in θ, and φ
does not have critical points for θ (= 0, that is, ∂(y,x)∂θφ(y, x, θ) (= 0 for (y, x) ∈ Y × X and
θ ∈ RN\0.

Furthermore, a is an amplitude of orderm, that is a ∈ Sm(Y ×X, RN), which has the property:
To every compact subset K ⊂ Y × X and multi-indices α, β there is a constant Cα,β(K) such
that

|∂α
θ ∂β

(y,x)a(y, x, θ)| ≤ Cα,β(K)〈θ〉m−ρ|α|+δ|β|, 〈θ〉 = (1 + ‖θ‖2)1/2,

for all (y, x) ∈ K and θ ∈ RN\0. (5)

(With these estimates, and φ being a phase function, the integral representation for A(y, x) in
(4) can be regularized.) We restrict our analysis to the case ρ = 1, δ = 0; amplitudes of orderm
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of this type define the class of FIOs IM(m)(X) (details on the orderM(m)may be found in [24,
p. 41]). The operator F extends to a continuous linear map F : E ′(X) → D′(Y ). The operator
F propagates singularities. Microlocally, this is determined by the phase function φ, and can be
understood as follows. The stationary point set of the phase function is given by

Sφ = {(y, x, θ) | ∂θφ(y, x, θ) = 0}. (6)

The phase function will be assumed to be non-degenerate, that is, the rank of the Hessian matrix,
(

d(y,x,θ)
∂φ

∂θ

)

is maximal (that is, N ).

Then Sφ is a (nY +nX)- dimensional submanifold of Y ×X× (RN\0). Moreover, Sφ is a conic
subset of Y ×X × (RN\0), i.e., if (y0, x0, θ0) ∈ Sφ then (y0, x0, tθ0) ∈ Sφ for any t > 0.

In view of the homogeneity of φ, we have φ = θ ·∂θφ (Euler’s theorem), so that φ(y, x, θ) = 0 if
(y, x, θ) ∈ Sφ. Let T ∗Y \0 denote the acquisition phase space and T ∗X\0 denote the subsurface
phase space. The stationary point set can be embedded in T ∗Y \0× T ∗X\0:

Sφ → Λ, (y, x, θ) → (y, ∂yφ; x,−∂xφ) is an immersion, (7)
Λ = {(y, ∂yφ; x,−∂xφ) | ∂θφ = 0} . (8)

Λ is (locally) a conic Lagrangian submanifold of T ∗(Y × X)\0, and is called the canonical
relation of operator F ; we sometimes write Λ = ΛF to indicate its association to F . It is imme-
diate that ΛF ∗

= (ΛF )∗ = {(x, ξ; y, η) | (y, η; x, ξ) ∈ ΛF}. The canonical relation describes the
propagation of singularities in (1): ifWF denotes the wavefront set of a distribution,

WF(u) ⊆ ΛF ◦WF(w)

= {(y, η) | (y, η; x, ξ) ∈ ΛF and (x, ξ) ∈ WF(w) for some (x, ξ) ∈ T ∗X\0}, u = Fw.

Identifying reflections in WF(u) (η defines ‘slopes’) and reflectors in WF(w) or WF(v) (ξ
defines ‘dip’), following seismic terminology, we refer to F ∗ as ‘migration’; if F acts on an
image w, we speak of F as ‘demigration’ instead of modelling.

The kernel A in (4) is a Lagrangian distribution. Its singular support is also determined by the
phase function φ: Let π : Y × X × (RN\0) → Y × X denote the natural projection, then
sing supp A ⊂ πSφ. Viewing sing supp A at a fixed x = x0 yields the physical notion of a
front:W(x0) = {y ∈ Y | (y, x0) ∈ πSφ}. In the reflection seismology literature, one refers to
such a front as the (geometrical) ‘impulse response’ and ‘special surfaces’, see Goldin [22]. In
case of modelling or demigration, the fronts are also called ‘diffraction surfaces’, while in the
case of imaging these fronts are also called ‘isochrons’.
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In general, Λ admits local coordinates (yI′ , ηJ ′ , xI , ξJ)with (I ′∪I)∪(J ′∪J) = {1, 2, . . . , nY +
nX} together with the existence of a generating function S = S(yI′ , ηJ ′ , xI , ξJ) such that

xJ =
∂S

∂ξJ
, ξI = − ∂S

∂xI
,

yJ ′ =
∂S

∂ηJ ′
, ηI′ =

∂S

∂yI′

[26, Thm. 21.2.18]. Then the phase variables in (4) can be locally chosen to be θ = (ηJ ′ , ξJ),
whence the phase function attains the form

φ(y, x, ηJ ′ , ξJ) = S(yI′ , ηJ ′ , xI , ξJ)− 〈ηJ ′ , yJ ′〉 − 〈ξJ , xJ〉. (9)

Let F1 and F2 both be FIOs. F2 maps functions onX to functions on Y , and F1 maps functions
on Y to functions on Z. The composition F1F2 is well defined if the intersection of ΛF1 × ΛF2

with T ∗Z\0×diag(T ∗Y \0)×T ∗X\0 is transversal [25, Ch. VIII, p.464]. The canonical relation
of the composition is given by ΛF1 ◦ ΛF2 , following

ΛF1 × ΛF2 ∩ T ∗Z\0× diag(T ∗Y \0)× T ∗X\0

↓ projection

ΛF1 ◦ ΛF2 ⊂ T ∗Z\0× T ∗X\0

(10)

We now develop the necessary preparation of continuation theory, which leads to a certain class
of allowable FIOs. To begin with, we need to assume that nY = nX .

Graph assumption. The canonical relation (cf. (8)) is a graph, that is, there exists a transfor-
mation Σ : T ∗X → T ∗Y such that

Λ = {(Σ(x, ξ); x, ξ)}. (11)

The transformation Σ will be a canonical transformation, that is, it preserves the symplectic
form. (If Σ is the identity, ΛF ⊂ diag T ∗X\0, the associated operator will simply be pseudod-
ifferential.)

Subject to the graph assumption, the kernel of an FIO F admits a representation (cf. (4), (9)
with |I ′| = nY , |J | = nX , i.e. θ = ξ)

A(y, x) =
∫

a(y, ξ) exp[iφ(y, x, ξ)] dξ, (12)

φ(y, x, ξ) = S(y, ξ)− 〈ξ, x〉, (13)
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[27, Proposition 25.3.3] where S is homogeneous of degree 1 in ξ; this representation is close to
the one for a pseudodifferential operator kernel (for which S(y, ξ) = 〈ξ, y〉, so that φ(y, x, ξ) =
〈ξ, y − x〉). In (12) we have reduced the amplitude a(y, x, ξ) to a(y, ξ) by standard methods.
Up to principal parts, a0(y, ξ) = a(y, ∂ξS, ξ). By an iteration argument [27, p.27] the amplitude
a(y, ξ) is obtained, leading to a kernel equivalent to the original operator kernel modulo C∞.

The principal symbol of F with an integral kernel (12) is defined to be

σ0(F )(y, ξ) = a(y, ∂ξS(y, ξ), ξ) |det ∂y∂ξS(y, ξ)|−
1
2 . (14)

The canonical relation attains the form (cf. (8)-(9))

Λ = {(y, ∂yS; ∂ξS, ξ)}. (15)

(Indeed, a canonical transformation (cf. (11)) provides S, which generates a phase function
as in (13)). In conjunction with this, the matrix ∂ξ∂yS is non-singular. Naturally, (x, ξ) form
coordinates on Λ as well. How to change between representations of the type (4) and (12)-(13),
with different phase variables, is discussed in Appendix A.

3 Continuation theory

We begin with introducing and describing one-parameter families of operators parameterized
by α, where α is taking values in an interval, I = [α1, α2] ⊂ R.

DEFINITION 1 For each α ∈ I, let F (α) : E ′(X) −→ D′(Y ) be a properly supported FIO
of order m associated to the graph of a canonical transformation Σα. We say that F (α) is a
smooth, or C∞, family of FIOs if the following condition holds:

for all f ∈ C∞
0 (X), F (α)f ∈ C∞(I × Y ). (16)

We define the operator ∂αF (α) as

(∂αF (α))f = ∂α(F (α)f). (17)

We assume that

∂αF (α) is an FIO of order m + 1, associated to the graph of Σα. (18)

In terms of oscillatory integral representations, one characterizes a C∞ family of FIOs as fol-
lows. Let F (α), α ∈ I , be such a C∞ one-parameter family of FIOs of order zero associated
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to the graphs of canonical transformations Σα as above. For each α0 ∈ I and (x0, ξ0, y0, η0)
on the graph of Σα0 there exists a neighborhood E ⊂ I of α0 and conic neighborhoods, Γ, of
(x0, ξ0, y0, η0) such that the Schwartz kernel, A = AF (α), of F (α) is, microlocally, given by
(12)-(13) with a = a(α, y, ξ) and φ = φ(α, y, x, ξ). Indeed, because

∂αAF (α)(y, x) =
∫

RN
exp[iφ(α, y, x, θ)] (i(∂αφ) a(α, y, x, θ) + ∂αa(α, y, x, θ)) dθ, (19)

it follows that ∂αF (α) is an FIO of order one associated to the graph of Σα.

THEOREM 2 Let F (α), α ∈ I be a C∞ family of properly supported invertible FIOs of order
m. Then there exists a C∞ family of pseudodifferential operators, P (α) = P (α; y, Dy) ∈
Ψ1(Y ), such that

(∂α − iP (α)) F (α) = 0. (20)

Proof : For a smooth family of invertible FIOs F (α) we know that ∂αF (α) is an FIO of order
m + 1 associated to the graph of Σα. Then by the calculus of FIOs, the operator

iP (α) = ∂αF (α)F (α)−1 ∈ Ψ1(Y ). (21)

Then it is immediate that (20) is satisfied.

Conversely,

THEOREM 3 Let α0 ∈ I and suppose that F (α0) is a properly supported invertible FIO of
order 0, associated to the canonical transformation, Σα0 . Let P (α) ∈ Ψ1(Y ) be a C∞ family of
pseudodifferential operators with principal symbols p1(α). Let F (α) be a family of operators
satisfying equation (20). Then F (α) is a C∞ family of FIOs associated to Σα, which is the
canonical transformation whose graph is obtained from Σα0 by the flow of Hp1(α). That is,

Σα = exp
(
(α− α0)Hp1(α)

)
◦ Σα0 .

The proof of this result coincides with the proof of [38, Theorem 1.1].

DEFINITION 4 We reserve the notation C for the class of properly supported invertible FIOs
of order 0 that satisfy the graph assumption (then the Σ are diffeomorphisms).

The class C is an infinite-dimensional manifold with the structure of a principal fibre bundle:
The base manifold consists of all canonical transformations, the fibres are isomorphic to the
algebra of pseudodifferential operators of order 0, while the structure group is that same alge-
bra of pseudodifferential operators. In fact, the class C admits an infinite-dimensional Lie group
structure [39,40]. Due to the group property, operators F1 and F2 in C compose transversally,
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and F1F2 is an FIO in C again. This structure is implicit in the original treatment and character-
ization of seismic data processing by Goldin.

Motivated by Theorems 2 and 3, we introduce the notion of continuation operator:

C(α,α0) = F (α)F (α0)
−1, (22)

where the F (α) are properly supported invertible FIOs for α ∈ I . Thus, for fixed α0, C(α,α0)

defines a one-parameter family of FIOs in C (cf. Definition 4), satisfying the semi-group prop-
erty,

C(α,α0) = C(α,α′)C(α′,α0), α0 ≤ α′ ≤ α.

Evolution equation. Theorem 2 guarantees that C(α,α0) is the solution operator to a Cauchy
problem (for a hyperbolic pseudodifferential evolution equation of the type (20)):

(∂α − iP (α)) w(α, y) = 0, w(α, y)|α=α0 = w(α0, y). (23)

Thus C(α,α0) can be called a propagator.

Continuation bicharacteristics. The canonical relation of C(α,α0) is denoted by Λ(α,α0); we
denote the canonical transformation that generates Λ(α,α0) ⊂ T ∗Y \0× T ∗Y \0 by Σ(α,α0), with
Σ(α0,α0) = Id. The propagation of singularities by C(α,α0) is then described by

Λ(α,α0) ◦WF(u(α0, .)) = {Σ(α,α0)(y0, η0) | (y0, η0) ∈ WF(u(α0, .))},

through curves on T ∗Y \0.

On the other hand, evolution equation (20) propagates singularities in accordance with the
Hamilton flow with Hamiltonian

H(α, y, ηα, η) = ηα − p1(α, y, η), (24)

where p1 denotes the principal symbol of P ; p1 is homogeneous of degree 1 in η. The Hamilton
system is

dy

dα
= ∂ηH = −∂ηp1,

dη

dα
= −∂yH = ∂yp1, (25)

dηα

dα
= −∂αH = ∂αp1, (26)

supplemented with initial conditions y(α0) = y0, η(α0) = η0, and ηα(α0) = ηα0. In general,
the Hamiltonian will be anisotropic even when one restricts to isotropic background media. In
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view of the homogeneity in η we have the usual relation between (anisotropic) group velocity
and slowness vectors, η · dy

dα = −ηα.

Equation (25) does not depend on ηα and thus may be solved independently. Solutions to (25)
describe the canonical transformation generating C(α,α0) for each α ∈ I fixed (cf. [41, sec-
tion 5.3], see also [27, Theorem 21.3.4]). We refer to the solutions y(α, y0, η0), η(α, y0, η0),
determining Σ(α,α0), that is, Σ(α,α0)(y0, η0) = (y(α, y0, η0), η(α, y0, η0)), as the continuation
bicharacteristics.

Remark. With F being invertible, the graph assumption also holds for F ∗; thus, Λ∗, and Λ,
admit coordinates (x, η). To suppress the detailed account of amplitudes, without loss of gen-
erality, we can assume that the FIOs are unitary, that is F ∗ = F−1. Indeed, the normal op-
erator N = F ∗F is pseudodifferential, and, by standard arguments, the polar decomposition
F = F̃ N1/2 provides F̃ with F̃ ∗ = F̃−1; thus our further analysis applies to F̃ . Moreover,
the above consideration can be generalized elliptic operators, F ; then the continuation operator
C(α,α0) becomes elliptic as well.

4 Construction of continuation

In seismic applications Y andX are often different spaces, with different physical roles. As be-
fore, we will refer to F as demigration (modelling) and to F ∗ as migration (imaging) operators.
(In the presence of caustics, one requires an extension [32] to ensure that F belongs to C. Orig-
inally, the dimension of Y exceeds the dimension of X , while it is assumed that the projection
of the canonical relation of F into T ∗Y \0 is an injection.) In general, the amplitude and phase
of F are determined by a model m ∈ M , where M stands for a model (such as background
velocity) or configuration (such as source-receiver acquisition) space. A curve,m[α], inM thus
defines a one-parameter family of demigration FIOs F (α) ∈ C with amplitudes a = a(α; y, ξ)
and phase functions φ = φ(α; y, x, ξ), cf. (12)-(13). We denote the canonical relation of F (α)
by Λα and the one of F (α)∗ by Λ∗α.

Continuation operators C(α,α0) defined in (22) belong to C with Y = X . Examples are im-
age continuation following a path of background media (of which all but one are ‘incorrect’),
and data continuation with source-receiver offset. Suppose that (i) given data u(y), an image,
w(x) = w(α0, x), has been obtained in a model parameterized by α0, or (ii) given an image
w(x), data u(y) = u(α0, y) have been obtained in a model parameterized by α0, or (iii) data
u(y) = u(α0, y) have been acquired in an acquisition geometry parameterized by α0. Suppose
that models or acquisition geometries of interest can be connected along a path parameterized
by α taking values in an interval, I = [α1, α2] ⊂ R, containing α0. The framework developed
in the previous section can be applied to directly ‘continuing’ w(α0, x) or u(α0, y) along such
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a path; we arrive at continuation operators, CY , CX , such that

u(α, y) = (CY
(α,α0)u(α0, .))(y), w(α, x) = (CX

(α,α0)w(α0, .))(x), (27)

with α1 ≤ α0 ≤ α ≤ α2. Then composition (22) can be specified for these two cases:

CY
(α,α0) = F (α) F (α0)

∗, CX
(α,α0) = F (α)∗F (α0). (28)

In the remainder of the paper, we focus on CX
(α,α0).

In the previous section we have formulated (i) sufficient and necessary conditions to be able to
develop a continuation theory, (ii) proved the existence of hyperbolic evolution equations that
describe the process of continuation. This formulation naturally brings us to associated notions
of global Hamiltonians and the existence of continuation bicharacteristics (cf. (23)-(25)).

A specific task in seismic applications is the construction of evolution equations of the type
(20) for given F (α). We note that in special cases corresponding with simple media the pseu-
dodifferential equation can be written in partial differential form (see Goldin [23] for such
constructions using contact geometry). To obtain P (α) may require numerical computations.
However, the computational gain in continuation is achieved by avoiding the re-application of
F ∗ to all the data.

We discuss three methods of construction. The first approach (method 1) comprises the straight-
forward composition of ‘migration’ and ‘demigration’ operators through their canonical rela-
tions. In the second approach (method 2) we derive the evolution operator in (20) from the phase
function of ‘migration’ operator F (α)∗. In the third approach (method 3), we obtain the (princi-
pal part of the) evolution operator in (20) from the combined phase function of the composition
F (α)∗F (α) (which may be viewed as a generalization of considerations in [14]).

4.1 Method 1. Continuation by composition

The canonical relation for the continuation operator CX
(α,α0) (cf. (28)) follows the composition

(cf. (10)) as the graph condition is satisfied for both F (α) and F (α)∗:

ΛCX

(α,α0) = Λ∗α ◦ Λα0 = {(x, ξ; x0, ξ0) | (x, ξ; y, η) ∈ Λ∗α
and (y, η; x0, ξ0) ∈ Λα0 for some (y, η) ∈ T ∗Y \0}. (29)

Note that the amplitude can be obtained following the corresponding composition calculus.
Also note that canonical relations ΛCX

(α,α0), Λ∗α and Λα0 are associated with canonical transfor-
mations ΣC

(α,α0), ΣF ∗
α and ΣF

α0
correspondingly (cf. 11). The curves defined by the canonical
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transformation determine a vector field on T (T ∗X\0):

Vα(x, ξ) =
d

dα
ΣC

(α,α0)(x0, ξ0) =
d

dα
ΣF ∗

α (y0, η0), (30)

where (x, ξ) = ΣC
(α,α0)(x0, ξ0), (y0, η0) = ΣF

α0
(x0, ξ0) and we used that the canonical transfor-

mation ΣF
α0
(corresponding to Λα0) does not depend on α. (Right equality in (30) manifests the

fact that vector field for continuation operator can be obtained applying perturbation argument
to a ’migration’ operator F (α)∗ (thus getting d

dαΣF ∗
α ).) Here Vα := (V1, V2) is the tangent vector

to the curve (x(α, x0, ξ0), ξ(α, x0, ξ0)) = ΣC
(α,α0)(x0, ξ0) in T ∗X ,

dx

dα
= V1(α, x, ξ),

dξ

dα
= V2(α, x, ξ). (31)

If ω is the canonical symplectic form on T ∗X\0, then, by definition,

Σ∗(α,α0)ω = ω, (32)

where Σ∗(α,α0) stands for a pull-back of ω by transformation ΣC
(α,α0). Differentiating (32), we get

[42]

0 =
d

dα
Σ∗(α,α0)ω(·) = Σ∗(α,α0) (dω(·, Vα)) .

But then

dω(·, Vα) = 0. (33)

Then there exists a C∞ function q = q(α, x, ξ) such that ω(·, Vα) = d(x,ξ)q, and q can be
computed by the formula

q(α, x, ξ) =
nX∑

j=1

∫ 1

0
[V1j(α, tx, tξ)ξj − V2j(α, tx, tξ)xj] dt, (34)

see [43, Theorem 4.18]. We have assumed that the manifold T ∗X is essentially an open set in
R2nX , so that we can apply Poincaré’s lemma (whence the form ω(·, V ) is exact). It is clear
that if Vα is smooth in α, so is q. It follows that q coincides with p1 up to an additive constant.
It means that given vector field for the continuation operator one can find the continuation
Hamiltonian p1.

Continuation Hamiltonian from integrable vector field. In various applications (see Sec-
tion 5.3), a construction (based on perturbation arguments) leads directly to equations of the
type (31), that is, a vector field Vα. Then one may question the applicability of the theory pre-
sented here, in particular, the existence of a global Hamiltonian (cf. (23)). To guarantee the
validity of (33), one checks whether the Lie derivative, LVα ω = 0.
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In local coordinates, (x, η), and Vα = (V1(α, x, ξ), V2(α, x, ξ)), with

V1(α, x, ξ) = (V11(α, x, ξ), . . . , V1n(α, x, ξ)) and V2(α, x, ξ) = (V21(α, x, ξ), . . . , V2n(α, x, ξ))

being the ∂x and ∂ξ components of Vα respectively, equation (33) is equivalent to

∂V2j

∂xk
=

∂V2k

∂xj
, j (= k,

∂V1j

∂ξk
=

∂V1k

∂ξj
, j (= k,

∂V2j

∂xk
= −∂V1k

∂ξj
, for all j, k.

(35)

If dω(·, Vα) = 0, that is, if equations (35) hold, then there is a global Hamiltonian (34) generat-
ing this vector field.

4.2 Method 2. Evolution operator from ‘migration’ operator

The derivative ∂αCX
(α,α0) is determined by ∂αF (α)∗: It is immediate that (cf. (21))

∂αCX
(α,α0) = iP (α)CX

(α,α0) = iP (α)F (α)∗F (α0); (36)

because F (α0) is invertible it follows that

∂αF (α)∗ = iP (α)F (α)∗. (37)

Thus the perturbation of the image continuation operator CX
(α,α0) is completely determined by

the perturbation of migration operator F (α)∗.

Since the canonical relation of F (α)∗ is a graph, it admits coordinates (x, η) and a generating
function S̃ = S̃(α; x, η) (cf. (12)-(13)). The kernel of F (α)∗ then admits the representation

AF (α)∗(x, y) =
∫

ã(α; x, η) exp[iφ̃(α; x, y, η)] dη, φ̃(α; x, y, η) = S̃(α; x, η)− 〈η, y〉. (38)

To leading order, the kernel of ∂αF (α)∗ has the representation (cf. (19))

i
∫

∂αS̃(α; x, η) ã(α; x, η) exp[iφ̃(α; x, y, η)] dη. (39)

We introduce the change of coordinates, (x, η) → (x, ξ), by solving the equation

ξ = ∂xS̃(α; x, η), (40)

for η = η(α; x, ξ). The principal symbol of pseudodifferential P̃ (α) then follows to be

p̃1(α, x, ξ) = ∂αS̃(α; x, η(α; x, ξ)). (41)
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Indeed, applying the composition rule for a pseudodifferential operator with an FIO [25, Ch. VIII,
p.465],

P̃ (α, x, Dx)AF (α)∗(x, y) =
∫

p̃(α, x, ∂xS̃(α; x, η)) ã(α; x, η) exp[iφ̃(α; x, y, η)] dη, (42)

and using ∂αS̃(α; x, η(α; x, ∂xS̃(α; x, η))) = ∂αS̃(α; x, η), we recover (39) and thus get (41).
Since S̃ is homogeneous of degree 1 in η, p̃1 is a symbol of order 1.

The continuation bicharacteristics x(α), ξ(α) are the solution to Hamilton system (25), which,
with (41), attains the form

dx

dα
=−[∂ξη(α; x, ξ)] · (∂η∂αS̃)(α; x, η(α; x, ξ)), (43)

dξ

dα
= ∂x∂αS̃(α; x, η(α; x, ξ)) + [∂xη(α; x, ξ)] · (∂η∂αS̃)(α; x, η(α; x, ξ)). (44)

4.3 Method 3. Evolution operator from ‘migration’-‘demigration’ composition

We use the oscillatory integral representation for the kernel of F (α) obtained from the one
for the kernel of F (α)∗. In terms of phase functions, the composition of canonical relations
(cf. (10)) inΛCX

(α,α0) follows the construction of the stationary point set (cf. (7)-(8)) for φ̃(α; x, y, η)−
φ̃(α0; x0, y, η′):

∂η φ̃(α; x, y, η) = 0, ∂η′φ̃(α0; x0, y, η′) = 0,

∂y[φ̃(α; x, y, η)− φ̃(α0; x0, y, η′)] = 0, (45)

on which (x, ∂xφ̃(α; x, y, η); x0, ∂x0φ̃(α0; x0, y, η′)) determines the points in Λ∗α◦Λα0 = ΛCX

(α,α0).
We eliminate the bottom equation, and substitute its solution, η′ = η, in the top equations, that
is, ∂η[S̃(α; x, η)] = y = ∂η[S̃(α; x0, η)], whence

∂η[S̃(α; x, η)− S̃(α0; x0, η)] = 0. (46)

With x(α) denoting a continuation characteristic as before, while perturbing α about α0 and
x = x(α) about x0 = x(α0), it follows that

∂α∂ηS̃(α; x, η) +
dx

dα
· [∂x∂ηS̃(α; x, η)] = 0, x = x(α). (47)

Because ∂x∂ηS̃ is non-singular, this is a system of nX equations that provides a solution for dx
dα

for each η (= −∂yφ̃). With initial condition, x(α0, y0, η0) = x0, it holds true that S̃(α0; x0, η0)−
〈η0, y0〉 = 0.
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It is straightforward to verify that the solution to (47) coincides with (43):

dx

dα
= −[∂η∂xS̃]−1 · (∂α∂ηS̃) = −[∂ηξ]

−1 · (∂η∂αS̃), using that ξ = ∂xS̃. (48)

However, this construction does not directly provide the underlying Hamiltonian, and a full
set of Hamilton equations (43)-(44). For deriving Hamiltonian one needs to use techniques
described in previous sections (methods 1 and 2).

5 Examples

Here, we connect some known procedures for continuation to the general framework devel-
oped in this paper. In particular, we discuss the velocity continuation of images and isochrons
in common-offset Kirchhoff migration [14,12], and the continuation of offset image gathers
[18,19] in the absence of caustics. We derive explicit formulae for the Hamiltonians in the con-
stant velocity case. A family of migration-demigration operators is defined by a smooth family
of background velocities v[α]. In the case of constant velocity, v[α] ≡ v = const and v itself
plays the role of α.

5.1 Common-offset image continuation characteristics assuming the absence of caustics

In this subsection we apply methods 2 and 3 (Sections 4.2 and 4.3) to common-offset migration
of seismic data. In Kirchhoff migration, operator F (α)∗ transforms data u(y) into an image
w(x). then We assume the absence of caustics. On the acquisition manifold we introduce the
following coordinates: y = (t, y′), where t is the time, y′ = (r+s)/2 is the source-receiver mid-
point, and h = (r − s)/2 is half-offset; s indicates a source position and r indicates a receiver
position, see Fig. 1. In common offset 4 migration we consider h to be a set of parameters so
that F (α)∗ : u(t, y′) → w(x).

A phase function φ̃ for the oscillatory integral representation of the kernel of operator F (α)∗

can be chosen of the form

φ̃(α; x, t, y′, τ) = −φ(α; t, y′, x, τ), φ(α; t, y′, x, τ) = τ (T (α; y′, x)− t), (49)

in which T (α; y′, x) denotes the ‘two-way’ traveltime along a broken ray connecting a receiver

4 In three-dimensional configurations, offset is a two-dimensional vector; representing this vector in
polar coordinates, one refers to the angular coordinate as azimuth.
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at r to a source at s (defining y′) via the scattering point x, that is,

T (α; y′, x) = ts(α; y′ − h, x) + tr(α; y′ + h, x), (50)

if ts denotes the traveltime along a source ray (connecting s = y′ − h with x) and tr denotes
the traveltime along a receiver ray (connecting r = y′ + h with x), see Fig. 1. In the above, φ
is the phase function for demigration operator F (α); τ is the only phase variable (cf. (9)). The
propagation of singularities by F (α)∗F (α0) is illustrated in Fig. 1.

First we apply method 3 (Section 4.3) with phase functions given in (49). This leads to equations
for velocity continuation characteristics, repeating the reasoning in (45)-(47) (with only one
phase variable, τ )

∂(τ,y′) (τ∂αT (α; y′, x)) +
dx

dα
· [∂x∂(τ,y′) (τT (α; y′, x))] = 0, (51)

see [14, (C-4)]. The quantities [∂x∂(τ,y′)(τT )] and ∂(τ,y′)∂α(τT ) can be obtained by methods of
dynamic ray tracing and ray perturbation. The matrix, [∂(τ,y′)∂x(τT )], using that ξ = ∂x(τT ),
has a determinant which appears in ‘true-amplitude’ common-offset imaging based on the gen-
eralized Radon transform and has been attributed to Beylkin [44, p.223].

Fig. 1. The continuation CX
(α,α0) = F (α)∗F (α0) in the case of common-offset migration. Pairs of rays

connecting local reflector points and dips, (x0, ξ0) and (x, ξ), with acquisition midpoint, traveltime and
slope, (y′, t, η′), illustrate demigration (dashed lines) and migration (solid lines) with different back-
ground velocities.

To obtain the continuation Hamiltonian we invoke method 2 from Section 4.2. We apply Ap-
pendix A to the generating function S ′(α; x, y′, τ) = τ T (α; y′, x), to obtain S̃(α; x, η) =
(τ T (α; y′, x) + 〈η′, y′〉)|y′=y′(α;x,η) (cf. (38)) with η = (τ ′, η′); here, the stationary points
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y′(α; x, η) are found from the equations

τ ∂y′T (α; y′, x) = −η. (52)

After substituting the solution of (52) into (40) we find that η′ = η′(α; x, ξ) and τ = τ(α; x, ξ)
solve

ξ = ∂xS̃(α; x, η)

= τ ∂xT (α; y′(α; x, η), x) + τ ∂xy
′(α; x, η) · ∂y′T (α; y′(α; x, η), x) + ∂xy

′(α; x, η) · η′

= τ ∂xT (α; y′(α; x, η), x). (53)

One can combine equations (52) and (53) and solve directly

τ ∂xT (α; y′, x) = ξ (54)

for y′(α; x, ξ) and τ(α; x, ξ) (a similar phase variable transformation appeared in [45] while
developing map migration using curvelets).

The Hamiltonian for continuation bicharacteristics, using (41), then follows to be

H(α, x, ξα, ξ) = ξα − τ(α; x, ξ) ∂αT (α; y′(α; x, ξ), x)
︸ ︷︷ ︸

=p̃1(α,x,ξ)

. (55)

We will evaluate this Hamiltonian in the case of constant background velocities in the next sub-
section.We note that along continuation bicharacteristics, ξα = τ(α; x, ξ) ∂αT (α; y′(α; x, ξ), x).

5.2 Global Hamiltonian for constant velocity continuation

Here, we apply method 2 (Section 4.2) to construct the global Hamiltonian for velocity con-
tinuation. We let the points x now have coordinates (x, z), while all s, r, y′ and h lie in the
horizontal plane, z = 0; v is identified with α. We get (cf. (50))

ts(v; y′ − h, x, z) =
ρs(y′, x, z)

v
, tr(v; y′ + h, x, z) =

ρr(y′, x, z)

v
,

ρs(y
′, x, z) =

√
(x− y′ + h)2 + z2, ρr(y

′, x, z) =
√

(x− y′ − h)2 + z2. (56)

The coordinates, and three, evolving, isochrons (half ellipses, in this case) are shown in Fig. 4.
By differentiating (50) with (56) with respect to v, we obtain (63) for the constant background
media case:

−ρs + ρr

v2
+

(
∂xρs + ∂xρr

v

)
dx

dv
+

(
∂zρs + ∂zρr

v

)
dz

dv
= 0, (57)
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where simply

∂xρs =
x− y′ + h

ρs
, ∂zρs =

z

ρs
(58)

and similarly for ∂xρr and ∂zρr.

Then equations (54) take the following form:

(x− y′ − h)

vρr
+

(x− y′ + h)

vρs
=

ξ

τ
,

z

vρr
+

z

vρs
=

ζ

τ
, (59)

were (ξ, ζ) are variables dual to (x, z). Eliminating τ results in

y′(x, z, ξ, ζ) = x +
z(ζ2 − ξ2)−

√
(2hξζ)2 + z2(ξ2 + ζ2)2

2ξζ
, (60)

Following (41), (55), we have (with the second equation in (59)),

p̃(v, x, z, ξ, ζ) = τ∂vT = − τ

v2
(ρr + ρs)

∣∣∣∣
y′=y′(x,z,ξ,ζ)

= − ζ

zv
ρrρs

∣∣∣∣∣
y′=y′(x,z,ξ,ζ)

= −ξ2 + ζ2

2vξ2ζ

√
(2hξζ)2 + 2z2(ξ4 + ζ4) + 2z(ξ2 − ζ2)

√
(2hξζ)2 + z2(ξ2 + ζ2)2, (61)

yielding the symbol of the evolution operator. We can further simplify (61) and obtain the
global Hamiltonian for velocity continuation (cf. (55); an alternative form of this Hamiltonian
was derived by Fomel [46])

H(v, x, z, ξv, ξ, ζ) = ξv +
ξ2 + ζ2

2vξ2ζ

[
z(ξ2 − ζ2) +

√
(2hξζ)2 + z2(ξ2 + ζ2)2

]
. (62)

Remark. On the slowness surface associated to the Hamiltonian in (62), we have that if ξv > 0
then ζ < 0 (we note that the expression in square brackets in (62) is always non-negative, so
that the sign of the second term is controlled by the sign of ζ), and, hence, if ξv < 0 then ζ > 0.
The slowness surface (H = 0 for given (x, z)) is depicted in Fig. 2 a) (where we introduce the
normalized vector components, kx = ξ/ξv and kz = ζ/ξv), while the group velocities (cf. (25)
or (43)) are shown in Fig. 2 b). We consider two cases: Small offset (h/z = 0.5) and large offset
(h/z = 1.7), while setting z = 1 and v = 1 in the computation. For small offsets, the slowness
surface approaches a circle and the group velocity surface approaches a parabola. For large
offsets, the slowness surface develops inflection points, leading to cusps in the group velocity
surface. Note that the group velocity surface corresponds to an ‘instantaneous front’ generated
at a point in the initial image; see [6,11].
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Fig. 2. (a) – Slowness surface for small offset (h/z = 0.5) and large offset (h/z = 1.7); (b) – group
velocity surface for small offset (h/z = 0.5) and large offset (h/z = 1.7).

Making use of the global Hamiltonian (62), we illustrate common-offset image continuation and
the notion of continuation characteristics. In Fig. 3 (left) we show continuation characteristics
calculated for a segment (in bold) of a planar (line) reflector. The initial (correct) common-
offset image corresponds to a background velocity v = 1 km/s; common-offset migrations for
different values of h will produce the same image. Continuation characteristics (thin lines) take
off from the original image and terminate at an image for v = 1.3 km/s (straight line segment
to the left) and an image for v = 0.5 km/s (straight line segment to the right). Thin solid lines
represent continuation characteristics corresponding to offset h = 0.1 km, and dashed thin
lines represent continuation characteristics corresponding to h = 0.7 km. In Fig. 3 (right) the
reflector, and the initial (correct) common-offset image, are parabolic. The correct (and initial)
background velocity is v = 1 km/s; the image is continued to v = 1.06 km/s. Even in this
simple model, we observe the formation of caustics.

Fig. 3. Common-offset image continuation and continuation characteristics. Left: plane reflector (solid
line segment); thin solid lines indicate continuation characteristics for h = 0.1 km, while thin dashed
lines indicate continuation characteristics for h = 0.7 km. Right: parabolic reflector; thin solid lines
indicate continuation characteristics.
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5.3 ‘Velocity rays’ as curves connecting evolving isochrons

Isochrons, generated by F (α)∗, are given by

W(α; t, y′) = {(x, z) ∈ X | T (α; y′, x, z) = t},

see Section 2. ‘Velocity rays’ were introduced in the literature as curves connecting isochrons
evolving with α (cf. [3]). Such curves are written as (x(α), z(α)), and must then satisfy

∂αT = −∂(x,z)T · d(x, z)

dα
(63)

(keeping (t, y′) fixed). Since, for now, we have only one equation, we will have to supplement
it with another equation for dx

dα and
dz
dα to be determined. In this subsection, we discuss four dif-

ferent supplementary equations from the literature, each leading to a notion of velocity ‘rays’,
that is, curves (x(α), z(α)). These supplementary equations were not obtained by methods out-
lined here, whence we need to check the integrability condition (cf. (35)) to verify whether the
implied curves can be associated with the continuation operator.

1. Liu and Bleistein [18]: vertical ‘ray’. The authors assume that the curves that connect an
initial with a perturbed isochron are vertical: dx

dα = 0; in constant background media,

dx

dv
= 0. (64)

Solving equations (57) and (64), one obtains dz
dv = ρsρr

vz (as in [18, (13)]) describing vertical
‘rays’. Corresponding curves are illustrated, and indexed by 1, in Fig. 4.

Fig. 4. Three isochrons for fixed (t, y′, h) = (2, 0, 0.5) and different velocities, v = 0.51, 1.0 and 1.5.
The different ‘velocity rays’ are indexed: 1 – vertical ray, 2 – source ray, 3 – isochron-normal ray, and 4
– canonical ray (continuation characteristic).
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2. Iversen [12]: source-‘ray’ parametrization. Iversen defines a ‘velocity ray’ as the curve
connecting an initial with a perturbed isochron, subject to the condition

[∂α(v[α](s, 0) ∂sts(α; s, x, z)) + v[α](s, 0)
d(x, z)

dα
· ∂(x,z)∂sts(α; s, x, z)]s=y′−h = 0,

(x, z) = (x, z)(α). (65)

(This equation arises from the composition-like relation

v[α](s, 0) ∂sts(α; s, x, z)− v[α0](s, 0) ∂sts(α0; s, x0, z0) = 0, s = y′ − h.)

For the constant velocity models, with ts as in (56), we thus obtain the supplementary equation

dx

dv
− tan β

dz

dv
= 0, tan β =

x− y′ + h

z
. (66)

Equations (57) and (66) can be solved for d(x,z)
dv ; the corresponding curves are illustrated, and

indexed by 2, in Fig. 4.

3. Meng and Bleistein [20]: isochron-normal ‘ray’. The authors define a ‘velocity ray’ as the
curve connecting an initial with a perturbed isochron, with the provision that the curve is normal
to the (initial) isochron:

∂(x,z)T (α; y′, x, z) ∧ d(x, z)

dα
= 0. (67)

We introduce the isochron-normal vector, n = ∂(x,z)T/‖∂(x,z)T‖, and half of opening angle
between incident and reflected rays, θ (Fig. 1), so that ‖∂(x,z)T‖ = 2 cos θ

v[α](x,z) . From equality and
equation (63) we get that

n · d(x, z)

dα
= −∂αT

v[α]

2 cos θ
(68)

[19, (4.4.24), (4.4.25)] is the velocity of an isochron-normal ‘ray’.

For the constant velocity models, with T as in (50), (56), we get

∂zT (v; y′, x, z)
dx

dv
− ∂xT (v; y′, x, z)

dz

dv
= 0. (69)

Equations (57) and (69) can be solved for d(x,z)
dv ; the corresponding curves (isochron-normal

‘rays’) are illustrated, and indexed by 3, in Fig. 4.

4. Adler [14], Iversen [12] (combined parametrization): canonical ‘ray’. Adler honors all
components of equation (51); in the constant background media case equation

−∂y′ρs + ∂y′ρr

v2
+

∂x∂y′ρs + ∂x∂y′ρr

v

dx

dv
+

∂z∂y′ρs + ∂z∂y′ρr

v

dz

dv
= 0, (70)
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is supplementary to (57). Equations (57) and (70) can be solved for d(x,z)
dv ; the corresponding

curves are illustrated, and indexed by 4, in Fig. 4. They can be related to the so-called combined-
ray parametrization of velocity rays in [12,13]; see also the Appendices in [14].

Remark. We verify which of the velocity ‘rays’ are actually rays. First we note that a set of
continuation ‘lines’ is implicitly defining a vector field Vα that, in turn, defines a continuation
Hamiltonian if the respective Lie derivative LVα ω is zero (see discussion at the end of Sec-
tion 4.1). Thus checking integrability conditions (35) allows making conclusion about existence
of the Hamiltonian. The construction above led to expressions for d(x,z)

dv in terms of coordinates
(x, z, τ, y′). Here, we introduce a procedure to, consistently, construct d(ξ,ζ)

dv .

First we notice that equations (59) can be solved explicitly providing τ = τ(α; x, z, ξ, ζ), y′ =
y′(α; x, z, ξ, ζ) (expression for y′ is given in (60)). Then we can write:

V1(α; x, z, ξ, ζ) =
d(x, z)

dα
= f(α; x, z, y′(α; x, z, ξ, ζ)), (71)

where f(α; x, y′) will take different forms for the different velocity ‘rays’ introduced above.

We note that equations (59) (or (54)) must hold along the ‘ray’ (x(α), z(α)), providing (ξ(α), ζ(α)) =
τ∂(x,z)T (α; y′, x(α), z(α)). Further differentiating it with respect to α (keeping τ and y′ fixed):

V2(α; x, z, ξ, ζ) =
d(ξ, ζ)

dα
= g(α; x, z, τ(α; x, z, ξ, ζ), y′(α; x, z, ξ, ζ)), (72)

where g(α; x, z, τ, y′) = τ∂α∂(x,z)T (α; y′, x, z) + τ d(x,z)
dα · ∂(x,z)∂(x,z)T (α; y′, x, z).

With expressions for (V1, V2), obtained in (71) and (72), we can test conditions (35): all ’rays’
except for the canonical ray (case 4) fail to pass this test. Only velocity ‘rays’ corresponding
with canonical transformations yield the appropriate geometry underlying an evolution-equation
based approach to image continuation. We argue that, hence, velocity ‘rays’ other than the
canonical rays (continuation characteristics) should perhaps not be called rays.

6 Velocity continuation of common-image point gathers in the presence of caustics

In this section, we illustrate, numerically, method 1 (Section 4.1) by computing Λ(α,α0) and
P (α). We consider the problem of velocity continuation of so-called common-image point gath-
ers in the presence of caustics. The formation of such gathers is summarized in Appendix B;
the analysis of the underlying angle transform, Awe, can be found in [37]. We write

Awe(α) : u(s, r, t) → wg(α; x, z, p) (73)
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if u represents the data and wg the common-image point gathers. For purpose of this example
one can think of operator Awe as a ‘black box’ for which we can calculate a canonical relation
ΛAwe; wg is closely related angle gathers; p is related to scattering angle in the beam-forming
approach (cf. [47]) or subsurface offset in the differential semblance approach (cf. [34]). The
operators Awe(α) are microlocally invertible under certain conditions on the ray geometry [48]
(for small p). The general application of the continuation theory developed here to the downward
continuation approach and associated angle transform [32,33] can be found in [49].

Fig. 5. (a) - Background velocity model shown in color (linear gradient and a low velocity lens), and
vertical reflector x = 2. The gray circle indicates the location of the lens; (b) - incident rays for a
single point source; (c) - a schematic view of (x, z, p)-space on which wg(x, z, p) is defined; the singular
support of the correct image – corresponding with the vertical reflector – is indicated by a gray plane.

As the family of background models v[α], we take

v[α] = 1 + z − α exp[−7.5(x2 + (1− z)2)], (74)

containing a vertical gradient and a low velocity lens, where α defines the ‘strength’ of the lens.
We take α0 = 0.45 as the true model (see Fig. 5 a) and construct a reflected wave traveltime
surface (singularities in data u will be supported on this surface) for a vertical reflector at x = 2
(thick vertical line in Fig. 5 a) which can be thought of as a toy model for a salt dome flank). In
Fig. 5 b) we show incident rays for a single point source. We observe the presence of caustics
and turning rays. The singular support ofwg(α0; x, z, p) (for the true model) is sketched in Fig. 5
c). The true position of vertical reflector is replicated in p direction composing a plane (in gray).

We apply continuation operator CA
(α,α0) = Awe(α)A−1

we(α0), while numerically composing the
canonical relations, ΛAwe(α) ◦ Λ−1

Awe
(α0), to wg(α0; x, z, p). We illustrate the continuation and

associated characteristics by flowing out the three lines depicted in Fig. 5 c). Fig. 6 shows the
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Fig. 6. Image continuation, wg(x = 2, z, p = 0) (top) and wg(x = 2, z, p = 0.1) (bottom). The con-
tinuation characteristics are projected onto the (x, z) plane (left) and the (x, p) plane (right). In the top
left figure we also plotted four fronts (thick solid lines), at α = α0 = 0.45 (true model), α = 0.35,
α = 0.25 and α = 0.15. The inserts show the cusps at the top and the bottom in more detail; these cusps
are formed in a transitional region, where the influence of the lens vanishes.

evolution of lines 1 and 2, both representative of the vertical reflector at different values of
p. Note that, for p = 0, the continuation characteristics stay in a plane, unlike for p = 0.1.
Fig. 7 shows the evolution of line 3, a ‘string’ in a common-image point gather, in Fig. 5 c).
In Fig. 8 a) we illustrate the computed principal symbol p1(α, x, z, p, ξx, ξz, ξp) in the form
of a phase velocity surface that is a level-set surface p1(α, x, z, p, kx, kz, kp)−1 = 1 for fixed
(α, x, z, p) = (0.45, 1, 1, 0), where kx = ξx/ξα, kz = ξz/ξα, kp = ξp/ξα. Solving this equa-
tion we get a phase velocity surface vph(kx, kz, kp) that it is not a closed surface as not for all
directions (kx, kz, kp) operator Awe is determined. Fig. 8 b) shows part of the phase velocity
surface corresponding to small subsurface offsets (region where invertibility ofAwe was proven
in [37]).

7 Discussion

We developed the foundation of, and a comprehensive framework for seismic continuation,
while extending the earlier approaches to this type of continuation to allow for the formation of
caustics. We illustrated how the concepts introduced and developed by Fomel (partial differen-
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tial equations for data and image continuation, corresponding Hamiltonians), Goldin (continu-
ation by composing remigration with demigration, underlying contact transformations), Hubral
et al. (image waves), Iversen (system of ordinary differential equations for continuation char-
acteristics, connection with ray perturbation theory), Adler (velocity rays, connection with a
migration Jacobian) and Bleistein et al. (common-offset image continuation and residual move-
out) are contained in our theory.

Fig. 7. Continuation of a line or ‘string’ (bold line), initially at z = 2, in a ‘vertical’ common-image
point gather initially at x = 2 (line 3 in Fig. 5 c). The thin lines indicate continuation characteristics.

In our analysis we formulate conditions on the originating family of operators under which
continuation is properly defined. We showed the existence and provided the construction of a
hyperbolic evolution equation that describes the process of continuation. As a byproduct, we
obtained a global Hamiltonian, the flow of which determines the propagation of singularities
under continuation. In, for example, Iversen’s work such a Hamiltonian was not identified. The
symbol of the evolution equation will, in general, have to be determined numerically. Compu-
tationally, the advantage is avoiding the remigration of all the data, the relative saving being
comparable to map migration versus imaging. A particular promising strategy to solve the evo-
lution equation can be found in [50] leading to ‘compressive’ continuation. It is based on a
sparse approximation of the initial data in terms of sums of curvelets, while the procedure is
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Fig. 8. Phase velocity surface for common-image point gather velocity continuation operator; (a) - whole
surface; (b) - part corresponding to small-offsets (where operator Awe is proven to be invertible).

initiated by an approximate solution that subjects the curvelet components to a rigid motion in
accordance with the continuation Hamilton flow.

Velocity continuation has applications, for example, in wave-equation reflection tomography
[51]. (The measure whether a background model (the value of α) is acceptable for imaging,
essentially, depends on flatness of the common-image point gathers (illustrated in previous sec-
tion) in p direction.) In this context, the evolution operator associated with image continuation
with velocity aids in the evaluation of the so-called sensitivity kernels. As reflected by the to-
mographic sensitivity kernels, continuation senses the velocity model in an integrated fashion.
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A Oscillatory integral representations – change of phase variables

In applications, the oscillatory integral representation of the relevant operator kernel often ap-
pears naturally in a form different from the canonical form (12)-(13). We set nY = nX = n.
If for the kernel of an FIO in C we have an oscillatory integral representation – making use of
coordinates (y, xI , ξJ) with I ∪J = {1, . . . , n} on Λ – with amplitude a = a′(y, xI , ξJ), we can
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obtain a = a(y, ξ) by the relation [52, 4.1.2] 5

a(y, ξ) exp[i S(y, ξ)] =
∫

a′(y, x′I , ξJ) exp[i (S ′(y, x′I , ξJ) + 〈ξI , x
′
I〉)] dx′I ,

which follows from writing the action of the associated FIO as

(Fu)(y) =
∫

(2π)−n
∫ ∫ ∫

a′(y, x′I , ξJ) exp[i (S ′(y, x′I , ξJ) + 〈ξI , x
′
I〉)] dx′I

exp[i (−〈ξJ , xJ〉 − 〈ξI , xI〉)] dξJdξI u(x) dx.

Invoking the method of stationary phase in xI yields

∫
a′(y, xI , ξJ) exp[i (S ′(y, xI , ξJ) + 〈ξI , xI〉)] dxI

= (2π)|I|/2 exp[i(π/4) sgn ∆(y, xI , ξJ)]a′(y, xI , ξJ)

exp[i (S ′(y, xI , ξJ)] exp[i 〈ξI , xI〉] [det ∆(y, xI , ξJ)]−1/2 |xI=xI(y,ξ), (A.1)

where ∆ is the |I| × |I| Hessian

∆(y, xI , ξJ) =
∂2S ′(y, xI , ξJ)

∂x2
I

.

We identify S(y, ξ) = (S ′(y, xI , ξJ) + 〈ξI , xI〉)|xI=xI(y,ξ). The stationary points are the xI ,
satisfying the system of equations

−∂S ′

∂xI
(y, xI , ξJ) = ξI ,

with solution xI = xI(y, ξI , ξJ) = xI(y, ξ) revealing the coordinate transformation (y, xI , ξJ)
→ (y, ξI , ξJ) on Λ. We note that

(−)|I| det
∂2S ′(y, xI , ξJ)

∂x2
I

= det
∂(ξI)

∂(xI)
.

B Wave-equation angle transform

In the presence of caustics, the framework of common-offset migration no longer applies, and
we resort to an alternative invertible transformation. With data u = u(s, r, t) (identifying (s, r, t)

5 Follows by inserting the Fourier transforms F−1
ξI→xI

FxI→ξI
in front of u(x) in the action of F on u.
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as coordinates for y), common-image point gathers are now formed as follows. We will have
nX = nY = 3 for two-dimensional configurations. Let G denote the causal Green’s function of
the scalar wave equation. We then introduce [36,37,51]

D(x− hx, x + hx, z − hz, z + hz, t
′) =

∫ ∫ ∫ ∫
G(x+hx, z+hz,−(t̃− t), r, 0)G(x−hx, z−hz, t̃− t′, s, 0) dt̃ ∂2

t u(s, r, t) dr ds dt.

(B.1)

We have the freedom of choosing the direction of (hx, hz) [53]. For the case of non-horizontal
wave propagation and non-vertical reflectors, a natural choice is hz = 0 (leading to the down-
ward continuation approach to imaging [37]). In the case of near vertical reflectors, we choose
hx = 0. We then form an image gather according to

wg(x, z, p) =
∫

D(x, x, z − hz, z + hz, 2phz)χ(x, z, hz) dhz, (B.2)

where p is a variable related to the scattering (opening) angle at point (x, z), and χ(x, z, hz)
is a cutoff in hz. (This type of transform was introduced in [47].) Equations (B.1)-(B.2) define
the so-called angle transform [36,37], Awe : u(s, r, t) → wg(x, z, p). It can be shown that the
operatorAwe is microlocally invertible for the velocity models and vertical reflector considered
here [48].
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