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Abstract. We define the forward and backward radiation fields on an asymptotically hyperbolic man-

ifold and show that they give unitary translation representations of the wave group, and as such can be

used to define a scattering matrix. We show that this scattering matrix is equivalent to the one defined by

stationary methods. Furthermore, we prove a support theorem for the radiation fields which generalizes

to this setting well known results of Helgason and Lax & Phillips for the horocyclic Radon transform.

As an application, we use the boundary control method of Belishev to show that an asymptotically

hyperbolic manifold is determined up to invariants by the scattering matrix at all energies.

1. Introduction

The purpose of this article is to define the radiation fields on asymptotically hyperbolic manifolds

and to use them to study scattering and inverse scattering theories. The radiation fields on Rn and on

asymptotically Euclidean manifolds were introduced by F.G. Friedlander in a series of papers starting in

the early 1960’s [10, 11, 12, 13, 14]. His program of using the radiation fields to obtain the scattering

matrix in that general setting was completed in [48]. Here we carry out the analogous construction on

asymptotically hyperbolic manifolds. After defining the radiation fields, we use them to give a unitary

translation representation of the wave group and to obtain the scattering matrix for such manifolds. As

an application, we use them to study the inverse problem of determining the manifold and the metric

from the scattering matrix at all energies.

Asymptotically hyperbolic manifolds are smooth compact manifolds with boundary equipped with a

complete metric that resembles the hyperbolic space near the boundary. The basic examples of such

manifolds are the hyperbolic space and its quotients by certain discrete group actions, see [43], but any

C∞ compact manifold with boundary can be equipped with such a metric.

There is a history of interest in scattering theory for this class of manifolds, motivated by several

problems of mathematics and physics, which goes back to the work of Fadeev and Pavlov [8], followed

by Lax and Phillips [36, 37], and later by several people, see for example [2, 6, 20, 28, 39, 43, 45] and

references cited there. More recently there has been interest in this class of manifolds in connection to

conformal field theory, see [9, 15, 16] and references cited there.

Mazzeo, Mazzeo and Melrose [39, 40, 43] first studied the spectral and scattering theory of the Laplacian

in this general setting and gave a thorough description of the resolvent and its meromorphic continuation.

Their methods have been applied in [6, 16, 17, 20, 28] to study the scattering matrix starting from a

careful understanding of the structure of the solutions to the Schrödinger equation on a neighborhood of

infinity.

We will develop the scattering theory for this class of manifolds using a dynamical approach in the

style of Lax and Phillips [35, 36, 37], but we do this by following Friedlander [10, 11, 12, 13, 14]. In
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fact Lax and Phillips used radiation fields to study the translation representation of the wave group on

certain quotients of H3, [34].

We define the forward radiation field for asymptotically hyperbolic manifolds as the limit, as times

goes to infinity, of the forward fundamental solution of the wave operator along certain light rays. The

backward radiation field is defined by reversing the time direction. These are generalizations of the Lax-

Phillips transform [33, 36] to this class of manifolds. We will show that this leads to a unitary translation

representation of the wave group and a dynamical definition of the scattering matrix as in [35].

In section 6 we establish the connection of the radiation fields and the Poisson operator, which in

this context is also called the Eisenstein function. This is then used to show that the stationary (via

Schrödinger’s equation) and the dynamical (via radiation fields) definitions of the scattering matrix are

equivalent.

To show the existence of the radiation fields, we adapt the techniques of [13, 14] to this setting. To

connect the radiation fields, the Poisson operator and the scattering matrix, we use the construction of

the resolvent of the Laplacian due to Mazzeo and Melrose [43] and the construction of the Eisenstein

function from the resolvent from [20, 28].

In section 3, as an example, we compute the forward radiation field for the three dimensional hyperbolic

space H3 and show that it is given by the Lax-Phillips transform, which is based on the horocyclic Radon

transform.

In section 7 we prove a precise support theorem – in the terminology of Helgason [23, 24] – for the

radiation fields. Theorem 7.1 below generalizes to this setting a theorem of Lax-Phillips, Theorem 3.13

of [36], see also [33], obtained for the horocyclic Radon transform. Helgason [21] proved this result for

compactly supported functions, but in more general symmetric spaces. Theorem 7.1 below extends this to

asymptotically hyperbolic manifolds, where the horocyclic Radon transform is replaced by the radiation

field. This can be thought of as a result in control theory which, roughly speaking, says that the support

of a function is controlled by the support of its radiation field.

Radon type transforms are often used to study properties of solutions of hyperbolic equation, but here

we use the equation to study support properties of the radiation field. This allows the use of uniqueness

theorems for partial differential equations to establish support properties of these transforms. The main

ingredients of the proof of the support theorem are Hörmander’s uniqueness theorem for the Cauchy

problem, see Theorem 28.3.4 of[26], and two of its refinements, one due to Alinhac [1] and another one

which is due to Tataru [49]. The study of support properties of Radon transforms is a topic of interest

in its own, see for example [23, 33] and references cited there.

In section 8 we use the characterization of the scattering matrix through the radiation fields and the

boundary control method of Belishev [4], see also [5, 29, 30], and the book by Katchalov, Kurylev and

Lassas [31], to study the inverse problem of determining the manifold and the metric from the scattering

matrix at all energies. We prove that the scattering matrix of an asymptotically hyperbolic manifold

determines the manifold and the metric up to invariants.

2. Asymptotically Hyperbolic Manifolds and Radiation Fields

A smooth compact manifold X with boundary, ∂X, is called asymptotically hyperbolic, see [43], when

it is equipped with a Riemannian metric g, which is smooth in the interior of X, denoted by
◦

X, and is

such that for a smooth defining function x of ∂X, that is x > 0 in the interior of X, x = 0 on ∂X and

dx 6= 0 at ∂X,

x2g = H,(2.1)
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is a smooth Riemannian metric on X non-degenerate up to ∂X. Furthermore we assume that

|dx|H = 1 at ∂X.

It can be shown, see [39, 43], that under these assumptions, the sectional curvature approaches −1 at

∂X.

Observe that g determines x and H only up to a positive factor. Hence g induces a conformal structure

at ∂X.

Throughout this paper, X denotes a n+ 1 dimensional smooth compact manifold with boundary, and

n ≥ 1. g will be a Riemannian metric on X satisfying (2.1) and ∆ will denote the (positive) Laplace

operator with respect to the metric g.

As stated in [44], see [28] for a proof in this general setting, fixed a defining function x of ∂X, then for

all f ∈ C∞(∂X) and λ ∈ R, λ 6= 0, there exists a unique u ∈ C∞(
◦

X) satisfying

(∆ − λ2 − n2

4
)u = 0 in

◦

X,

u = xiλ+ n
2 f+ + x−iλ+ n

2 f−, f± ∈ C∞(X), f+|∂X = f.

(2.2)

This leads to the stationary definition of the scattering matrix at energy λ 6= 0, see for example

[20, 28, 44], as the operator

A(λ) : C∞(∂X) −→ C∞(∂X)

f 7−→ f−|∂X .
(2.3)

As pointed out in [44], the expansion (2.2) gives two parametrizations, corresponding to ±λ, of the

generalized eigenspace of ∆− n2

4 with eigenvalue λ2 by distributions on ∂X. The scattering matrix is the

operator that intertwines them.

Notice that if Ψ is a diffeomorphism of X, fixing x and dx on ∂X, then the scattering matrix will

be invariant under the pull back of the metric by Ψ. Moreover, this definition of the scattering matrix

depends on the choice of the function x. It can be invariantly defined as acting on appropriate bundles,

see for example [28].

It is shown in [28] and [15], that if g satisfies (2.1), and fixed a representative h0 of the conformal class

of g at ∂X, there exists ǫ > 0 and a unique product structure X ∼ [0, ǫ) × ∂X in which

g =
dx2

x2
+
h(x, y, dy)

x2
, h0 = h(0, y, dy).(2.4)

One can think of h(x, y, dy) = h(x) as a one-parameter family of metrics on the boundary ∂X. We will

fix such a decomposition, and from now on x ∈ C∞(X) will be as in (2.4). This is equivalent to fixing

a conformal representative of x2g|∂X . We will also work with the A(λ) defined by (2.3) where x is given

by (2.4).

Here, as in [13, 14], we will use the wave equation to define the radiation fields and arrive at an

equivalent definition of the scattering matrix.

We will prove

Theorem 2.1. For f1, f2 ∈ C∞
0 (

◦

X), compactly supported in the interior of X, let u(t, z) ∈ C∞(R+×
◦

X)

satisfy
(
D2

t − ∆ +
n2

4

)
u(t, z) = 0, on R+×

◦

X,

u(0, z) = f1(z), Dtu(0, z) = f2(z).

(2.5)
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Let z = (x, y) ∈ (0, ǫ) × ∂X be local coordinates near ∂X in which (2.4) hold. Then there exist vk ∈
C∞(R × ∂X), such that

x−
n
2 u(s− log x, x, y) ∼

∞∑

k=0

vk(s, y)xk.

Clearly vk(s, y) depends on the choice of x, and we make no attempt to define a bundle where it would

be invariant. We refer the reader to Lemma 2.2 of [15] for the relationship between two functions that

satisfy (2.4) corresponding to two different conformal representatives.

Theorem 2.1 defines a map

R+ : C∞
0 (

◦

X) × C∞
0 (

◦

X) −→ C∞(R × ∂X)

R+(f)(s, y) = x−
n
2 Dtu(s− log x, x, y)|x=0 = Dsv0(s, y),

(2.6)

which will be called the forward radiation field.

Similarly one can prove that if u− satisfies (2.5) in R−×
◦

X then

lim
x→0

x−
n
2 u−(s+ log x, x, y) = v−(s, y)

exists, is smooth, and thus define the backward radiation field

R− : C∞
0 (

◦

X) × C∞
0 (

◦

X) −→ C∞(R × ∂X)

R−(f)(s, y) = x−
n
2 Dtu−(s+ log x, x, y)|x=0 = Dsv−(s, y).

(2.7)

Finally we remark that, since the Lorentzian metric associated to g is

σ = dt2 − dx2

x2
− h(x, y, dy)

x2
= d(t− log x)d(t+ log x) − h(x, y, dy)

x2
,

the surfaces

{t− log x = C}, {t+ log x = C}
are characteristic for the wave operator, and thus a point (t′, z′), z′ = (x′, y′), has a past domain of

dependence, ∆−(t′, z′) satisfying

∆−(t′, z′) ⊂ {(t, x, y) : t− log x ≤ t′ − log x′, t+ log x ≤ t′ + log x′}.(2.8)

3. The Three Dimensional Space with Constant Negative Curvature

In this section, as an example, we study the particular case of the hyperbolic space

H
3 = {(x, y) : y ∈ R

2, x ∈ R, x > 0}, with the metric g =
dx2

x2
+

|dy|2
x2

.(3.1)

In this case the radiation fields can be explicitly computed. The formulæ obtained in [32], see also [22],

can be used in the same way to compute the radiation fields in Hn. This is done in [34].

For convenience, we will work in the non-compact model, which does not quite fit the framework of

section 1, but it is isometric to the compact model given by the interior of the ball with Poincaré’s metric

X = B3 = {z ∈ R3 : |z| < 1} and g = 4|dz|2

(1−|z|2)2 .

For z ∈ H3, let S(z, t) denote the set of points in H3 whose geodesic distance to z is t. Let A(t) be the

area of S(z, t), which is independent of z. Given f ∈ C∞
0 (H3), supported in the interior of H3, let

M(f, t, z) =
1

A(t)

∫

S(z,t)

f(y)dσy

be the mean of f over the sphere S(z, t).
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According to [22, 32], the solution to (2.5) with f1 = 0 and f2 = f is given by

u(t, z) = (sinh t)M(f, t, z).(3.2)

Therefore, the forward fundamental solution is, for t > 0,

U(t, z, z′) =
sinh t

A(t)
δ (t− d(z′, z)) ,

where the distance is given by

coshd(z, z′) =
x2 + x′2 + |y − y′|2

2xx′
.(3.3)

Then the sphere in the hyperbolic metric centered at (x, y) with radius t corresponds to the Euclidean

sphere with center (x cosh t, y) and radius x sinh t. We find that A(t) = 4π sinh2 t, and hence

U(t, z, z′) =
1

4π sinh t
δ(t− d(z, z′)).

But limx→0 x sinh(s− log x) = limx→0 x cosh(s− log x) = es

2 . So the Schwartz kernel of R+ is

R+(s, y, z′) = lim
x→0

x−1 ∂

∂s
U(s− log x, z, z′) =

∂

∂s

(
1

4πes
δ

(
es

2
− de

[(
es

2
, y

)
, z′
]))

(3.4)

where de denotes the distance in the Euclidean metric.

So, for f ∈ C∞
0 (H3), one obtains R+f(s, y) by integrating f over the surface of the Euclidean sphere

with center ( es

2 , y) and radius es

2 , with respect to the measure induced by the metric g. This sphere is

tangent to {x = 0} at (0, y) and the integration of f on those spheres is known as the horocyclic Radon

transform, see for example [24]. The transformation given by (3.4) is called the Lax-Phillips transform,

see [33].

4. The Proof of Theorem 2.1

In this section we work with the forward radiation field and we will drop the index ± from the notation.

We will work with a product decomposition X ∼ [0, ǫ)× ∂X on which (2.4) holds. Then h(x, y, dy) =

h(x) is seen as a one-parameter family of Riemannian metrics on ∂X.

We will also denote, in local coordinates,

h(x, y, dy) =

n∑

i,j=1

hij(x, y)dyidyj , |h| = det (hij) , and h−1 =
(
hij
)
, the inverse of the matrix hij .

(4.1)

Proof. Without loss of generality, we may assume that f1 = 0 and that f2 is compactly supported in

{x > x0}, with x0 small enough. Hence u(t, x, y) ∈ C∞(R × (0, ǫ) × ∂X) satisfies
(
D2

t − ∆ +
n2

4

)
u(t, x, y) = 0,

u(0, x, y) = 0, Dtu(0, x, y) = f(x, y).

(4.2)

Here we are considering the solution in t ∈ R, and in this case the solution u is odd in t. Moreover (2.8)

and the finite speed of propagation guarantee that for x small,

u = 0 if log x− log x0 < t < log x0 − log x, x < x0 < ǫ.(4.3)

We will show that

v(s, x, y) = x−
n
2 u(s− log x, x, y)(4.4)
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is smooth up to x = 0. We denote

P = x−
n
2
−1

(
D2

t − ∆ +
n2

4

)
x

n
2

and substitute t = s− log x. Then using (4.2), we find

Pv(s, x, y) = 0, in R × (0, ǫ) × ∂X, P =
∂

∂x

(
2
∂

∂s
+ x

∂

∂x

)
+ x∆h +A

∂

∂s
+Ax

∂

∂x
+
n

2
A

v(log x, x, y) = 0, Dsv(log x, x, y) = x−
n
2 f(x, y)

(4.5)

Recall that h(x, y, dy) = h(x) is a one-parameter family of metrics on ∂X. Here ∆h is the Laplacian

on ∂X associated with the metric h(x, y, dy). In local coordinates is ∆h = 1

|h|
1
2

∑n
i,j=1

∂
∂yi

(
|h| 12 hij ∂

∂yj

)
,

and A = 1
2 |h|−1 ∂|h|

∂x .

Equation (4.3) implies

v = 0 for 2 logx− log x0 < s < log x0, x < x0 < ǫ.(4.6)

The operator P is not strictly hyperbolic at x = 0, so the argument of Friedlander [14], which is based

on a theorem of Leray, cannot be used directly. We will refine the method of [13] and obtain energy

estimates which hold uniformly up to {x = 0}.
It is worth observing that if the tensor h(x, y, dy) is an even function of x, then after setting r = x2,

the operator r−
1
2P is smooth and strictly hyperbolic. So Friedlander’s method can be applied directly.

Such metrics have been recently studied by Guillarmou in [17] and include the case where the metric has

constant curvature near ∂X, see [19]. In the general case this trick does not work because the resulting

operator would not be smooth at r = 0.

In section 7 we will need to understand the behavior of the forward radiation field as s → −∞, so

we will compactify the problem and obtain uniform estimates as s → −∞. So we make the change of

variables

s = 2 log t′, x = x′t′.(4.7)

This choice of coordinates is designed to do two things: first it transforms the operator ∂
∂x

(
2 ∂

∂s + x ∂
∂x

)

into ∂
∂x′

∂
∂t′ , and secondly it compactifies the half-line (−∞, 0]. Thus let

V (x′, t′, y) = v(2 log t′, x′t′, y) = (x′t′)−
n
2 u

(
log

(
t′

x′

)
, x′t′, y

)
.

Then V is smooth in t′ > 0, x′ > 0 and, as u is odd in t, V (x′, t′, y) = −V (t′, x′, y). Moreover for

P ′ =
∂

∂x′
∂

∂t′
+ x′t′∆h +

1

2
A(x′t′, y)

(
t′
∂

∂t′
+ x′

∂

∂x′

)
+
n

2
A(x′t′, y),

P ′V = 0, x′ > 0, t′ > 0,

V (x′, x′, y) = 0,
∂

∂x′
V (x′, x′, y) = −x′−n−1

f(x′
2
, y).

(4.8)

Here ∆h is the Laplacian with respect to the metric h(x′t′, y, dy) which in local coordinates is ∆h =
1

|h(x′t′,y)|
1
2

∑
i,j

∂
∂yi

(
|h(x′t′, y)| 12 hij(x′t′, y) ∂

∂yj

)
.

The support properties of v given in (4.6) translate into

V (x′, t′, y) = 0 if x′ <
√
x0, t′ <

√
x0.(4.9)

The coefficients of P ′ are smooth up to {x′ = 0} ∪ {t′ = 0} and therefore can be extended smoothly,

although not uniquely, to a neighborhood {|x′| < √
x0} ∪ {|t′| < √

x0}. To obtain the desired regularity
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of V we will differentiate the equation (4.8) and obtain energy estimates for the resulting system of

differential equations. We begin by proving

Lemma 4.1. For T > 0, let Ω = [0, T ] × [0, T ]. Let V (x′, t′, y) be a N × 1 vector, smooth in x′ > 0,

t′ > 0, y ∈ ∂X, satisfying the system

(
∂

∂x′
∂

∂t′
+ x′t′∆h

)
V + x′t′B

(
x′, t′, y,

∂

∂y

)
V + C(x′, t′, y)t′

∂V

∂t′
+D(x′, t′, y)x′

∂V

∂x′
+

E(x′, t′, y)V = 0 in x′ > 0, t′ > 0 and

V (x′, x′, y) = f1(x
′, y),

∂V

∂x′
(x′, x′, y) = f2(x

′, y), x′ > 0,

(4.10)

where B
(
x′, t′, y, ∂

∂y

)
is an N×N matrix of first order differential operators having derivatives in y only,

C, D and E are N ×N matrices of functions. Moreover B,C,D and E are smooth in |x′| < T, |t′| < T,

y ∈ ∂X. Let the data f1 and f2 be such that

∫

[0,T ]×∂X

(
x′|f1|2 + x′|∂f1

∂x′
|2 + x′

3|dh(x′2)f1|2
)
d volh(x′2) dx

′ <∞,

∫

[0,T ]×∂X

x′|f2|2d volh(x′2) dx
′ <∞.

(4.11)

Then for T small

∫

Ω×∂X

[
|V |2 + x′t′(x′ + t′)

∣∣dh(x′t′)V
∣∣2 + x′

∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ t′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2
]
d volh(x′t′) dx

′dt′ ≤

C(T )

∫

[0,T ]×∂X

(
x′ |f1|2 + x′ |f2|2 + x′|∂f1

∂x′
|2 + x′

3 ∣∣dh(x′2)f1
∣∣2
)

(x′, y)d volh(x′2) dx
′.

(4.12)

In (4.11) and (4.12) dh(x′2) and dh(x′t′) are, respectively, the d-derivation on the section ∂X with the

metric h(x′
2
) and h(x′t′).

Proof. We begin by multiplying the system (4.10) by x′ ∂V
∂x′

− t′ ∂V
∂t′ . Notice that the operator x′ ∂

∂x′
− t′ ∂

∂t′

is ∂
∂t written in these coordinates. We obtain

0 =
1

2
√
h(x′t′, y)

∂

∂t′

[(
x′
∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ t′
2
x′|dh(x′t′)V |2

)
√
h(x′t′, y)

]
−

1

2
√
h(x′t′, y)

∂

∂x′

[(
t′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2

+ t′x′
2|dh(x′t′)V |2

)
√
h(x′t′, y)

]
+

+
∑

k

x′t′δh(x′t′)

((
x′
∂Vk

∂x′
− t′

∂Vk

∂t′

)
dh(x′t′)Vk

)
+Q

(
V, x′

∂V

∂x′
, t′
∂V

∂t′
, x′t′

∂V

∂yj

)
.

(4.13)

Here δh(x′t′) is the divergence operator on the section ∂X, dual to dh(x′t′) with respect to the metric

h(x′t′), and Q is a quadratic form with smooth coefficients.

Let

Ωδ = [δ, T ]× [δ, T ], Ω+
δ = {(x′, t′) ∈ Ωδ; t′ ≥ x′}, and

Ωa,b = {(x′, t′) ∈ Ω, a ≤ x′ ≤ t′ ≤ b},

see figure 1.
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T

Ω

x x

t t

’

’ ’

’

Ωδ t0

δ x
1

T

t
0

δ

x1,T ,

Figure 1. The regions Ωx1,T and Ωδ,t0 .

Integrating (4.13) in Ωx1,T × ∂X, using the compactness of ∂X, the divergence theorem, and that the

part of the first term in (4.13) which is inside the brackets is positive, we have

1

2

∫

[x1,T ]×∂X

(
t′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2

+ t′x′
2|dh(x′t′)V |2

)
(x1, t

′, y)d volh(x1t′) dt
′ +

∫

Ωx1,T ×∂X

|Q| d volh(x′t′) dx
′dt′

≤ 1

2

∫

[x1,T ]×∂X

(
x′
∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ x′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2

+ 2x′
3 ∣∣dh(x′2)V

∣∣2
)

(x′, x′, y)d volh(x′2) dx
′.

(4.14)

Proceeding similarly in the region Ωδ,t0 × ∂X gives

1

2

∫

[δ,t0]×∂X

(
x′
∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ x′t′
2|dh(x′t′)V |2

)
(x′, t0, y)d volh(x′t0) dx

′ +

∫

Ωδ,t0
×∂X

|Q| d volh(x′t′) dx
′dt′

≤ 1

2

∫ t0

δ

∫

∂X

(
x′
∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ x′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2

+ 2x′
3 ∣∣dh(x′2)V

∣∣2
)

(x′, x′, y)d volh(x′2) dx
′.

(4.15)

Next we integrate (4.14) in x1 ∈ [δ, T ] and (4.15) in t0 ∈ [δ, T ] and add the results to get

1

2

∫

Ω+

δ
×∂X

(
x′t′(t′ + x′)|dh(x′t′)V |2 + x′

∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ t′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2
)

(x′, t′, y)d volh(x′t′) dx
′dt′+

∫ T

δ

∫

Ωx1,T ×∂X

|Q|d volh(x′t′) dx
′dt′dx1 +

∫ T

δ

∫

Ωδ,t0
×∂X

|Q|d volh(x′t′) dx
′dt′dt0 ≤

1

2
(T − δ)

∫ T

δ

∫

∂X

(
x′
∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ x′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2

+ 2x′
3 ∣∣dh(x′2)V

∣∣2
)

(x′, x′, y)d volh(x′2) dx
′.

(4.16)

With the exception of terms of Q containing products involving Vj , all the others in the two middle

terms of (4.16) are trivially bounded by the terms in the first integral. To analyze the terms containing

Vj , we will bound the integral of |V |2 in Ω+
δ . So we write for t′ > x′,

Vj(x
′, t′, y) = Vj(t

′, t′, y) −
∫ t′

x′

∂Vj

∂s
(s, t′, y) ds.
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The Cauchy-Schwartz inequality then gives

|Vj(x
′, t′, y)|2 ≤ 2|Vj(t

′, t′, y)|2 + 2(t′ − x′)

∫ t′

x′

∣∣∣∣
∂Vj

∂s
(s, t, y)

∣∣∣∣
2

ds.(4.17)

Hence, as
√
h is bounded from above and below, there exists C > 0 such that

∫

Ω+

δ
×∂X

|Vj(x
′, t′, y)|2d volh(x′t′) dx

′dt′ =

∫ T

δ

∫ t′

δ

∫

∂X

|Vj(x
′, t′, y)|2d volh(x′t′) dx

′dt′ ≤

C

(∫ T

δ

∫

∂X

t′|Vj(t
′, t′, y)|2d volh(t′2) dt

′ +

∫ T

δ

∫ t′

δ

∫

∂X

t′
∫ t′

x′

∣∣∣∣
∂Vj

∂s
(s, t′, y)

∣∣∣∣
2

d volh(st′) ds dx
′dt′

)
.

Switching the order of integration of y, x′ and s in the last integral, and using that t′ < T, gives
∫

Ω+

δ
×∂X

|V (x′, t′, y)|2d volh(x′t′) dx
′dt′ ≤ C

∫ T

δ

∫

∂X

t′|Vj(t
′, t′, y)|2d volh(t′2) dt

′+

CT

∫

Ω+

δ
×∂X

s

∣∣∣∣
∂Vj

∂s
(s, t, y)

∣∣∣∣
2

d volh(st′) dsdt
′.

(4.18)

Hence
∫ T

δ

∫

Ωx1,T ×∂X

|Q|d volh(x′t′) dx
′dt′dx1 +

∫ T

δ

∫

Ωδ,t0
×∂X

∣∣Qd volh(x′t′)

∣∣ dx′dt′dt0 ≤

C(T − δ)

∫

Ω+

δ
×∂X

[
x′
∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ t′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2

+ (x′t′)2
∣∣dh(x′t′)Vj

∣∣2
]
d volh(x′t′) dx

′dt′+

C(T − δ)

∫ T

δ

∫

∂X

x′ |V |2 (x′, x′, y)d volh(x′2) dx
′.

After taking the limit as δ → 0, we find that there exists K > 0 such that, for small T

∫

Ω+×∂X

(
x′t′(t′ + x′)|dh(x′t′)V |2 + x′

∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ t′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2
)
d volh(x′t′) dx

′dt′ ≤

KT

∫ T

0

∫

∂X

(
x′|V |2 + x′

∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ x′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2

+ x′
3 ∣∣dh(x′2)V

∣∣2
)

(x′, x′, y)d volh(x′2) dx
′.

(4.19)

This does not quite give (4.12), as the term in |V |2 is not yet included on the left hand side of the

inequality. However, taking δ → 0 in (4.18), substituting it in (4.19), and choosing T small enough, we

obtain
∫

Ω+×∂X

(
|V |2 + x′t′(t′ + x′)|dh(x′t′)V |2 + x′

∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ t′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2
)
d volh(x′t′) dx

′dt′ ≤

C(T )

∫ T

0

∫

∂X

(
x′|V |2 + x′

∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ x′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2

+ x′
3 ∣∣dh(x′2)V

∣∣2
)

(x′, x′, y)d volh(x′2) dx
′.

(4.20)

As the operator in (4.10) and the estimate (4.20) remain of the same type after switching x′ and t′, this

estimate also holds in the region below the diagonal.

Notice that ∂
∂x′

V (x′, x′, y) = ∂
∂x′

f1(x
′, y) = ∂

∂x′
V (x′, x′, y) + ∂

∂t′V (x′, x′, y). So ∂
∂t′ V (x′, x′, y) =

∂
∂x′

f1(x
′, y) − f2(x

′, y), and thus the term on the right hand side of (4.20) is bounded by the right

hand side of (4.12)

This ends the proof of the Lemma. �
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Now we apply the Lemma 4.1 to prove Theorem 2.1. The goal is to prove that for f(x, y) smooth and

compactly supported, the solution to (4.2) is smooth up to {x = 0}. We know from (4.6) that the change

of variables (4.7) are smooth on the support of v, and we work in coordinates (x′, t′). We will show that

V (x′, t′, y) is smooth up to {x′ = 0} ∪ {t′ = 0}.
We first apply Lemma 4.1 to the special case of equation (4.8), noticing that in this case V is a single

function instead of a vector. The data on the surface {x′ = t′} is given by (4.8), so the integral on the

right hand side of (4.12) is equal to

∫ T

0

∫

∂X

2x′|x′−n−1
f(x′

2
, y)|2d volh(x′2) dx

′ =

∫ T 2

0

∫

∂X

|f(x, y)|2d volg ≤ ||f ||2L2(X).

Thus the right hand side of (4.12) is bounded by the square of the norm of f in L2(X, d volg) and

∫

Ω×∂X

[
|V |2 + x′t′(x′ + t′)

∣∣dh(x′t′)V
∣∣2 + x′

∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ t′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2
]
d volh(x′t′) dx

′dt′ ≤ C||f ||2L2(X).

Now we want to obtain such energy estimates for the derivatives of V . We begin by analyzing the

derivatives of V in the y variables and thus we differentiate equation (4.8) with respect to y. We get a

system of equations of the form

QV = 0

where V is a (n+ 1) × 1 vector whose transpose is

VT = (V,
∂V

∂y1
, ....,

∂V

∂yn
),

and Q is a matrix of second order operators with principal part

Q2 =

(
∂

∂x′
∂

∂t′
+ x′t′∆h

)
Id(n+1)×(n+1),

and lower order terms as in in (4.10). So we conclude that

∫

Ω×∂X

[
|V|2 + x′t′(x′ + t′)

∣∣dh(x′t′)V
∣∣2 + x′

∣∣∣∣
∂V
∂x′

∣∣∣∣
2

+ t′
∣∣∣∣
∂V
∂t′

∣∣∣∣
2
]
d volh(x′t′) dx

′dt′ ≤

C
(
||f ||2L2(X) + ||dh(x)f ||2L2(X)

)
.

Using this argument repeatedly we conclude that

∑

|α|≤k

[∫

Ω×∂X

[∣∣∣∣
(
∂

∂y

)α

V

∣∣∣∣
2

+ x′
∣∣∣∣
∂

∂x′

(
∂

∂y

)α

V

∣∣∣∣
2

+ t′
∣∣∣∣
∂

∂t′

(
∂

∂y

)α

V

∣∣∣∣
2
]
d volh(x′t′) dx

′dt′

]
≤

C
∑

|α|≤k+1

||
(
∂

∂y

)α

f ||2L2(X), k ∈ N,

(4.21)

Next we use the equation to obtain information about the derivatives of V with respect to x′ and t′.

It is convenient to get rid of the first order terms in (4.8), and we do that by conjugating the operator

with the factor |h(x′t′, y)|− 1
4 . Setting

W (x′, t′, y) = |h| 14V (x′, t′, y),(4.22)
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then W satisfies (
∂2

∂x′∂t′
+ x′t′∆h + x′t′B(x′t′, y,

∂

∂y
) + C(x′t′, y)

)
W = 0,(4.23)

where B is a first order operator and C is a smooth function. Since |h| is smooth and positive, V and W

have the same regularity given by (4.21). Moreover W is also supported in {x′ ≥ √
x0} ∪ {t′ ≥ √

x0}.
We have shown in (4.21) that t′

1
2 ∂

∂t′
∂α

∂yαW ∈ L2(Ω×∂X) for any α. In particular if Ω+ = Ω∩{t′ > x′},
t′

1
2 ∂

∂t′
∂α

∂yαW ∈ L2(Ω+ × ∂X). In view of the support of W we have ∂
∂t′

∂α

∂yαW ∈ L2(Ω+ × ∂X).

We deduce from (4.21) and (4.23) that

(
∂

∂y

)α

W (x′, t′, y),
∂

∂t′

(
∂

∂y

)α

W (x′, t′, y),

(
∂

∂y

)α
∂

∂t′
∂

∂x′
W (x′, t′, y) ∈ L2(Ω+ × ∂X) ∀ α ∈ N

n

(4.24)

Writing, for t′ > x′,

∂

∂x′

(
∂

∂y

)α

W (x′, t′, y) =
∂

∂x′

(
∂

∂y

)α

W (x′, x′, y) +

∫ t′

x′

∂

∂µ

∂

∂x′

(
∂

∂y

)α

W (x′, µ, y) dµ,

we see that, for t′ > x′,
∣∣∣∣
∂

∂x′

(
∂

∂y

)α

W (x′, t′, y)

∣∣∣∣
2

≤

2

∣∣∣∣
∂

∂x′

(
∂

∂y

)α

W (x′, x′, y)

∣∣∣∣
2

+ 2(t′ − x′)

∫ t′

x′

∣∣∣∣
∂

∂µ

∂

∂x′

(
∂

∂y

)α

W (x′, µ, y)

∣∣∣∣
2

dµ.

Integrating this in Ω+ × ∂X, using that ∂
∂x′

∂α

∂yαW (x′, x′, y) is smooth with compact support, and (4.24),

we find that

∂

∂x′

(
∂

∂y

)α

W ∈ L2(Ω+ × ∂X), α ∈ N
n.(4.25)

So (4.24) and (4.25) show that
(
∂

∂y

)α

W,
∂

∂x′

(
∂

∂y

)α

W and
∂

∂t′

(
∂

∂y

)α

W ∈ L2(Ω+ × ∂X), α ∈ N
n.

Using the symmetry of W with respect to the diagonal, we in fact have
(
∂

∂y

)α

W,
∂

∂x′

(
∂

∂y

)α

W and
∂

∂t′

(
∂

∂y

)α

W ∈ L2(Ω × ∂X), α ∈ N
n.

Differentiating (4.23) first with respect to y and then with respect to x′ or t′ we find that

∂2

∂x′2
∂

∂t′

(
∂

∂y

)α

W =
∑

β

∑

m=0,1

Gβ,m(x′, t′, y)
∂m

∂x′m

(
∂

∂y

)β

W ∈ L2(Ω+ × ∂X),

∂2

∂t′2
∂

∂x′

(
∂

∂y

)α

W =
∑

β

∑

m=0,1

Fβ,m(x′, t′, y)
∂m

∂t′m

(
∂

∂y

)β

W ∈ L2(Ω+ × ∂X),

with Fβ,m and Gβ,m smooth. Thus

∂2

∂x′2
∂

∂t′

(
∂

∂y

)α

W,
∂2

∂t′2
∂

∂x′

(
∂

∂y

)α

W ∈ L2(Ω+ × ∂X).

Proceeding as above, we find that

∂2

∂x′2

(
∂

∂y

)α

W,
∂2

∂t′2

(
∂

∂y

)α

W, and
∂

∂x′
∂

∂t′

(
∂

∂y

)α

W ∈ L2(Ω+ × ∂X).
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Using the symmetry of W with respect to the diagonal we get that in fact

∂2

∂x′2

(
∂

∂y

)α

W,
∂2

∂t′2

(
∂

∂y

)α

W, and
∂

∂x′
∂

∂t′

(
∂

∂y

)α

W ∈ L2(Ω × ∂X).

This argument can be repeated for all derivatives with respect to x′ and t′ and we conclude that W,

and hence V, is smooth in [0, T ] × [0, T ] × ∂X for T small. Any interval [0, T ′] can be covered by small

intervals in which the method above can be applied. So in fact this shows that the solution is smooth in

[0, T ]× [0, T ]× ∂X for any T.

Since V is supported in {x′ > √
x0} ∪ {t′ > √

x0} and the change of coordinates (4.7) is smooth

in this region, this shows that v has a smooth extension up to {x = 0}. This concludes the proof of

Theorem 2.1. �

5. The Radiation Fields And The Scattering Matrix

The spectrum of the Laplacian σ(∆) was studied by Mazzeo and Mazzeo and Melrose [39, 40, 43], see

also section 3 of [16] for a discussion. It consists of a finite pure point spectrum σpp(∆), which is the set

of L2(X) eigenvalues, and an absolutely continuous spectrum σac(∆) satisfying

σac(∆) =

[
n2

4
,∞
)
, and σpp(∆) ⊂

(
0,
n2

4

)
.(5.1)

This gives a decomposition

L2(X) = L2
pp(X) ⊕ L2

ac(X),

where L2
pp(X) is the finite dimensional space spanned by the eigenfunctions and L2

ac(X) is the space of

absolute continuity, which is the orthogonal complement of L2
pp(X).

With this choice of the spectral parameter, n2

4 + λ2, we have that if ℑλ 6= 0, then n2

4 + λ2 6∈ [n2

4 ,∞),

while if ℑλ < −n
2 it follows that n2

4 + λ2 6∈ [0,∞). The eigenvalues of ∆ are of finite multiplicity and are

described by points on the line ℜλ = 0 and −n
2 < ℑλ < 0. As the Laplacian is a non-negative operator,

the spectral theorem gives that the resolvent

R(
n

2
+ iλ) =

(
∆ − n2

4
− λ2

)−1

: L2(X) −→ L2(X), provided ℑλ < −n
2
.(5.2)

It was shown in [43] that it can be meromorphically continued to C \ i
2N as an operator acting on

appropriate spaces.

Let

HE(X) = {(f1, f2) : f1, f2 ∈ L2(X), and df1 ∈ L2(X)}.

For w0, w1 ∈ C∞
0 (

◦

X), we define the energy of w = (w0, w1) by

||w||2E =
1

2

∫

X

(
|dw0|2g − n2

4
|w0|2 + |w1|2

)
d volg,(5.3)

where |dw0|g denotes the length of the co-vector with respect to the metric induced by g on T ∗X. But

||w||2E is only positive when w0 is in the space of absolute continuity of ∆, and only then it defines a

norm. We denote

Pac : L2(X) −→ L2
ac(X)

the corresponding projector. Let

Eac(X) = Pac (HE(X)) = Range of the projector Pac acting on HE(X).



RADIATION FIELDS, SCATTERING & INVERSE SCATTERING 13

Eac(X) is a Hilbert space equipped with the norm (5.3).

One can use integration by parts to prove that if u(t, z) satisfies (2.5), then

|| (u(t, •), Dtu(t, •)) ||E = || (u(0, •), Dtu(0, •)) ||E .
Since W (t) commutes with Pac this gives, by for example slightly modifying the proof of Proposition 2.24

of [13], that the map W (t) defined by

W (t) : C∞
0 (

◦

X) × C∞
0 (

◦

X) −→ C∞
0 (

◦

X) × C∞
0 (

◦

X)

W (t) (f1, f2) = (u(t, z), Dtu(t, z)) , t ∈ R

(5.4)

induces a strongly continuous group of unitary operators.

W (t) : Eac(X) −→ Eac(X), t ∈ R.

By changing t↔ t− τ, one has that R± satisfy

R± ◦ (W (τ)f) (s, y) = R±f(s+ τ, y), τ ∈ R.(5.5)

So Theorem 2.1 shows that R± are “twisted” translation representations of the group W (t). That is,

if one sets R̃±(f)(s, y) = R±f(−s, y), then

R̃±(W (τ)) = TτR̃±,(5.6)

where Tτ denotes right translation by τ in the s variable. So R̃± are translation representers in the sense

of Lax and Phillips. Moreover we will prove

Theorem 5.1. The maps R± induce isometric isomorphisms

R± : Eac(X) 7−→ L2(R × ∂X),

where L2(R × ∂X) is defined with respect to h0 fixed in (2.4).

We deduce from Theorem 5.1 that the scattering operator

S : L2(R × ∂X) −→ L2(R × ∂X)

S = R+ ◦ R−1
−

(5.7)

is unitary in L2(∂X × R), and in view of (5.6), it commutes with translations. This implies that the

Schwartz kernel S(s, y, s′, y′) of S satisfies

S(s, y, s′, y′) = S (s− s′, y, y′) ,

and thus is a convolution operator. The scattering matrix is defined by conjugating S with the partial

Fourier transform in the s variable

A = FSF−1.

A is a unitary operator in L2(R × ∂X) and, since S acts as a convolution in the variable s, A is a

multiplication in the variable λ, i.e. it satisfies

AF (λ, y) =

∫

∂X

A(λ, y, y′)F (λ, y′) d volh0
(y′).(5.8)

We will prove that the stationary and dynamical definitions of the scattering matrix are equivalent:

Theorem 5.2. With x given by (2.4) and λ 6= 0, the Schwartz kernel of the map A(λ) defined by (2.3),

is equal to A(λ, y, y′), defined in (5.8).

To prove Theorem 5.1 and Theorem 5.2 we will use the connection between the wave equation, the

resolvent, and the Eisenstein function from [28, 43].
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6. The Radiation Fields and the Eisenstein Function

The following is an important fact concerning the behavior of the solution to the wave equation:

Proposition 6.1. Let f = (f1, f2) ∈ HE(X) and let u(t, z) be the solution to (2.5) with initial data f.

There exists C = C(f) > 0 such that
∫

X

|Dtu(t, z)|2 d volg(z) ≤ Ce
n
2

t, t > 0.(6.1)

Proof. In view of (5.1) we can write

fj(z) =
∑

cj,kφk(z) + wj(z), j = 1, 2,

where φk is an eigenfunction associated with an eigenvalue µk = n2

4 + λ2
k ∈ (0, n2

4 ), λk ∈ iR−, and wj is

the projection of fj onto L2
ac(X).

We then have that

u(t, z) =
∑

k

(
c1,k cos(λkt) + c2,k

1

λk
sin(λkt)

)
φk(z) + uac(t, z),

where uac is the solution to (2.5) with data w = (w1, w2).

As

uac(t, z) = cos t

√
∆ − n2

4
w1 +

(
∆ − n2

4

)− 1
2

sin t

√
∆ − n2

4
w2,

it follows that

Pacu(t, z) = cos t

√
∆ − n2

4
Pacf1 +

(
∆ − n2

4

)− 1
2

sin t

√
∆ − n2

4
Pacf2 = uac(t, z).

In this case the energy
∫

X

(
|Dtuac(t, z)|2 + |dguac(t, z)|2 −

n2

4
|uac(t, z)|2

)
d volg(z) =

∫

X

(
|w2(z)|2 + |dgw1(z)|2 −

n2

4
|w1(z)|2

)
d volg(z) = E0 > 0,

and in particular this gives
∫

X

|Dtuac(t, z)|2 d volg(z) ≤ C.

Since 0 > ℑλj > −n
2 , the other part of the solution obviously satisfies (6.1) and this proves the proposition.

�

Next we present an elementary and useful Lemma. The proof we gave of this result in the first version

of this paper was incorrect. One of the referees pointed out the mistake and kindly provided us with the

proof we present.

Lemma 6.2. Let H be an infinite dimensional Hilbert space, let H be a subspace of H of finite dimension

and let H⊥ be the orthogonal to H. If E ⊂ H is a dense subspace of H, then E ∩H⊥ 6= ∅, and E ∩H⊥

is dense in H⊥.
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Proof. We begin with the case dimH = 1 and we will prove that
(
E ∩H⊥

)⊥
= H. It is easy to see

that H ⊂
(
E ∩H⊥

)⊥
. To prove that

(
E ∩H⊥

)⊥ ⊂ H we let H = span{φ}, φ 6= 0. As E is dense, pick

f1, f2 ∈ E such that 〈fj , φ〉 6= 0, j = 1, 2. Then

f = f2 −
〈f2, φ〉
〈f1, φ〉

f1 ∈ E ∩H⊥.

Thus, if u ∈
(
E ∩H⊥

)⊥
, then 〈u, f〉 = 0. But this can be rewritten as

〈f2, u− 〈f1, u〉
〈f1, φ〉

φ〉 = 0, for all f2 with 〈f2, φ〉 6= 0

Since E is dense, this in fact holds for every f2 and thus u = 〈f1,u〉
〈f1,φ〉φ. Therefore

(
E ∩H⊥

)⊥ ⊂ H.

The general case follows by induction. Suppose the result is true for dimH = N−1 and let dimH = N.

Then

H = HN−1 ⊕D, HN−1 = span{φ1, ..., φN−1} and D = span{φN}, 〈φi, φj〉 = 0, 1 ≤ i, j ≤ N.

As proved above, E1 = E ∩ D⊥ is dense in H1 = D⊥. By assumption the result holds in dimension

N − 1, so E1 ∩H⊥
N−1 is dense in the orthogonal to HN−1 in D⊥, which is the orthogonal to HN in H.

As E1 ∩H⊥
N−1 = E ∩H⊥

N , E ∩H⊥
N is dense in H⊥

N in H.
�

The most important consequence of this is

Corollary 6.3. For L2
ac(X) defined as above, C∞

0 (
◦

X) ∩ L2
ac(X) is dense in L2

ac(X).

Now we are ready to prove the first mapping property of R+.

Proposition 6.4. Let u be the solution to (2.5) with data f = (f1, f2) ∈ C∞
0 (

◦

X) ∩ Eac(X). Then

R+f(s, y) ∈ L2(R × ∂X) and

||R+f ||L2(R×∂X) ≤ 2||f ||E.

Proof. We modify the proof of Lemma 2.6 of [13]. Let u be the solution of (2.5) with initial data equal

to f. For t, T > 0 fixed, consider the integral

ET,t =

∫

{z=(x,y)∈X; t+log x<T}

∣∣∣∣
∂u

∂t
(x, y, t)

∣∣∣∣
2

d volg .

For t + log x < T, it follows that x → 0 as t → ∞. So, for t large, we may work in local coordinates

where (2.4) holds. First we prove that

lim
t→∞

ET,t =

∫ T

−∞

∫

∂X

|R+f |2 d volh0
ds, ∀ T ∈ R.(6.2)

To see this we set, according to (4.4),

u(t, x, y) = x
n
2 v(t+ log x, x, y),

and since s = t + log x, we have ∂u
∂t = x

n
2

∂v
∂s . As ds = dx

x , it follows that d volg =
√
|h|(x, y) dxdy

xn+1 =√
|h|(e(s−t), y)en(t−s) ds dy. Since the initial data is compactly supported, there exists s0 such that v = 0

for s < s0. Thus

ET,t =

∫ T

s0

∫

∂X

∣∣∣∣
∂v

∂s

∣∣∣∣
2

(es−t, y, s)
√
|h|(e(s−t), y) dy ds.
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From Theorem 2.1 the convergence is uniform and thus we obtain

lim
t→∞

ET,t =

∫ T

−∞

∫

∂X

∣∣∣∣
∂v

∂s
(0, s, y)

∣∣∣∣
2√

|h|(0, y) dsdy =

∫ T

−∞

∫

∂X

|R+f(s, y)|2 d volh0
ds <∞ ∀ T ∈ R.

For any (f1, 0) ∈ Eac(X),
∫

X

(
|df1|2g − n2

4 |f1|2
)
d volg > 0. Thus the result follows by conservation of

energy. �

In view of Corollary 6.3 this can be restated as

Corollary 6.5. The maps R± defined in (2.6) and (2.7) extend from (C∞
0 (

◦

X) × C∞
0 (

◦

X)) ∩ Eac(X) by

continuity to maps

R± : Eac(X) −→ L2(R × ∂X).

The estimate (6.1) shows that we can take partial Fourier-Laplace transform with respect to t of the

forward fundamental solution of the wave equation U(t, z, z′) and thus, for ℑλ < −n
2 , we denote

R
(n

2
+ iλ

)
=

(
∆ − λ2 − n2

4

)−1

=

∫

R

U(t, z, z′)e−iλtdt

It is easy to see that if u(t, z) satisfies (2.5) then V (t, z) = H(t)u(t, z) satisfies
(
D2

t − ∆ +
n2

4

)
V (t, z) = if2(z)δ(t) + if1(z)Dtδ(t), on R×

◦

X

V (t, z) = 0 for t < 0,

and limx→0 x
−n

2 DsV (s− log x, x, y) = limx→0 x
−n

2 Dsu(s− log x, x, y).

So,

R
(n

2
+ iλ

)
(if2 + iλf1) =

∫

R

V (t, z)e−iλtdt, with f = (f1, f2) ∈ C∞
0 (X) and ℑλ < −n

2
.(6.3)

In fact, if f = (f1, f2) ∈ C∞
0 (X) ∩ Eac(X), conservation of (positive) energy gives that (6.3) holds for

ℑλ ≤ 0. Using local coordinates z = (x, y) near ∂X, we are interested in limx↓0 x
− n

2DsV (s− log x, x, y).

From (6.3) we obtain, for ℑλ < −n
2 ,∫

R

x−
n
2 DsV (s− log x, y)e−iλsds =

∫

R

x−
n
2 DtV (t, x, y)e−iλt−iλ log xdt =

x−
n
2
−iλλ R

(n
2

+ iλ
)

(if2 + iλf1)(x, y).

(6.4)

Next we study the behavior of the Schwartz kernel

x−
n
2
−iλR

(n
2

+ iλ, z, z′
)
, z = (x, y), z′ = (x′, y′), ℑλ < −n

2
, as x ↓ 0.(6.5)

Mazzeo and Melrose show in [43] that R(n
2 + iλ) has a meromorphic continuation from ℑλ < −n

2 to

C \ i
2N. We briefly recall their construction and use it to study (6.5).

Locally, in the interior of X ×X, and for ℑλ << 0, R(n
2 + iλ) is pseudo-differential operator, so its

kernel is singular at the diagonal

D = {(x, y, x′, y′) ∈ X ×X ;x = x′, y = y′}.
To understand the behavior of the kernel of R(n

2 + iλ) up to

D∂X = D ∩ (∂X × ∂X),

and for other values of λ, Mazzeo and Melrose blow-up the intersection D∂X . This can be done in an

invariant way, but in local coordinates this can be seen as introduction of polar coordinates around D∂X .
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y−y’
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0
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β

Figure 2. The blown up manifold X ×0 X.

Taking coordinates (x, y) and (x′, y′) in a product decomposition of each copy of X near ∂X, the “polar

coordinates’ are then given by

R = [x2 + x′
2

+ |y − y′|2] 1
2 , ρ =

x

R
, ρ′ =

x′

R
ω =

y − y′

R
(6.6)

A function is smooth in the space X×0X if it is smooth in (R, ρ, ρ′, y, ω) about D∂X . As a set, X×0X

is X ×X with D∂X replaced by the interior pointing portion of its normal bundle. Let

β : X ×0 X −→ X ×X

denote the blow-down map.

The function R is a defining function for a new face, which is called the front face, ff. This is the lift

of D∂X = D∩(∂X × ∂X) . The functions ρ and ρ′ are then defining functions for the other two boundary

faces which are called the top face T , and bottom face B, respectively, i.e.

ff = {R = 0}, B = {ρ′ = 0}, T = {ρ = 0}.
See Figure 2, which is taken from section 3 of [43]. In X ×0 X the lift of the diagonal of X × X only

meets the boundary ff and is disjoint from the other two boundary faces.

The main result from [43] needed here is that the lift of the kernel of the resolvent satisfies

β∗R(
n

2
+ iλ) = R1(

n

2
+ iλ) +R2(

n

2
+ iλ),(6.7)

where R1 is conormal of order −2 to the lifted diagonal, D0, and smooth up to the front face, and, most

importantly for our purposes, vanishes to infinite order at the top and bottom faces. The second part,

R2, is of the form

R2 = ρ
n
2
+iλρ′

n
2
+iλ

F (
n

2
+ iλ, •),(6.8)

where F (n
2 + iλ, •) ∈ C∞ (X ×0 X) is meromorphic in λ ∈ C\ i

2N, and holomorphic and in λ ∈ ℑλ < −n
2 .

Now we use the construction above to verify that x′
−n

2
−iλ

R(n
2 + iλ, z, z′)|{x=0} is well defined. This

is carried out in Proposition 4.1 of [28], and we briefly describe it.

We first look at the lift of x−
n
2
−iλR(n

2 + iλ, z, z′) under the blow-down map β. Recalling that x = Rρ,

we deduce from (6.7) and (6.8), and the fact that R1(
n
2 + iλ) vanishes to infinite order at the top and

bottom faces, that

β∗
(
x−

n
2
−iλR(

n

2
+ iλ, z, z′)

)
|ρ=0 = (Rρ)−

n
2
−iλ

(
R1(

n

2
+ iλ) +R2(

n

2
+ iλ)

)
|ρ=0 =

(
R−n

2
−iλρ′

n
2
+iλ

F2(
n

2
+ iλ, ρ, ρ′, R, ω)

)
|ρ=0

(6.9)

Since F2(
n
2 + iλ, •) is smooth, the restriction of ρ

n
2
+iλF2 to ρ = 0 is well defined.
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Notice that the composition of the restriction to ρ = 0 with the blow-down map β gives a map

β1 : ∂X ×0 X −→ ∂X ×X,

where ∂X ×0 X denotes the manifold ∂X ×X with the submanifold {x′ = 0, y = y′ = 0} blown-up. By

an abuse of notation we continue to use R and ρ′ to denote the restrictions of the corresponding functions

to ρ = 0. In other words we consider

R = [x′
2
+ |y − y′|2] 1

2 , ρ′ =
x′

R
ω =

y − y′

R

Therefore (6.9) above gives a well defined distribution on the manifold ∂X ×0 X, namely

F = R−iλρ′
n
2
+iλ

F2(
n

2
+ iλ, ρ, ρ′, R, ω)|ρ=0

By switching the variables x and x′ in the proof of Proposition 4.1 of [28] it can be shown that the push

forward of F to ∂X ×X under the map β1 is well defined. In view of (6.7) and (6.8) this is essentially

the same thing we want to do here. Therefore the restriction x−
n
2
−iλR(n

2 + iλ, z, z′)|x=0 is well defined

and we shall denote it by

E(
n

2
+ iλ, y, z′)

def
= x−

n
2
−iλR(

n

2
+ iλ, z, z′)|x=0 = β1∗F, λ ∈ C.(6.10)

It is clear from (6.8) that E(n
2 + iλ, y, z′) has a conormal singularity at {x′ = 0, y = y′}. This is the

transpose of the Eisenstein function, or Poisson operator, see for example [18, 20, 28].

This defines a meromorphic family of operators

E(
n

2
+ iλ) : C∞

0

( ◦

X
)
−→ C∞ (∂X)

E(
n

2
+ iλ)f(y) =

∫

X

E(
n

2
+ iλ, y, z′)f(z′) d volg(z

′), λ ∈ C \ i
2

N.
(6.11)

So we conclude from (6.10) and (6.3) that

∫

R

e−iλsR+(f1, f2)(y, s)ds =

∫

R

x−
n
2 (DsV )(s− log x, z)e−iλsds

∣∣∣∣
x=0

=

iλ

∫

X

E(
n

2
+ iλ, y, z′)(f2(z

′) + λf1(z
′)) d volg(z

′), where

ℑλ < −n
2

if f1, f2 ∈ C∞
0 (X), and ℑλ ≤ 0 if f1, f2 ∈ C∞

0 (X) ∩ Eac(X).

(6.12)

In view of (6.11) the right hand side of this equation has a meromorphic continuation to C \ i
2N, so the

left hand side can be meromorphically continued to C \ i
2N.

Recall from (6.4) that R+(f1, f2) ∈ L2(R× ∂X) if (f1, f2) ∈ Eac(X). Thus the left hand side of (6.12)

is well defined when ℑλ = 0 for such initial data. We want to understand the extension of the right hand

side for this type of data, and we proceed as in [18]. An application of Green’s identity, see for example

the proof of Proposition 2.1 of [18], gives

R(
n

2
+ iλ, z, z′) −R(

n

2
− iλ, z, z′) = −2iλ

∫

∂X

E(
n

2
+ iλ, y, z)E(

n

2
− iλ, y, z′) d volh0

(y),(6.13)

provided n
2 ± iλ are not poles of the resolvent R(•, z, z′).

On the other hand, by using (6.13) and Stone’s formula, see the proof of Proposition 2.2 of [18], we

deduce that the map
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E : C∞
0 (

◦

X) −→ C∞(∂X × R+)

φ 7−→
√

2

π

∫

X

E(
n

2
+ iλ, y, z′)φ(z′) d volg(z

′), λ > 0

induces a surjective isometry of the space of absolute continuity of the Laplacian

E : L2
ac(X) −→ L2

(
R

+;L2 (∂X) , λ2dλ
)
.(6.14)

Moreover it is an spectral representation in the sense that

E∆ =

(
n2

4
+ λ2

)
E.(6.15)

A similar analysis can be carried out for the backward radiation field. We know that

R
(n

2
− iλ

)
=

(
∆ − λ2 − n2

4

)−1

=

∫

R

U−(t, z, z′)e−iλtdt, ℑλ > n

2
,

and hence

F (R−(f1, f2)) (y, λ) = iλE
(n

2
− iλ

)
(f2 + λf1) , where

ℑλ > n

2
if (f0, f1) ∈ C∞

0 (X) and ℑλ ≥ 0 if (f0, f1) ∈ C∞
0 (X) ∩ Eac(X).

(6.16)

Now we are ready to prove Theorem 5.1.

Proof. Using (6.14) we observe that, for λ ∈ (0,∞) and f, g ∈ L2
ac(X),

〈f, g〉L2(X) =
2

π
〈λE

(n
2
± iλ

)
f, λE

(n
2
± iλ

)
g〉L2(R+×∂X).(6.17)

On the other hand, as E
(

n
2 + iλ

)
= E

(
n
2 − iλ

)
when λ ∈ (0,∞),

||E
(n

2
+ iλ

)
(λf2 + λ2f1)||2L2(R×∂X) =

∫

R

E
(n

2
+ iλ

)
(λf2 + λ2f1)E

(n
2
− iλ

)
(λf2 + λ2f1) dλd volh0

=

∫ ∞

0

E
(n

2
+ iλ

)
(λf2 + λ2f1)E

(n
2
− iλ

)
(λf2 + λ2f1)dλd volh0

+

∫ ∞

0

E
(n

2
− iλ

)
(−λf2 + λ2f1)E

(n
2

+ iλ
)

(−λf2 + λ2f1) dλd volh0
=

2

∫ ∞

0

∣∣∣E
(n

2
+ iλ

)
λf2

∣∣∣
2

dλd volh0
+2

∫ ∞

0

∣∣∣E
(n

2
+ iλ

)
λ2f1

∣∣∣
2

dλd volh0
.

Equation (6.17) shows that
∫ ∞

0

∣∣∣E
(n

2
+ iλ

)
λf2

∣∣∣
2

dλd volh0
=
π

2
||f2||2L2(X).

But by (6.15)

λ2E
(n

2
+ iλ

)
f1 = E

(n
2

+ iλ
)(

∆ − n2

4

)
f1,

and thus
∫ ∞

0

∣∣∣E
(n

2
+ iλ

)
λ2f1

∣∣∣
2

dλd volh0
= 〈λE

(n
2

+ iλ
)
f1, λE

(n
2

+ iλ
)(

∆ − n2

4

)
f1〉L2(R×∂X).
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Again by (6.17)

〈λE
(n

2
+ iλ

)
f1, λE

(n
2

+ iλ
)(

∆ − n2

4

)
f1〉L2(R×∂X) =

π

2
〈f1,

(
∆ − n2

4

)
f1〉L2(X) =

π

2

∫

X

(
|df1|2 −

n2

4
|f1|2

)
d volg .

So we conclude that for (f1, f2) ∈ Eac(X),

||E
(n

2
+ iλ

)
(λf2 − λ2f1)||2L2(R×∂X) = 2π||(f1, f2)||2HE(X)

Plancherel’s theorem and (6.12) show that R+ is norm preserving, and therefore its range is closed. It

is clearly dense, otherwise there would be φ ∈ L2(R × ∂X) orthogonal to the range of R, but by (6.14),

φ = 0. This concludes the proof of Theorem 5.1. �

In view of equations (6.12) and (6.16), Theorem 5.2 is equivalent to

Proposition 6.6. For λ ∈ R, λ 6= 0, the scattering matrix is the unitary operator

A(λ) : L2(∂X) −→ L2(∂X)

that satisfies

E
(n

2
+ iλ

)
= A(λ)E

(n
2
− iλ

)
.(6.18)

Proof. We need three things: equations (6.10), (6.13), and the expansion forE
(

n
2 + iλ, y, x′, y′

)
as x′ → 0,

which can be found in Propositions 4.1 and 4.2 of [28], i.e

E
(n

2
+ iλ, y, x′, y′

)
=

1

2iλ
x′

−iλ
δ(y, y′) +

1

2iλ
x′

iλ
A(λ)(y, y′) + o(x), as x′ ↓ 0.(6.19)

Now multiplying (6.13) by x′
−iλ

and applying (6.10) and (6.19), the result follows.

This is a known argument and can be found for example in the proofs of Proposition 2.5 of [20], or

Corollary 2.6 of [18], which deal with Riemann surfaces. Here we used the results of [28] where needed. �

7. The support theorem

The main goal of this section is to prove

Theorem 7.1. If f ∈ L2
ac(X) and R+(0, f)(s, y) is supported in s ≥ s0, with s0 << 0, then f is supported

in {x ≥ es0}.

Theorem 7.1 is a “support theorem” in the terminology of Helgason [23, 24] and is a generalization of

Theorem 3.13 of [36], which is Theorem 7.1 for the hyperbolic space H
3. Helgason [21, 24] proved such a

result for functions that are compactly supported, but for more general symmetric spaces.

It is important to observe, as emphasized by Lax in [33], that this theorem does not have an analogue

in (asymptotically) Euclidean space. In that case the function f has to be rapidly decaying at infinity–

see Theorem 2.6 and Remark 2.9 of [24]– which would correspond to infinite order of vanishing of f at

x = 0. Here the only requirement is that f ∈ L2
ac(X). However, in coordinates (2.4) the distance along

a geodesic that approaches ∂X perpendicularly is − logx, so the requirement that f ∈ L2(X) already

imposes an exponential of decay of f near the boundary.

The first step in the proof of Theorem 7.1 is

Lemma 7.2. If f ∈ L2
ac(X) and R+(0, f)(s, y) is supported in s ≥ s0, then f is compactly supported.
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Proof. Without loss of generality we may assume that f ∈ C∞(
◦

X). Indeed, we recall from equations

(6.12) and (6.15) that the Fourier transform in s of the forward radiation field is a spectral representation

of ∆ − n2

4 . Then if F denotes the Fourier transform in the s variable then

q(λ2)FR+(0, f)(λ, y) = FR+

(
0, q

(
∆ − n2

4

)
f

)
, f ∈ L2

ac(X), ∀ q ∈ S(R).(7.1)

If φ ∈ C∞
0 (R), is an even function, which we choose to be supported in (−ǫ, ǫ), then its Fourier

transform φ̂ is also an even function, and there exists a smooth function ψ1 ∈ S(R) such that

φ̂(λ) = ψ1(λ
2).(7.2)

Therefore by (7.1)

φ ∗ R+(0, f) = R+

(
0, ψ1

(
∆ − n2

4

)
f

)
.(7.3)

As ∂2k

∂s2k φ ∗ R+(0, f) ∈ L2(R × ∂X), k = 1, 2, ..., then

(
∆ − n2

4

)k

ψ1

(
∆ − n2

4

)
f ∈ L2(X).

∆ − n2

4 is a standard elliptic operator in the interior of X, so ψ1

(
∆ − n2

4

)
f ∈ C∞(

◦

X). Moreover, by

elliptic regularity for totally characteristic operators, see Theorem 3.8 of [41],

(xDx, xDy1
, ..., xDyn

)
α
ψ1

(
∆ − n2

4

)
f ∈ L2(X), α ∈ N

n+1.(7.4)

If φ ∈ C∞
0 (R) is even, and R+(0, f)(s, y) = 0 for s < s0, φ ∗ R+(0, f)(s, y) = 0 for s < s0 − ǫ. So from

now on we will assume that f, instead of ψ1

(
∆ − n2

4

)
f, satisfies (7.4). Since the solution to the Cauchy

problem is smooth for all (finite) times, the solution V to (4.8) is smooth in (0, T ) × (0, T ) × ∂X. We

do not know a priori that V is smooth up to {x′ = 0} ∪ {t′ = 0}. We proved in Theorem 2.1 that this

is true if f ∈ C∞
0 (

◦

X), but here f is not yet known to be compactly supported and may be singular at

{x′ = t′ = 0}.
To illustrate our method, let us assume for a moment that V is smooth up to {x′ = 0} ∪ {t′ = 0}.

Using the equation, and that V (x′, x′, y) = 0, one can prove that if R+(0, f)(s, y) = 0 for s < s0,

then all derivatives of V vanish at {x′ = 0} ∪ {t′ = 0}. Therefore we can extend V smoothly across

{t′ = 0} ∪ {x′ = 0} as V = 0. We then want to use a uniqueness theorem to conclude that V = 0 near

{x′ = t′ = 0}. In particular this will imply that f(x, y) = 0 in a neighborhood of {x = 0} and we will be

done.

The operator P ′ in (4.8) extends (although not uniquely) to a neighborhood of {x′ = t′ = 0}, however

notice that the coefficients of the terms of (4.8) involving second order derivatives in y vanish to second

order at x′ = t′ = 0, so Hörmander’s uniqueness theorem cannot be used to guarantee that V = 0 near

{t′ = x′ = 0}. The uniqueness theorem which deals with the Cauchy problem for second order operators

with this type of degeneracy is due to Alinhac, Theorem 1.1.2 of [1]. We will apply his result to the

operator P and the function φ(x′, t′) = x′ + t′. Notice that, although P ′ is real, it is not of principal type

at {x′ = t′ = 0}, so the result of Lerner and Robbiano, see [38] or Theorem 28.4.3 of [26], cannot be

applied either.

The principal symbol of P ′ is

p = σ2(P
′) = −ξτ − x′t′h(x′t′, y, η), h(x′t′, y, η) =

∑

ij

hij(x′t′, y)ηiηj .(7.5)
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Figure 3. Unique continuation for V. P ′ is degenerate at x′ = t′ = 0, but V is supported

in the wedge {x′ ≥ 0, t′ ≥ 0}

If Hp denotes the Hamilton vector field of p and φ(x′, t′) = x′ + t′, is as defined above, then

Hp = −τ ∂

∂x′
− ξ

∂

∂t′
− x′t′Hh + (t′h+ x′t′

2
h1)

∂

∂ξ
+ (x′h+ t′x′

2
h1)

∂

∂τ
,(7.6)

where Hh denotes the Hamilton vector field of h in the variables y and η only, and h1(x
′t′, y, η) denotes

the derivative of h in the first variable. Hence

H2
pφ = −(x′ + t′) [h(x′t′, y, η) + x′t′h1(x

′t′, y, η)] ,

Since h(0, y, η) is non-degenerate, it follows that for x′, t′ small

−φH2
pφ ≥ 1

2
φ2h.

We can therefore apply Theorem 1.1.2 of [1] to P ′ and φ (with ΛS = ∅, and a = C = 0 as in the statement

of Theorem 1.1.2 of [1]) to guarantee that V = 0 in a neighborhood of {x′ = t′ = 0}. See figure 3. In

particular this shows that f(x, y) = 0 near x = 0, so f ∈ C∞
0 (

◦

X), as we want to prove.

We emphasize that the key reason this works is the fact that the extension of V would be supported

in the wedge {x′ ≥ 0, t′ ≥ 0}, so the intersection of the support of V and {φ = 0} is compact, as required

by Theorem 1.1.2 of [1].

The main difficulty to apply this method to prove Theorem 7.1 is that V is not known to be smooth

up to {x′ = 0}∪{t′ = 0}, and Theorem 1.1.2 of [1] is proved for smooth functions. We have to show that

our assumptions guarantee enough regularity of V to make Alinhac’s argument work.

We will work with W, which is defined in (4.22), instead of V. The advantage is that W satisfies (4.23)

which has no first order derivatives in x′ or t′.

The proof is divided in two steps:

Step 1: We will use that W (x′, x′, y) = 0, x′ > 0, and R+(0, f) = 0, to show that W can be extended

as a (distribution) solution to (4.23) in a neighborhood of {x′ = t′ = 0} vanishing when either x′ < 0 or

t′ < 0.

Step 2: We use the method of proof of Theorem 1.1.2 of [1] to show that W = 0 in a neighborhood of

{x′ = t′ = 0}.
Proof of Step 1. We will show that the conditions W (x′, x′, y) = 0, x′ > 0, and R(0, f) = 0 for s < s0,

imply that W has an extension W̃ satisfying

W̃ ∈ H2k
(
(−T, T )× (−T, T );H−2k(∂X)

)
, k ∈ N(7.7)
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and
(

∂2

∂x′∂t′
+ x′t′∆h + x′t′B(x′t′, y,

∂

∂y
) + C(x′t′, y)

)
W̃ = 0 in Ω̃

W̃ (x′, t′, y) = W (x′, t′, y) if x′ > 0, t′ > 0

W̃ (x′, t′, y) = 0 if x′ < 0, t′ < 0.

(7.8)

Here we have extended the operators ∆h, B and the coefficient C smoothly across {x′ = 0} ∪ {t′ = 0}.
It was proved in Lemma 4.1 that when f ∈ L2(X), and T is small, the solution W of (4.23) satisfies

W, x′
1
2Dx′W, t′

1
2Dt′W ∈ L2 ([0, T ]× [0, T ]× ∂X) ,

[x′t′(x′ + t′)]
1
2Dyj

W ∈ L2 ([0, T ]× [0, T ]× ∂X) , 1 ≤ j ≤ n.
(7.9)

We emphasize that, due to the smoothness of f, W is smooth in the region {x′ > 0, t′ > 0}.
We will show (7.7) for k = 1. For that, let φ ∈ C∞(∂X) and

G(x′, t′) =

∫

∂X

W (x′, t′, y)φ(y) dy.(7.10)

Using equation (4.23) and (7.9) we deduce that

∂2W (x′, t′, y)

∂x′∂t′
∈ L2

(
[0, T ]× [0, T ];H−1(∂X)

)
.(7.11)

Differentiating (4.23) in x′ we have

∂2

∂x′2
∂

∂t′
W =

−t′∆hW − x′t′QW − t′∆hx
′ ∂

∂x′
W − t′BW − x′t′B1W − t′Bx′

∂

∂x′
W − C1W − C

∂

∂x′
W,

(7.12)

where Q and B1 are second and first order operators respectively, involving y derivatives only. Using

(7.9) we find that

x′
1
2
∂2

∂x′2
∂

∂t′
W ∈ L2

(
[0, T ]× [0, T ];H−2(∂X)

)
.(7.13)

Since W (t′, t′, y) = 0, t′ > 0, equation (4.23) shows that ∂2W
∂x′∂t′ (t

′, t′, y) = 0, t′ > 0 and thus we can write

∂2G

∂x′∂t′
(x′, t′) = −

∫ t′

x′

∂2

∂s2
∂

∂t′
G(s, t′) ds, if t′ > x′ > 0.

Therefore
∣∣∣∣
∂2G

∂x′∂t′
(x′, t′)

∣∣∣∣
2

=

∣∣∣∣∣

∫ t′

x′

∂2

∂s2
∂

∂t′
G(s, t′) ds

∣∣∣∣∣

2

≤ log

(
t′

x′

)∫ t′

x′

s

∣∣∣∣
∂2

∂s2
∂

∂t′
G(s, t′)

∣∣∣∣
2

ds.

So from (7.13) we obtain for T small and δ < 1
2 ,

∫ T

0

∫ t′

0

x′
−2δ

∣∣∣∣
∂2G

∂x′∂t′
(x′, t′)

∣∣∣∣
2

dx′ dt′ ≤
∫ T

0

∫ t′

0

s1−2δ

(1 − 2δ)

(
(2 − 2δ)| log s| + 1

1 − 2δ

)
s

∣∣∣∣
∂2

∂s2
∂

∂t′
G(s, t′)

∣∣∣∣
2

ds dt′ <

||x′
1
2
∂2

∂x′2
∂

∂t′
W ||2L2([0,T ]×[0,T ];H−2(∂X)) <∞.
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So

x′
−δ ∂2G

∂x′∂t′
∈ L2 ({t′ ≥ x′ > 0}) , δ <

1

2
,(7.14)

with uniform bound up to x′ = 0. This together with (7.13) imply that

∂

∂x′

(
x′

γ ∂2W

∂x′∂t′

)
∈ L2

(
{t′ ≥ x′ > 0};H−2(∂X)

)
, γ >

1

2
.(7.15)

Thus the restriction
(
x′

γ ∂2W
∂x′∂t′

)
(0, t′, y), t′ > 0, is well defined for any γ > 1

2 . In particular this shows

that (
x′

∂

∂x′
W

)
(0, t′, y) = 0, in (0, T ) × ∂X.(7.16)

In view of (7.11), the restriction ∂
∂t′W (0, t′, y) is well defined.

Recall that in these coordinates, and in terms of W, the radiation field is given by

R+(0, f) =
1

2
|h| 14 (0, y)

(
t′
∂W

∂t′
− x′

∂W

∂x′

)∣∣∣∣
x′=0

= 0.(7.17)

So (7.17) and (7.16) show that

∂

∂t′
W (0, t′, y) = 0, in (0, T ) × ∂X.(7.18)

Again applying the regularity of W given by (7.11) and using (7.18), we have for t′ > 0,

∣∣∣∣
∂G

∂t′
(t′, t′)

∣∣∣∣
2

≤
∣∣∣∣∣

∫ t′

0

∂2G

∂s∂t′
(s, t′) ds

∣∣∣∣∣

2

≤ t′
δ+1

δ + 1

∫ t′

0

s−δ

∣∣∣∣
∂2G

∂s∂t′
(s, t′)

∣∣∣∣
2

ds, δ <
1

2
,

and we find that
∫ T

0

t′
−1−δ

∣∣∣∣
∂G

∂t′
(t′, t′)

∣∣∣∣
2

<∞, δ <
3

2
.(7.19)

In particular this shows that

∂W

∂x′
(x′, x′, y),

∂W

∂t′
(x′, x′, y) ∈ L2([0, T ];H−2(∂X)).(7.20)

We can then write

∂W

∂t′
(x′, t′, y) =

∂W

∂t′
(x′, x′, y) +

∫ t′

x′

∂2W

∂s∂t′
(s, t′, y) ds and

∂W

∂x′
(x′, t′, y) =

∂W

∂x′
(x′, x′, y) +

∫ t′

x′

∂2W

∂x′∂s
(x′, s, y) ds

and use (7.20) to show that

∂W

∂t′
(x′, t′, y) and

∂W

∂x′
(x′, t′, y) ∈ L2

(
[0, T ]× [0, T ] H−2(∂X)

)
.(7.21)

Therefore W (0, t′, y), t′ ∈ [0, T ], is well defined and, by (7.18), W (0, t′, y) = F (y). Since W (x′, x′, y) = 0,

and we want to construct a smooth extension to G, we must have

W (0, t′, y) = 0, t′ > 0.(7.22)

Substituting (7.21) back in (7.12) we deduce that

∂

∂x′
∂

∂x′
∂

∂t′
W ∈ L2

(
[0, T ]× [0, T ];H−2(∂X)

)
(7.23)
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Therefore ∂
∂x′

∂
∂t′W (0, t′, y) is well defined and from (4.23) and (7.22)

∂

∂x′
∂

∂t′
W (0, t′, y) = 0, t′ > 0.(7.24)

But we need to prove that ∂W
∂x′

∣∣
x′=0

= 0 on [0, T ]. To do this we take the derivative of (4.23) with respect

to t′.

∂

∂x′
∂2

∂t′2
W =

−x′∆hW − x′t′Q1W − x′∆ht
′ ∂

∂t′
W − x′BW − x′t′B2W − x′Bt′

∂

∂t′
W − C2W − C

∂

∂t′
W,

(7.25)

where as in (7.12), Q1 and B2 are second and first order operators respectively, involving y derivatives

only. Using (7.9) and (7.21) we find that

∂

∂x′
∂2

∂t′2
W ∈ L2

(
[0, T ]× [0, T ] H−2(∂X)

)
.(7.26)

Therefore (7.21), (7.23) and (7.26) imply that

W and
∂

∂x′
∂

∂t′
W ∈ H1

(
[0, T ]× [0, T ];H−2(∂X)

)
.(7.27)

From (7.25) and (7.26) we deduce that ∂2W
∂t′2

(0, t′)|x′=0 is well defined and by (7.18), ∂2W
∂t′2

(0, t′)|x′=0 = 0.

By symmetry ∂2W
∂x′2 (x′, 0) = 0. Thus we can write

∂2W

∂t′2
(x′, t′, y) =

∫ x′

0

∂

∂s

∂2

∂t′2
W ds

∂2W

∂x′2
(x′, t′, y) =

∫ t′

0

∂

∂s

∂2

∂x′2
W ds.

and then conclude that

∂2W

∂t′2
(x′, t′, y),

∂2W

∂x′2
(x′, t′, y) ∈ L2

(
[0, T ]× [0, T ];H−2(∂X)

)
.

From (7.9) and (7.21) we have

W ∈ H2
(
[0, T ]× [0, T ];H−2(∂X)

)
.(7.28)

Moreover W = 0 on {x′ = 0} ∪ {t′ = 0}.
Now we write

∂2G

∂t′2
(t′, t′) =

∫ t′

0

∂

∂s

∂2G

∂t′2
(s, t′) ds

As in the proof of (7.19) we use (7.26) to show that G(t′, t′) ∈ C1([0, T ]) and, by symmetry,

∂G

∂t′
(0, 0) =

∂G

∂x′
(0, 0) = 0.

From (7.27) ∂W
∂t′ (0, t′, y) ∈ H1([0, ǫ];H−2(∂X)), From this and (7.18) we deduce that

∂W

∂t′
(0, t′, y) = 0,

∂W

∂x′
(x′, 0, y) = 0, in [0, T ]× ∂X.(7.29)

This and the regularity of W given by (7.28) are enough to guarantee that if W̃ (x′, t′, y) is the extension

of W to (−T, T )× (−T, T )× ∂X, with W̃ = 0 in {x′ < 0} ∪ {t′ < 0}, then it satisfies (7.8) and

W̃ ∈ H2
(
[−T, T ]× [−T, T ];H−2(∂X)

)
.(7.30)
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To prove (7.7) we substitute the regularity (7.30) back into (4.23) and iterate following the argument

above. This also shows that all derivatives of W̃ vanish at {x′ = 0} ∪ {t′ = 0}. This ends the proof of

step 1.

Proof of step 2: We will show that the regularity ofW is enough to guarantee uniqueness. The operator P ′

in (4.8) is much simpler than the general case of [1], and the necessary Carleman estimates are relatively

simple to obtain. So we are able to present a self-contained proof of the result, which of course, is based

on the ideas of [1].

We first re-examine (4.15). Observe that it follows from the fact that V (x′, t′, y) = −V (t′, x′, y), the

form of the quadratic terms Q, and the result of Lemma 4.1 that

∫

[0,x0]×∂X

(
t′
∣∣∣∣
∂V

∂t′

∣∣∣∣
2

+ t′x′
2|dh(x′t′)V |2

)
(x0, t

′, y)d volh(x0t′) dt
′ ≤ C||f ||2L2(X), x0 ∈ [0, T ],

∫

[0,t0]×∂X

(
x′
∣∣∣∣
∂V

∂x′

∣∣∣∣
2

+ x′t′
2|dh(x′t′)V |2

)
(x′, t0, y)d volh(x′t0) dx

′ ≤ C||f ||2L2(X), t0 ∈ [0, T ].

(7.31)

We can use this and the fact that V (x′, x′, y) = 0 to show that
∫

[0,t0]×∂X

|V (x′, t0, y)|2 d volh(x′t0) dx
′ ≤ C||f ||2L2(X), t0 ∈ [0, T ].(7.32)

We make the change of variables

t′ = µ+ ν, x′ = µ− ν.

From (4.23) Ũ(µ, ν, y) = W̃ (µ+ ν, µ− ν, y) satisfies

PŨ = 0, with

P =
∂2

∂µ2
− ∂2

∂ν2
+ 4(µ2 − ν2)

∑

i,j

∂

∂yi

(
hij ∂

∂yj

)
+ (µ2 − ν2)B

(
µ, ν, y,

∂

∂y

)
+ C(µ, ν, y),

(7.33)

where B is a first order operator involving only derivatives in y and C a smooth function. Since W̃ is

supported in {x′ ≥ 0, t′ ≥ 0} and W̃ (x′, t′, y) = W̃ (t′, x′, y), it follows that Ũ is supported in µ ≥ |ν| and

Ũ(µ, ν, y) = Ũ(µ,−ν, y).
First we work in local coordinates in a neighborhood Y0 of a point y0 ∈ ∂X. Let ψ ∈ C∞

0 (Y0) and

χ(y) ∈ C∞
0 (Rn), χ(0) = 1, and

∫
Rn χ(y) dy = 1. For δ > 0, let χδ(y) = δ−nχ

(
y
δ

)
. Then let vδ = χδ∗′(ψŨ),

where as in [25], ∗′ means that the convolution is taken in the variable y only. In view of (7.7), and the

fact that all derivatives of W̃ vanish at {x′ = 0} ∪ {t′ = 0}, vδ ∈ C∞([0, T )µ × (−T, T )ν × Y0), vanishes

to infinite order on {µ = ν}∪ {µ = −ν}, and is compactly supported in Y0 for δ small enough. Moreover

vδ(µ, ν, y) = vδ(µ,−ν, y).
Let γ ∈ R, with γ > 0, and set vδ = µγwδ. Define

Pγ = µ−γPµγ = P + γ(γ − 1)µ−2 + 2γµ−1 ∂

∂µ
,

and set Zγ = P + γ(γ − 1)µ−2.

We want to estimate the L2 norm ||Pγwδ||2, in the region R×Y0, R = {µ−ν ≤ T, µ+ν ≤ T, µ ≥ |ν|}.
This corresponds to 0 ≤ x′ ≤ T, 0 ≤ t′ ≤ T, y ∈ Y0, in coordinates (x′, t′, y).

We write

||Pγwδ||2 = ||Zγwδ||2 + 4γ2||µ−1∂µwδ||2 + 4γℜ〈Zγwδ, µ
−1∂µwδ〉
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Figure 4. Region of integration in the proof of step 2.

and integrate by parts the third term. We assume that wδ is real valued, as it makes no difference for our

purposes. Since wδ vanishes to infinite order at the surfaces Σ3 and Σ4, see figure 4, which correspond

to {µ = −ν} and {µ = ν} respectively, we find that
∫

R×Y0

(
∂2

µwδ − ∂2
νwδ

)
µ−1∂µwδ dµdνdy =

1

2

∫

R×Y0

µ−2
(
(∂µwδ)

2 + (∂νwδ)
2
)
dµdνdy+

1

2
√

2

∫

Σ1×Y0

µ−1 (∂µwδ − ∂νwδ)
2
dσ +

1

2
√

2

∫

Σ2×Y0

µ−1 (∂µwδ + ∂νwδ)
2
dσ ≥

1

2
||µ−1∂µwδ||2 +

1

2
||µ−1∂νwδ||2

(7.34)

where dσ denotes the surface measure. Next we see that

∑

i,j

∫

R×Y0

(µ2 − ν2)∂yi

(
hij∂yj

wδ

)
µ−1∂µwδ dµdνdy =

∑

i,j

∫

R×Y0

(
µ2 + ν2

µ2
hij +

µ2 − ν2

µ
∂µh

ij

)
∂yi
wδ∂yj

wδ dµdνdy−

∑

i,j

1

2
√

2

∫

Σ1×Y0

µ−1(µ2 − ν2)hij∂yi
wδ∂yj

wδ dσ −
∑

i,j

1

2
√

2

∫

Σ2×Y0

µ−1(µ2 − ν2)hij∂yi
wδ∂yj

wδ dσ.

Since wδ is odd in ν, the last two integrals are equal, and since hij(0, y) is positive definite, we can pick

T so small that

∑

i,j

∫

R×Y0

(µ2 − ν2)∂yi

(
hij∂yj

wδ

)
µ−1∂µwδ dµdνdy ≥

1

2

∫

R×Y0

|∇ywδ|2 dµdνdy −
1√
2

∫

Σ1×Y0

µ−1(µ2 − ν2)|∇ywδ|2 dσ,
(7.35)

where |∇ywδ|2 =
∑

i,j h
ij∂yi

wδ∂yj
wδ. We also pick T so small that

|〈(µ2 − ν2)B(µ, ν, y, ∂y)wδ , µ
−1∂µwδ〉| ≤

1

10
||∇ywδ||2 +

1

10
||µ−1∂µwδ||2,

|〈C(µ, ν, y)wδ , µ
−1∂µwδ〉| ≤

1

10
||µ−2wδ||2 +

1

10
||µ−1∂µwδ||2.

(7.36)
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The last term we want to evaluate is

〈µ−2wδ, µ
−1∂µwδ〉 =

1

2

∫

R×Y0

µ−3∂µ(w2
δ ) dµdνdy =

1

2

∫

R×Y0

∂µ

(
µ−3(w2

δ )
)
dµdνdy +

3

2

∫

R×Y0

µ−4(w2
δ ) ≥ 3

2
||µ−2wδ||2.

(7.37)

Putting (7.34), (7.35), (7.36) and (7.37) together we arrive at

||Pγwδ||2 +
4√
2

∫

Σ1×Y0

µ−1(µ2 − ν2)|∇ywδ|2 dσ ≥ (4γ2 +
6

5
γ)||µ−1∂µwδ||2 + 2γ||µ−1∂νwδ||2+

8

5
γ||∇ywδ||2 + (6γ2(γ − 1) − 2

5
γ)||µ−2wδ||2.

(7.38)

To get rid of the negative parts on the last term of the right hand side, we use the Hardy type inequality

||µ−1∂µwδ||2 ≥ 9
4 ||µ−2wδ||2, see for example Lemma 5.3.1 of [7]. So we conclude that for T small enough

and all γ > 0,

||Pγwδ||2 + 4γ

∫

Σ1×Y0

µ−1
[
(µ2 − ν2)|∇ywδ|2

]
dσ ≥

γ ||∇ywδ||2 + γ2
∣∣∣∣µ−1∂µwδ

∣∣∣∣2 + γ
∣∣∣∣µ−1∂νwδ

∣∣∣∣2 + γ3
∣∣∣∣µ−2wδ

∣∣∣∣2 .
(7.39)

This gives the following estimate for vδ :

||µ−γPvδ||2 + 4γ

∫

Σ1×Y0

µ−1−2γ
[
(µ2 − ν2)|∇yvδ|2

]
dσ ≥

γ||µ−γ∇yvδ||2 + γ2
∣∣∣∣µ−1∂µ(µ−γvδ)

∣∣∣∣2 + γ
∣∣∣∣µ−γ−1∂νvδ

∣∣∣∣2 + γ3
∣∣∣∣µ−2−γvδ

∣∣∣∣2
(7.40)

Now we want to take the limit of (7.40) as δ → 0. We write

Pvδ = χδ ∗′ (PψŨ) + [P, χδ∗′]ψŨ,

[P, χδ∗′] =

∑

i,j

(
(µ2 − ν2)

(
hij(µ2 − ν2, y)

∂

∂yi

∂

∂yj
+ bj(µ

2 − ν2, y)
∂

∂yj

)
+ (µ2 − ν2)C1(µ

2 − ν2, y)

)
, χδ∗′


 .

(7.41)

Equation 2.4.18 and Theorem 2.4.3 of of [25] show that, for u ∈ Hs−1(Rn) and a ∈ C∞
0 (Rn),

||a(u ∗ χδ) − (au) ∗ χδ||Hs ≤ C||u||Hs−1 , and

a(u ∗ χδ) − (au) ∗ χδ → 0, in Hs(Rn) as δ → 0.

This is known as Friedrich’s lemma. Applying this to our case, it follows from (7.41) that, if γ > 0 is

such that

||µ−γ(µ2 − ν2)∇yŨ || <∞, and ||µ−γ(µ2 − ν2)Ũ || <∞,(7.42)

then

lim
δ→0

||µ−γ [P, χ′
δ](ψŨ)|| = 0.

As PŨ = 0,

PψŨ = ψPŨ + [P, ψ]Ũ = [P, ψ]Ũ = (µ2 − ν2)L(µ, ν, y, ∂y)Ũ ,(7.43)
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where L is a first order differential operator with derivatives in y only. Therefore if Ũ satisfies (7.42) then

||µ−γPψŨ ||2 <∞.(7.44)

Thus, if Ũ satisfies (7.42) for a certain γ > 0, it follows from (7.44) that we can take the limit as δ → 0

in (7.40), and hence

∞ > ||µ−γPψŨ ||2 + 4γ

∫

Σ1×Y0

µ−1−2γ
[
(µ2 − ν2)|∇yψŨ |2

]
dσ ≥

γ||µ−γ∇yψŨ ||2 + γ2
∣∣∣
∣∣∣µ−1∂µ(µ−γψŨ)

∣∣∣
∣∣∣
2

+ γ
∣∣∣
∣∣∣µ−γ−1∂ν(ψŨ)

∣∣∣
∣∣∣
2

+ γ3
∣∣∣
∣∣∣µ−2−γψŨ

∣∣∣
∣∣∣
2

.

(7.45)

Here we used (7.31) and (7.32), and that µ > T/2 on Σ, to guarantee that the integral on the left hand

side is finite.

We know from (7.9) that ||[(µ2−ν2)]
1
2∇yŨ || <∞ and that ||Ũ || <∞. Since Ũ is supported in µ ≥ |ν|,

this implies that

||µ−1(µ2 − ν2)∇yψŨ || <∞ and ||µ−1(µ2 − ν2)ψŨ || <∞.

So applying (7.45) with γ = 1 we obtain

||µ−1∇yψŨ || <∞, ||µ−3ψŨ || <∞.

Since ψ is arbitrary, (7.42) holds for γ = 2, and hence we can apply (7.45) with γ = 2. Repeating this

argument we find that (7.45) holds for every γ > 0.

Now let ψj , j = 1, 2, ..., N be a square partition of unity of ∂X, that is
∑
ψ2

j = 1. Again using that

PŨ = 0, we see that there exists some constant C > 0, independent of γ, such that

||µ−γPψjŨ ||2 ≤ 2||µ−γψjPŨ ||2 + C||µ−γ∇Ũ ||2 = C||µ−γ∇Ũ ||2,
γ||µ−γ∇yψjŨ ||2 ≥ (γ − 1)||µ−γψj∇yŨ ||2 − Cγ2||µ−γŨ ||2.

Substituting that in (7.45), using that PŨ = 0, and adding from j = 1 to N, we see that there exists γ0

such that for all γ > γ0,

γ

∫

Σ1×Y0

µ−1−2γ
[
(µ2 − ν2)|dh(µ2−ν2)Ũ |2 + |Ũ |2

]
dσ ≥ 1

2
γ||µ−γdh(µ2−ν2)Ũ ||2 +

1

2
γ3
∣∣∣
∣∣∣µ−2−γŨ

∣∣∣
∣∣∣
2

.

(7.46)

Since µ > T/2 on Σ1 we deduce from (7.31) and (7.32) that there exists C > 0 such that, for γ > γ0,

Cγ (T/2)
−2γ−1 ≥ γ3||µ−γ−2Ũ ||2L2((0,T )×(−T,T )×∂X) ≥ (T/2)

−2γ−4
γ3||Ũ ||2L2((0,T/2)×(−T/2,T/2)×∂X).

So in particular

Cγ

(
T

2

)3

≥ γ3||ψŨ ||2L2((0,T/2)×(−T/2,T/2)×∂X), γ > γ0.(7.47)

Therefore Ũ = 0 in (−T/2, T/2) × (−T/2, T/2) × ∂X. In particular f(µ2, y) = − 1
2µ

n+1∂νU(µ, 0, y) = 0

if µ < T
2 . This ends the proof of the Lemma. �

To conclude the proof of Theorem 7.1 we need

Lemma 7.3. If f ∈ L2
comp(

◦

X) and R+(0, f) is supported in s > s0, with s0 << 0, then f is supported

in x > es0 .
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Figure 5. Unique continuation for V. Away from x′ = t′ = 0, the level surfaces of ψ are

strongly pseudo-convex.

Proof. Let φ ∈ C∞
0 (R) be even, supported in (−1, 1), and φǫ(s) = ǫ−nφ(s/ǫ). Then φǫ ∗ R+(0, f) is

supported in s > s0− ǫ. Let ψ1 ∈ S(R) and ψ1,ǫ ∈ S(R) be the functions obtained from φ and φǫ by (7.2).

It follows from Lemma 7.2 that ψ1,ǫ(∆ − n2

4 )f is compactly supported. If we prove that ψ1,ǫ(∆ − n2

4 )f

is supported in x ≥ es0−ǫ then by letting ǫ → 0 we have proved Lemma 7.3. So we may assume that

f ∈ C∞
0 (

◦

X), and let us say that f(x, y) = 0 for x < x0. Then (4.3), which is due to the finite speed of

propagation, gives that

V (x′, t′, y) = 0 if t′ <
√
x0.(7.48)

Moreover we know from Theorem 2.1 that V is smooth up to x′ = 0. Since by assumption V (0, t′, y) = 0

for t′ < t0 = exp( s0

2 ), then, as proved above, V extends to a smooth solution to (4.8) for x′ < 0 which

vanishes in {x′ < 0, t′ < t0}.
The principal symbol of P ′ is given by (7.5), so it is easily seen that the level surfaces of ψ =

−t′ − x+
√
x0 are not characteristic for P ′. The Hamiltonian of p′, Hp′ , was computed in (7.6). Then

p′(0, t′, y, ξ, τ, η) = −ξτ, (Hp′ψ) (0, t′, y, ξ, τ, η) = τ + ξ, and
(
H2

p′ψ
)
(0, t′, y, ξ, τ, η) = t′h(0, y, η),

and therefore, for t′ > 0,

if p′(0, t′, y, ξ, τ, η) = (Hp′ψ) (0, t′, y, ξ, τ, η) = 0, with (ξ, τ, η) 6= 0 then
(
H2

p′ψ
)
(0, t′, y, ξ, τ, η) > 0.

This, according to section 28.4 of [26], implies that the level surfaces of ψ are strongly pseudo-convex

with respect to P ′, as long as t′ > 0. So applying Hörmander’s theorem, Theorem 28.3.4 of [26], to (4.8)

and the surface {ψ = 0} we find that V (x′, t′, y) = 0 near (0,
√
x0, y). Now we can repeat this argument

to show that V = 0 in a neighborhood of the segment [0, t0]. And we can proceed in the same way to

conclude that in fact V = 0 in {(x′, t′, y) : 0 < x′ <
√
x0, 0 < t′ < t0}. By the symmetry of V, it follows

that V = 0 in {(x′, t′, y) : 0 < t′ <
√
x0, 0 < x′ < t0}, see figure 5. This is the point where we use that

the initial data is (0, f).

Now going back to the variables (x, t, y) which are given by x = x′t′, t = log t′ − log x′, this implies

that the solution u(x, t, y) of (2.5) with initial data (0, f) satisfies

u(x, t, y) = 0 for {(x, t, y) : 0 < x < x0, log x0 − s0 < t < s0 − log x0}.(7.49)



RADIATION FIELDS, SCATTERING & INVERSE SCATTERING 31

One particular case of Tataru’s theorem [49], see also [27, 46, 47, 50], states that if u(t, z) is in H1
loc

and satisfies
(
D2

t − ∆ − n2

4

)
u(t, z) = 0

u(t, z) = 0 − T < t < T, and d(z, z0) < δ, δ > 0,

where d(z, z0) is the distance between z and z0 with respect to the metric g, then

u(t, z) = 0 for |t| + d(z, z0) < T.(7.50)

We then deduce from (7.49) and (7.50) that u(0, z) = Dtu(0, z) = 0 on the set of points z = (x, y) at

a distance less than s0 − log x0 from the surface {x = x0}. In these coordinates the distance is given by

log x− log x0. So f(x, y) = Dtu(0, x, y) = 0 for log x < s0. This proves Lemma 7.3. �

8. The Inverse Problem

We consider the inverse problem of determining the manifold and the metric from the scattering matrix

A(λ), at all energies λ ∈ R \ 0.

We will prove

Theorem 8.1. Let (X1, g1) and (X2, g2) be asymptotically hyperbolic manifolds which have the same

boundary ∂X1 = ∂X2 = M. Let xj ∈ C∞(Xj), j = 1, 2, be a defining function of M for which (2.4)

holds, and let Aj(λ), j = 1, 2, λ ∈ R\0, be the corresponding scattering matrices defined in (2.3) in terms

of xj . Suppose that A1(λ) = A2(λ) for every λ ∈ R\0. Then there exists a diffeomorphism Ψ : X1 −→ X2,

smooth up to M, such that

Ψ = Id at M and Ψ∗g2 = g1.(8.1)

We are fixing a defining function xj ∈ C∞(Xj), j = 1, 2, of M for which (2.4) holds near M and

using it in (2.3) to define A(λ). According to Lemma 2.1 of [15], xj is uniquely determined near M by the

choice of the conformal representative h0,j = x2
jgj |M . So to define the scattering matrix we fix a conformal

representative h0,j . On the other hand, we recall from Theorem 1.1 and Corollary 1.1 of [28] that Aj(λ),

for λ fixed, determines the conformal representative h0,j . So when we say that the two asymptotically

hyperbolic manifolds (X1, g1) and (X2, g2) have the same scattering matrix, as defined by (2.3), that is

A1(λ) = A2(λ), λ ∈ R \ 0, it is implicit that we are fixing the same conformal representative for x2
jgj|M ,

j = 1, 2.

Since Aj(λ) has a meromorphic continuation to C \ i
2N, see [28], if A1(λ) = A2(λ), λ ∈ R \ 0, then

A1(λ) = A2(λ) for λ ∈ C \ i
2N.

As mentioned in the introduction, the proof is an application of the control method of Belishev [4],

see also [5, 31, 29, 30]. We will also use a result, which is an application of this method, and is due to

Katchalov and Kurylev [29, 30]

First we construct a diffeomorphism between neighborhoods of the boundary that realizes (8.1) and

later show that it can be extended to a diffeomorphism between the two manifolds.

We recall that Lemma 2.1 of [15] states that fixed a conformal representative h0 there exists a unique

defining function xj , in a neighborhood of M for which (2.4) holds. However xj can be continued to Xj ,

although not uniquely. As explained in the paragraph after Theorem 8.1, it is implicit that we are fixing

a conformal representative

h0 = x2
1g1|M = x2

2g2|M .(8.2)
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Note that, as observed in the paragraph following the proof Lemma 2.1 of [15], for ǫ > 0 small, a

defining function xj for which (2.4) holds near M gives an identification of [0, ǫ) × M with a collar

neighborhood Uj,ǫ ⊂ Xj of M by

Ψj,ǫ : [0, ǫ) ×M −→ Uj,ǫ,(8.3)

where Ψj,ǫ(x, y) is the point obtained by flowing the integral curve of ∇x2
jgj
xj emanating from y by x

units of time. So x is the arc-length along the geodesics normal to the boundary M with respect to the

metrics x2
jgj , or the distance from the point (x, y) to M with respect to this metric. We can pick ǫ small

such that these maps are diffeomorphisms. Then x is a smooth defining function of M,

x : [0, ǫ) ×M −→ R, x = xj + o(xj), and

gj =
dx2

x2
+
hj

x2
, j = 1, 2.

(8.4)

In fact for each y ∈ M there exists ǫj(y) > 0 such that for x < ǫj(y) the distance between (x, y) and

M, with respect to the metric x2
jgj, is equal to x. So Ψj,ǫ extends to a diffeomorphism

Ψj :
⋃

y∈M

[0, ǫj(y)) × {y} −→ Xj \ Γj ,(8.5)

where Γj is the cut-locus of Xj with respect to x2
jgj . It is known that the set Γj is a closed subset of

measure zero and Γj ∩M = ∅. The number ǫ in (8.4) is less than the smallest of the distances between

Γj and M.

We will fix one such function throughout this section and we will prove

Proposition 8.2. Let (X1, g1) and (X2, g2) be asymptotically hyperbolic manifolds satisfying the hypothe-

ses of Theorem 8.1. Then there exists ǫ > 0 such that in the product decomposition X ∼ [0, ǫ)×M where

(8.4) holds, h1 = h2.

The fact that the metrics are equal in these coordinates imply that

Ψ∗
1,ǫ

(
g1|U1,ǫ

)
= Ψ∗

2,ǫ

(
g2|U2,ǫ

)
,(8.6)

with Ψj,ǫ defined in (8.3), and therefore

[
Ψ2,ǫ ◦ Ψ−1

1,ǫ

]∗ (
g2|U2,ǫ

)
= g1|U1,ǫ

.(8.7)

This gives a diffeomorphism between neighborhoods of the boundary satisfying (8.1).

8.1. Preliminaries. Here we define some spaces that will be useful in the proof of Proposition 8.2.

Notice that if u is a solution of (2.5) with initial data (0, f), then u(t, z) = −u(−t, z), t ∈ R. Similarly,

if u is a solution of (2.5) with initial data (f, 0), then u(t, z) = u(−t, z), t ∈ R. This implies that

R+(0, f)(−s, y) = R−(0, f)(s, y), and R+(f, 0)(−s, y) = −R−(f, 0)(s, y).(8.8)

Proposition 8.3. Let (X, g) be an asymptotically hyperbolic manifold and let x be a defining function

of ∂X for which (2.4) holds. For F ∈ L2(R × ∂X), let F ∗(s, y) = F (−s, y). Let R± denote the radiation

fields defined with respect to x, and let S = R+R−1
− be the scattering operator. Let

Mf = {F ∈ L2(R × ∂X) : F = SF ∗} and Mb = {F ∈ L2(R × ∂X) : F ∗ = SF},(8.9)

where f and b stand for forward and backward. Then

Mf = {R+(0, f) : f ∈ L2
ac(X)} and Mb = {R−(0, f) : f ∈ L2

ac(X)}(8.10)
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Proof. We will prove the first equality. The proof of the second one is identical. If F = R+(0, f), then

according to (8.8), F ∗ = R−(0, f), and so

SF ∗ = R+R−1
− F ∗ = R+(0, f) = F.

Notice also that if F = R+(g, 0), then according to (8.8), F ∗ = −R−(g, 0), and so

SF ∗ = R+R−1
− F ∗ = −R+(g, 0) = −F.

Conversely, let F ∈ L2(R × ∂X). We know from Theorem 5.1 that there exists (f1, f2) ∈ Eac such that

F = R+(f1, f2). Let F1 = R+(f1, 0) and F2 = R+(0, f2). If F = SF ∗, then

F = F1 + F2 = SF ∗
1 + SF ∗

2 .

In view of the discussion above, SF ∗
2 = F2 and SF ∗

1 = −F1. So F1 + F2 = −F1 + F2, and thus F1 = 0.

By uniqueness, f1 = 0. �

As ranges of bounded operators, Mf and Mb are closed. By Proposition 8.3 and Theorem 5.2 they

are also defined in terms of the scattering matrix and the space L2(R × ∂X), which depends on the

volume element of the metric h(0, y, dy). However, as discussed above, the scattering matrix determines

the tensor h(0, x, dy), so Mf and Mb are determined by A(λ), λ ∈ R \ 0. Thus we have

Corollary 8.4. Let (X, g) be an asymptotically hyperbolic manifold. Let x be a defining function of ∂X

for which (2.4) holds and let R± denote the radiation fields defined with respect to x. Then the spaces Mf

and Mb defined in (8.9) are closed subspaces of L2(R× ∂X), and so are Hilbert spaces with the inherited

norm. Moreover, Mf and Mb are determined by the scattering matrix A(λ), for all λ ∈ R \ 0.

We will need

Lemma 8.5. Let (X, g) be an asymptotically hyperbolic manifold. Let Mf and Mb be defined in (8.9).

For x1 ∈ (0, ǫ), we have

Mf (x1)
def
= {F ∈ Mf , F (s, y) = 0 if s < log x1} = {R+(0, f) : f ∈ L2

ac(X), f = 0 if x < x1},

Mb(x1)
def
= {F ∈ Mb, F (s, y) = 0 if s > − logx1} = {R−(0, f) : f ∈ L2

ac(X), f = 0 if x < x1}.

(8.11)

Proof. Finite speed of propagation guarantees that if f ∈ L2
ac(X) and f = 0 in {x < x1}, then F =

R+(0, f) ∈ Mf (x1) and F = R−(0, f) ∈ Mb(x1). On the other hand, if F ∈ Mf (x1), in particular

F ∈ Mf , and thus by Proposition 8.3, F = R+(0, f) with f ∈ L2
ac(X). Since F (s, y) = 0 if s < log x1, it

follows from Theorem 7.1 that f = 0 in x < x1.

If F ∈ Mb(x1), then F = R−(0, g). So F ∗ = R+(0, g) and F ∗ = 0 for s < log x1. Therefore Theorem

7.1 gives that g = 0 in x < x1. �

We emphasize that the proof of Lemma 8.5 required the full power Theorem 7.1 and this is where the

support theorem enters in the study of the inverse problem.

In what follows, for F ∈ Mf , or F ∈ Mb, we will use, by an abuse of notation, R−1
± F = f, and

R±f = F instead of R−1
± F = (0, f) and R±(0, f) = F, respectively.

8.2. The case of no eigenvalues. To better explain our methods, we will first consider the case where

the manifolds have no eigenvalues. In this particular case, Proposition 8.2 is an easy consequence of

Proposition 8.6. Let (X1, g1) and (X2, g2) be asymptotically hyperbolic manifolds satisfying the hypothe-

ses of Theorem 8.1. Moreover assume that ∆gj
, j = 1, 2, have no eigenvalues. Let Rj,±, j = 1, 2, denote
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the corresponding forward or backward radiation fields defined in coordinates in which (8.4) holds. Then

there exists ǫ > 0 such that

|h1|
1
4 (x, y)R−1

1,−F (x, y) = |h2|
1
4 (x, y)R−1

2,−F (x, y), (x, y) ∈ (0, ǫ) ×M, ∀ F ∈ Mb,

|h1|
1
4 (x, y)R−1

1,+F (x, y) = |h2|
1
4 (x, y)R−1

2,+F (x, y), (x, y) ∈ (0, ǫ) ×M, ∀ F ∈ Mf .

.

(8.12)

Indeed, suppose Proposition 8.6 has been proved. We will prove Proposition 8.2.

Proof. Let x be such that (8.4) holds. We know that for any F ∈ Mb,

R−1
j,−

(
∂2

∂s2
F

)
=

(
∆gj

− n2

4

)
R−1

j,−F.(8.13)

So the first equation in (8.12) implies that for (x, y) ∈ (0, ǫ) ×M, and any F ∈ Mb,

|h1|
1
4 (x, y)R−1

1,−F (x, y) = |h2|
1
4 (x, y)R−1

2,−F (x, y), and

|h1|
1
4 (x, y)

(
∆g1

− n2

4

)
R−1

1,−F (x, y) = |h2|
1
4 (x, y)

(
∆g2

− n2

4

)
R−1

2,−F (x, y).
(8.14)

Set R−1
1,−F = f. Since F is arbitrary and the metrics have no eigenvalues, equations (8.14) give, in

particular,

|h1|
1
4 (x, y)

(
∆g1

− n2

4

)
f(x, y) = |h2|

1
4 (x, y)

(
∆g2

− n2

4

) |h1| 14 (x, y)

|h2| 14 (x, y)
f(x, y),

∀ f ∈ C∞
0 ((0, ǫ) ×M) .

(8.15)

Therefore the operators on both sides of (8.15) are equal. In particular the coefficients of the principal

parts of ∆g1
are equal to those of ∆g2

, and hence the tensors h1 and h2 from (8.4) are equal. This proves

Proposition 8.2. �

We begin the proof of Proposition 8.6 with

Lemma 8.7. Let (X, g) be an asymptotically hyperbolic manifold such that ∆g has no eigenvalues. Let

x be such that (2.4) holds in (0, ǫ) × ∂X. For x1 ∈ (0, ǫ), let Pb
x1

denote the orthogonal projector

Pb
x1

: Mb −→ Mb(x1),

and let χx1
be the characteristic function of the set {x ≥ x1}. Then for every f ∈ L2

ac(X) = L2(X),

Pb
x1
R−(0, f) = R−(0, χx1

f) ∈ Mb(x1).

Proof. Since Pb
x1

is a projector, then for all G ∈ Mb(x1)

〈Pb
x1
R−(0, f), G〉L2(R×∂X) = 〈R−(0, f), G〉L2(R×∂X).

In particular, since L2
ac(X) = L2(X), then for all g ∈ C∞

0 (
◦

X) supported in {x > x1},
〈Pb

x1
R−(0, f),R−(0, g)〉L2(R×∂X) = 〈f, g〉L2(X).

On the other hand, by Lemma 8.5 there exists fx1
∈ L2(X) supported in {x ≥ x1} such that

Pb
x1
R−(0, f) = R−(0, fx1

). Therefore, for all g ∈ C∞
0 (

◦

X) supported in {x > x1},
〈Pb

x1
R−(0, f),R−(0, g)〉L2(R×∂X) = 〈R−(0, fx1

),R−(0, g)〉L2(R×∂X) = 〈fx1
, g〉L2(X).

Thus

〈fx1
, g〉L2(X) = 〈f, g〉L2(X), ∀ g ∈ L2(X) supported in {x ≥ x1},
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and so fx1
= χx1

f.

This ends the proof of the Proposition. �

Remark 8.8. Since the spaces Mf , Mb, Mf (x1) and Mb(x1) are determined by the scattering matrix,

so are the projectors Pf
x1

and Pb
x1
.

We use this and properties of propagation of singularities for solutions to the wave equation to prove

Lemma 8.9. Let (X, g) be an asymptotically hyperbolic manifold which has no eigenvalues. Let x be a

defining function of ∂X such that (2.4) holds. Let R± be the radiation fields with respect to x. Then, there

exists ǫ > 0, such that for any x1 ∈ (0, ǫ/4), any F ∈ Mb, any φ ∈ C∞
0 (R) even, and the corresponding

ψ1 be defined by (7.2),

R+R−1
−

(
Pb

x1
G
)
(s, y) =

1

2
x
− n

2

1 w(x1, y)
|h| 14 (x1, y)

|h| 14 (0, y)
(s− log x1)

0
+ + smoother terms,

if s < log x1 + log 4, where G = φ ∗ F, and w = R−1
− G = ψ1

(
∆g − n2

4

)
R−1

− F.

(8.16)

Notice that by (7.3) G ∈ Mb, and that, according to Remark 8.8, the left hand side of (8.16) is determined

by the scattering matrix of g.

Proof. We choose ǫ > 0 so that the maps Ψj,ǫ defined by (8.3) are diffeomorphisms. That is, the distance

from Γ, the cut-locus, to ∂X is greater than ǫ, and take x1 <
ǫ
4 . From Lemma 8.7 we know that

(0, χx1
w) = R−1

−

(
Pb

x1
G
)
,

with χx1
being the characteristic function of the set {x ≥ x1}, which is the set of points whose distance

to M is greater than or equal to x1, and hence

R+(0, χx1
w) = R+R−1

−

(
Pb

x1
G
)
.

So we want to analyze R+(0, χx1
w). Recall from the definition of the forward radiation field that

this amounts to finding the solution u to (2.5) with initial data (0, χx1
w), then taking v(s, x, y) =

x−
n
2 u(s− log x, x, y) and restricting ∂v

∂s to x = 0. We remark that, although this is the definition of the

forward radiation field for C∞
0 (

◦

X) data, it follows from the discussion in section 7 that this also holds for

initial data in L2
ac(X) = L2(X), see equations (7.13) and (7.16). We are concerned with the restriction

of ∂v
∂s to x = 0, so we will only consider the behavior of v for s > log x.

The initial data χx1
w has a conormal singularity at S = {s = log x, x = x1}, therefore the wavefront

set of v will be contained in the flow-out of N∗S ∩ Σ, where Σ is the characteristic variety of P, which

is defined in (4.5). The principal symbol of P is p = −2ξσ − xξ2 − xh(x, y, η), σ is the dual to s. So the

null bicharacteristics satisfy

ẋ = −2σ − 2xξ, ṡ = −2ξ, ẏ = −x∂h
∂η
, ξ̇ = ξ2 + h+ x

∂h

∂x
, η̇ = x

∂h

∂y
, σ̇ = 0,

x(0) = x1, s(0) = log x1, y(0) = y0, ξ(0) = ξ0, η0 = η0, σ(0) = σ0, 2σξ + xξ2 + xh(x, y, η) = 0.

Note that since p = 0 is satisfied for the solutions to this system, and σ = σ0 6= 0, we must have

ξ =
1

x

(
−σ0 ± (σ2

0 − x2h)
1
2

)
.

Since we are concerned with the forward singularities, we must have σ0 > 0. Then it follows that ξ ≤ 0,

and thus s is non-decreasing.
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x

s

Σ +log x

Σ−

s=log x

1

x1

Figure 6. The singularities of v in s > log x.

We analyze the singularities that start over N∗S = {x = x1, s = log x1, η0 = 0}. Using x as a

parameter, we find two families of curves

s = log x1, y = y0, ξ = 0, η = η0, σ = σ0 if ξ0 = 0, and

s = 2 logx− log x1, y = y0, η = η0, σ = σ0, ξ =
ξ0x1

x
, if ξ0 < 0, and 2σ0 + x1ξ0 = 0.

These curves make up the two characteristic surfaces of P emanating from S = {s = log x, x = x1},
which are Σ+ = {s = log x1} and Σ− = {s = 2 logx − log x1}. So, in s > log x, v is singular along Σ+

and Σ−. See figure 6.

A bicharacteristic in Σ+, let us say, starting over (x1, y0) will hit R × ∂X at (log x1, y0), see figure

6. On the other hand, since s > log x, note that Σ− consists of null bicharacteristics which go into the

interior of X, so they might also intersect the boundary. They could, however, become trapped in the

interior and not reach ∂X. Take one such curve, γ, starting over (x1, y), y ∈ ∂X, which intersects the

boundary at another point y′ ∈ ∂X, y′ 6= y. The projection of γ onto X is a geodesic with respect to

the metric x2g, which connects the points (x1, y) and y′ ∈ ∂X and which is orthogonal to {x = x1}
at (x1, y). To reach the point y′ this geodesic has to pass through the cut-locus Γ and again reach the

surface {x = x1}. Since ǫ is less than the distance from Γ to ∂X and x1 < ǫ/4, and along γ, for x < ǫ,

t = s − log x = log x − log x1, the geodesic reaches Γ for t > log ǫ − log(ǫ/4) = log 4. Thus it reaches

{x = x1} for t = T > log 4. Now we analyze the flow of Hp starting at the point q where γ intersects

{x = x1}. The surface t = T becomes s = T + log x and we think of this singularity as starting at

{s = T + log x, x = x1}. But, as observed above, s is increasing along the part of γ connecting q to a

point over ∂X. Then this singularity will hit the boundary at y′ for s > T +log x1 > log 4+ log x1. Hence

the singularity of R+(0, χx1
w) at s = log x1 comes only from Σ+, and these can be computed explicitly.

Moreover R+(0, χx1
w) is supported in s ≥ log x1, therefore

R+(0, χx1
w) ∈ C∞ ((−∞, log x1 + log 4) \ {logx1} × ∂X) .

As commonly done in this type of problem, we will find a conormal expansion for v along Σ+ = {s =

log x1} and Σ− = {s = 2 log x− log x1}. We will construct

V +(s, x, y) ∼
∞∑

j=1

v+
j (x, y) (es − x1)

j
+ and V −(s, x, y) ∼

∞∑

j=1

v−j (x, y)
(
x2 − x1e

s
)j
+
,
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that is V + and V − are the asymptotic sums of those series, such that, V ± is supported in a neighborhood

of Σ± (this can be arranged, as in the proof of Borel’s lemma), and in the set

Dǫ = {logx ≤ s < log x1 + log 4, 0 ≤ x ≤ ǫ/2},

PV ± ∈ C∞(Dǫ), v(s, x, y) − V +(s, x, y) − V −(s, x, y) ∈ C∞(Dǫ),

where P is defined in (4.5). Moreover they satisfy

V +(log x, x, y) + V −(log x, x, y) ∈ C∞
0 ,

∂V +

∂s
(log x, x, y) +

∂V −

∂s
(log x, x, y) − x−

n
2 w(x, y)(x − x1)

0
+ ∈ C∞

0 .
(8.17)

Once this is accomplished, we then have

P (v − V + − V −) ∈ C∞(Dǫ),

(v − V + − V −) |s=log x ∈ C∞
0 (

◦

X),
∂(v − V + − V −)

∂s
|s=log x ∈ C∞

0 (
◦

X).

Then the energy estimates from section 4, adapted to the case where the right hand side is not equal to

zero, but is smooth up to ∂X, give that (v − V + − V −) |x=0 is C∞ in (−∞, log x1 + log 4) × ∂X.

We have

V +(log x, x, y) + V −(log x, x, y) ∼
∞∑

j=1

(
v+

j (x, y) + xjv−j (x, y)
)
(x− x1)

j
+ ∼

∞∑

j=1

Zj(x1, y)(x− x1)
j
+,

with Zj(x1, y) =
∑

k+m=j, k≥0,m≥1

1

k!

∂k

∂xk

(
v+

m + xmv−m
)
(x1, y)

(8.18)

and

∂V +

∂s
(s, x, y) +

∂V −

∂s
(s, x, y) ∼

∞∑

j=1

jesv+
j (x, y)(es − x1)

j−1
+ −

∞∑

j=1

jx1e
sv−j (x, y)(x2 − x1e

s)j−1
+ .

So, in particular, when s = log x,

∂V +

∂s
(log x, x, y) +

∂V −

∂s
(log x, x, y) ∼

∞∑

j=1

(
jxv+

j (x, y) − jx1x
jv−j (x, y)

)
(x− x1)

j−1
+ ∼

∞∑

j=1

Mj(x1, y)(x− x1)
j−1
+ , where

Mj(x1, y) =
∑

m+k=j, m≥1,k≥0

m

k!

∂k

∂xk

(
xv+

m − x1x
mv−m

)
(x1, y).

(8.19)

Since

x−
n
2 w(x, y)(x − x1)

0
+ ∼

∞∑

j=1

1

(j − 1)!

∂j−1

∂xj−1

(
x−

n
2w
)
(x1, y)(x− x1)

j−1
+ ,(8.20)
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we conclude from (8.18), (8.19) and (8.20) that conditions (8.17) translate into

Zj(x1, y) =
∑

k+m=j, k≥0,m≥1

1

k!

∂k

∂xk

(
v+

m + xmv−m
)
(x1, y) = 0, j ∈ N,

Mj(x1, y) =
∑

m+k=j, m≥1,k≥0

m

k!

∂k

∂xk

(
xv+

m − x1x
mv−m

)
(x1, y) =

1

(j − 1)!

∂j−1

∂xj−1

(
x−

n
2 w
)
(x1, y), j ∈ N.

(8.21)

In particular, the terms with j = 1 satisfy

v+
1 (x1, y) + x1v

−
1 (x1, y) = 0, and x1v

+
1 (x1, y) − x2

1v
−
1 (x1, y) = x

−n
2

1 w(x1, y).

Hence

v+
1 (x1, y) = −x1v

−
1 (x1, y) =

1

2
x
−n

2
−1

1 w(x1, y).(8.22)

Let

Q = P − 2
∂

∂x

∂

∂s
−A

∂

∂s
.

That is, Q is the part of P that does not have derivatives in s. As discussed above, the singularity of v

in Σ− will not hit the boundary for s ∈ (log x1, log x1 + log 4). Since we are interested on the singularity

of R+(0, χx1
w) at s = log x1, we will restrict our computations to V +, but keeping in mind that, at least

for x < ǫ and s < log x1 + log 4, similar computations also hold for V −.

Since A and the coefficients of Q do not depend on s,

PV +(s, x, y) ∼ x1(2
∂

∂x
v+
1 +Av+

1 )(es − x1)
0
++

∞∑

j=1

(
(j + 1)x1

(
2
∂

∂x
+A

)
v+

j+1 +

(
2j

∂

∂x
+ jA+Q

)
v+

j

)
(es − x1)

j
+ ∼ 0 in x < x1.

(8.23)

Since we want PV +(s, x, y) ∈ C∞ in {x < x1}, all the coefficients in (8.23) must be equal to zero, and

so we get the transport equations for v+
j , j = 1, 2, ..., which are

x1

(
2
∂

∂x
+A

)
v+
1 (x, y) = 0, x < x1,

and

(j + 1)x1

(
2
∂

∂x
+A

)
v+

j+1 +

(
2j

∂

∂x
+ jA+Q

)
v+

j = 0, x < x1,

(8.24)

with the initial conditions v+
j (x1, y), j = 1, 2, ..., given by (8.21).

Since A = 1
2

1
|h|

∂|h|
∂x , we deduce from (8.24) and (8.22) that

v+
1 (x, y) =

1

2

|h| 14 (x1, y)

|h| 14 (x, y)
x
−n

2
−1

1 w(x1, y), x ≤ x1.(8.25)

But

∂

∂s
V +(s, x, y) ∼

∞∑

j=1

jesv+
j (x, y)(es − x1)

j−1
+ =

∞∑

j=1

j(es − x1 + x1)v
+
j (x, y)(es − x1)

j−1
+ ∼

x1v
+
1 (x, y)(es − x1)

0
+ +

∞∑

j=1

(
(j + 1)x1v

+
j+1(x, y) + jv+

j (x, y)
)
(es − x1)

j
+.

(8.26)
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The highest singularity of R+(0, χx1
w) = ∂v

∂s

∣∣
∂X

at s = log x1 is the highest singularity of ∂
∂sV

+(s, 0, y),

which is

x1v
+
1 (0, y)(es − x1)

0
+ =

1

2

|h| 14 (x1, y)

|h| 14 (0, y)
x
−n

2

1 w(x1, y)(e
s − x1)

0
+.(8.27)

This gives (8.16) and the Lemma is proved. �

Now we can finish the proof of Proposition 8.6.

Proof. We know from Lemma 8.9 that there exists ǫ > 0 such that for any φ ∈ C∞
0 (R) even, and F ∈ Mb,

then

|h1|
1
4 (x, y)

|h1| 14 (0, y)
ψ1

(
∆g1

− n2

4

)
R−1

1,−F (x, y) =
|h2|

1
4 (x, y)

|h2| 14 (0, y)
ψ1

(
∆g2

− n2

4

)
R−1

2,−F (x, y), (x, y) (0, ǫ) × ∂X,

where ψ1 is determined by (7.2). Now take a sequence φm such that φm ∗ F → F in L2(R × ∂X) as

m→ ∞. Then, by the continuity of Rj,−, j = 1, 2,

ψ1,m

(
∆gj

− n2

4

)
R−1

j,−F → R−1
j,−F in L2(Xj) with respect to gj .

Since |h1|(0, y) = |h2|(0, y), (8.12) holds for the backward radiation field.

Let F = S−1G = R1,−R−1
1,+G = R2,−R−1

2,+G, then

|h1|
1
4 (x, y)R−1

1,+G = |h2|
1
4 (x, y)R−1

2,+G, in (0, ǫ) × ∂X.

Since S is unitary and G is arbitrary, therefore (8.12) holds for the forward radiation field. This ends the

proof of Proposition 8.6. �

Since |h1| = |h2| the following is an immediate consequence of Proposition 8.6.

Proposition 8.10. Let (X1, g1) and (X2, g2) satisfy the hypotheses of Theorem 8.1 be such that ∆gj
,

j = 1, 2, have no eigenvalues. Then there exists ǫ > 0 such that in coordinates for which (8.4) holds, the

Schwartz kernels of the radiation fields Rj,±(s, y, z), for (s, y) ∈ R ×M, z ∈ (0, ǫ) ×M, satisfy

R1,+(s, y, z) = R2,+(s, y, z) and R1,−(s, y, z) = R2,−(s, y, z).(8.28)

Next we want to show that Ψ extends to a global diffeomorphism fromX1 to X2, as claimed in Theorem

8.1. We could follow the method of [4, 5, 29], see also [30, 31], and construct the diffeomorphism. However

it is easier to show that one can apply their result to construct Ψ.

Proposition 8.11. ([4, 5, 29]) Let (Z, g) be a smooth compact Riemannian manifold with boundary with

boundary ∂Z. Let νj , νj ≤ νj+1, j ∈ N, denote the Neumann eigenvalues of the operator ∆g, on Z and let

γj denote the corresponding eigenfunctions. Then (Z, g) is uniquely determined, modulo a diffeomorphism

that is the identity at ∂Z, by the collection

νj and γj |∂Z , j ∈ N \ J, where J is a finite subset.(8.29)

This result is proved in [4, 5] for J = ∅ and in [29, 30] for J 6= ∅.
So far we have shown that there exist diffeomorphisms Ψj,ǫ, j = 1, 2, satisfying (8.3) such that (8.6)

holds. Therefore Ψ = Ψ2,ǫ ◦ Ψ−1
1,ǫ is a diffeomorphism

Ψ : U2,ǫ −→ U1,ǫ

which satisfies (8.7).

Observe that Xj,ǫ = Xj \ Uj,ǫ are smooth compact manifolds with boundary and their boundaries

∂X1,ǫ, ∂X2,ǫ can be identified by the diffeomorphisms with M × {ǫ} = Mǫ, see figure 7.
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Figure 7. The maps Ψj,ǫ, j = 1, 2 and their extension to Z.

We think of Mǫ as the boundary of some smooth compact manifold Z. We will prove that the fact that

the two metrics have the same scattering matrix imply that ∆gi
in Xi,ǫ, i = 1, 2, have the same Neumann

spectral data in Mǫ, that is, they have the same eigenvalues and the same traces of the eigenfunctions.

Then Proposition 8.11, with J = ∅, put together with Proposition 8.2 proves Theorem 8.1. We should

also remark that method of proof of Proposition 8.11 guarantees that the resulting map is C∞.

As in [42], we recall that the graph of the Calderón projector of ∆gj
− λ2 − n2

4 in Xj,ǫ, j = 1, 2,

denoted by Cj,λ, is the closed subspace of L2(Mǫ)×H1(Mǫ) consisting of (f, g) ∈ L2(Mǫ)×H1(Mǫ) such

that there exists u satisfying

(
∆gj

− λ2 − n2

4

)
u = 0 in Xj,ǫ, j = 1, 2,

u|Mǫ
= f, ∂νu|Mǫ

= g.

Here ∂νu denotes the normal derivative of u at Mǫ. We will show that if A1(λ) = A2(λ), λ ∈ R \ 0, then

C1,λ = C2,λ, λ ∈ R \ 0. But the Calderón projector depends continuously on λ and so does its graph.

Thus C1,λ = C2,λ, λ ∈ R.

Since ∆gj
, j = 1, 2, has no point spectrum in L2(Xj), the operators ∆gj

− n2

4 , j = 1, 2, are positive in

Xj . In particular their restriction to Xj,ǫ are also positive. Therefore λ2 + n2

4 is in the Neumann spectrum

of ∆gj
in Xj,ǫ, if and only if Cj,λ contains a subspace of pairs of the form (g, 0), g 6= 0. Therefore, once

we prove that C1,λ = C2,λ, λ ∈ R, then the eigenvalues of the Neumann problem for ∆g1
in X1,ǫ, and

the traces of the corresponding eigenfunctions on Mǫ, are equal to the corresponding ones of ∆g2
in X2,ǫ.

Then Proposition 8.11, with J = ∅, can be used to prove Theorem 8.1.

To prove that C1,λ = C2,λ, λ ∈ R \ 0, we apply the same argument used in the proof of Lemma 3.2,

chapter 3.8 of [44], see also the proof of Lemma 2.1 of [52], to show that for any λ 6= 0, the set of functions

given by

vj(z, λ) =

∫

M

E∗
j

(n
2

+ iλ
)

(z, y)φ(y), j = 1, 2, φ ∈ C∞(M),(8.30)

where E∗
j is the Eisenstein Function, or Poisson operator, which is the adjoint of the operator Ej defined

in (6.10), is dense in the set of solutions of
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(
∆ − λ2 − n2

4

)
u = 0 in Xj,ǫ, j = 1, 2,(8.31)

in the Sobolev space Hk(Xj,ǫ), for any k ≥ 2.

The dual to Hk(Xj,ǫ) can be identified with the space of f ∈ H−k(Xj) supported in Xj,ǫ. If such

f satisfies 〈f, v〉 = 0 for all v given by (8.30), then Ej

(
n
2 + iλ

)
f = 0. This implies that the function

h = R
(

n
2 + iλ

)
f vanishes to infinite order at M. Notice that f is supported in Xj,ǫ, so h is smooth near

M. Then unique continuation, see Theorem 14 of [40], implies that h is supported in Xj,ǫ and therefore

f =
(
∆gj

− λ2 − n2

4

)
h, with h supported in Xj,ǫ. Then 〈f, u〉 = 0 for any u satisfying (8.31).

Since E∗
j

(
n
2 + iλ

)
(z, y) is the partial Fourier transform in s of R−1

j,−(s, y, z), j = 1, 2, Proposition 8.10

implies that for all vj , j = 1, 2, given by (8.30), which we know is smooth in Xj, satisfy v1(z, λ) = v2(z, λ),

z = (x, y) ∈ (0, ǫ)×M, λ ∈ R \ 0. Therefore their traces and normal derivatives at Mǫ are equal, and the

density of this set implies that the same is true for solutions of (8.31). Thus C1,λ = C2,λ, λ ∈ R \ 0 and

this proves our claim.

8.3. The general case. Now we remove the extra assumption on the non-existence of eigenvalues.

Let (X, g) be an asymptotically hyperbolic manifold. The only poles of the resolvent R(n
2 + iλ) =

(∆g − n2

4 − λ2)−1 in {ℑλ < 0} correspond to the finitely many eigenvalues of ∆g. Proposition 3.6 of [16]

states that if λ0 ∈ iR− is such that n2

4 + λ2
0 is an eigenvalue of ∆g then the scattering matrix has a pole

at λ0 and its residue is given by

Resλ0
A(λ) =

{
Πλ0

, if − iλ0 6∈ N/2,

Πλ0
− pl, if − iλ0 = l

2 , l ∈ N,
(8.32)

where pl is a differential operator whose coefficients depend on the tensor h, defined in (8.4), and its

derivatives at ∂X, and the Schwartz kernel of Πλ0
is

K(Πλ0
)(y, y′) = −2iλ0

N0∑

j=1

φ0
j ⊗ φ0

j(y, y
′), φ0

j (y) = x−
n
2
−λ0φj(x, y)|x=0.(8.33)

Here N0 is the multiplicity of the eigenvalue n2

4 + λ2
0 and φj , 1 ≤ j ≤ N0, are the corresponding

orthonormalized eigenfunctions.

If two asymptotically hyperbolic manifolds (X1, g1) and (X2, g2) have the same scattering matrix

A1(λ) = A2(λ) for all λ ∈ R \ 0, we know from [28] that in coordinates where (8.4) is satisfied, all

derivatives of h1 and h2 agree at x = 0. Therefore the operators pl in (8.32) are the same. Thus,

(8.32) and (8.33), and the meromorphic continuation of the scattering matrix, show that ∆g1
and ∆g2

have the same eigenvalues, with the same multiplicity. Moreover, (8.33) implies that if φj , and ψj ,

1 ≤ j ≤ N0, are orthonormal sets of eigenfunctions of ∆g1
and ∆g2

, respectively, corresponding to the

eigenvalue n2

4 +λ2
0, then there exists a constant orthogonal N0×N0 matrix A such that Φ0 = AΨ0, where

(Φ0)T = (φ0
1, φ

0
2, ..., φ

0
N0

), and (Ψ0)T = (ψ0
1 , ψ

0
2 , ..., ψ

0
N0

). So by redefining one set of eigenfunctions from

let us say, Ψ to AΨ, where ΨT = (ψ1, ψ2, ..., ψN0
), we may assume that

φ0
j (y) = ψ0

j (y), j = 1, 2, ..., N0.(8.34)
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We remark that this does not change the orthonormality of the eigenfunctions in X2 because A is or-

thogonal. Let us denote

µj =
n2

4
+ λ2

j , λj ∈ iR−, φj , 1 ≤ j ≤ N, all the eigenvalues and eigenfunctions of ∆g1
,

µj =
n2

4
+ λ2

j , λj ∈ iR−, ψj , 1 ≤ j ≤ N, all the eigenvalues and eigenfunctions of ∆g2
,

(8.35)

with µ1 ≤ µ2 ≤ ... ≤ µN , and the corresponding eigenfunctions chosen to satisfy (8.34) for each eigenvalue

µj .

When there are eigenfunctions, Lemma 8.7 is no longer valid. To present the correct statement we

begin with the following lemma, which was suggested and proved by one of the referees,

Lemma 8.12. Let V be a finite dimensional subspace of a Hilbert space H and let Q be the orthogonal

projector onto V. Let Pt, t ∈ [0, a], be a strongly continuous family of projections with P0 = Id and

PtPt′ = Pt if t ≤ t′. Then there exists ǫ ∈ (0, a), and a unique continuous family of bounded operators

T (t) : H −→ V, t ∈ [0, ǫ], such that QPt(Id−T (t)) = 0. Moreover, if fm ∈ H is a bounded sequence, then

there exists a subsequence fm′ such that T (t)fm′ converges uniformly in [0, ǫ].

Proof. As Q(Pt)|V is continuous and Q(P0)|V = Id |V , there exists ǫ ∈ (0, a) such that QPt : V −→ V is

invertible on V for t ∈ [0, ǫ]. If R(t) is its inverse, then R(t) is continuous for t ∈ [0, ǫ], and

QPt(Id−R(t)QPt) = QPt − (QPt)R(t)QPt = 0.

So we take T (t) = R(t)QPt. Then T (t) is bounded and continuous in t. If T̃ (t) is another solution,

QPt(T (t) − T̃ (t)) = 0, so multiplying by R(t) on the left, we get T (t) − T̃ (t) = 0.

If fm is a bounded sequence of functions on H, then Ptfm is bounded. From the strong continuity of

Pt, Ptfm is equicontinuous and hence it has a convergent subsequence Ptfm′ . Thus T (t)fm′ = R(t)QPtfm′

converges. This ends the proof of the lemma. �

The application of this lemma that we have in mind is:

Corollary 8.13. Let (X, g) be an asymptotically hyperbolic manifold and let x be a defining function of

∂X for which (2.4) holds. Let V = L2
pp(X), be the space spanned by the set of orthonormal eigenfunctions

of ∆g, ζj ∈ L2(X), 1 ≤ j ≤ N. Let χt denote the characteristic function of the set {x ≥ t} and let Ptf =

χtf. Then there exists ǫ > 0, and a unique continuous family of bounded operators T (t) : L2(X) −→ V,

t ∈ [0, ǫ], such that

〈χt(f − T (t)f), ζk〉 = 0, k = 1, 2, ..., N.(8.36)

Moreover, any bounded sequence fm ∈ L2(X), m = 1, 2, ..., has a subsequence fm′ such that T (t)(fm′)

converges uniformly in [0, ǫ], j = 1, 2, ..., N. In this case the operators R(t) and QPt are given by

R(t) = (R(t)ij), R(t)ij = 〈χtζi, ζj〉, (QPtf)T = (〈χtf, ζ1〉, 〈χtf, ζ2〉, ..., 〈χtf, ζN 〉) .(8.37)

When there exist eigenfunctions, Lemma 8.7 has to be replaced by

Lemma 8.14. Let (X, g) be an asymptotically hyperbolic manifold and let {ζj : 1 ≤ j ≤ N} denote the

L2(X) eigenfunctions of ∆g. Let Pb
x1

denote the orthogonal projector

Pb
x1

: Mb −→ Mb(x1).
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Let χt be the characteristic function of the set {x ≥ t}. Then there exists ǫ > 0 such that for every

x1 ∈ (0, ǫ) and every f ∈ L2
ac(X)

Pb
x1
R−(0, f) = R−(0, fx1

), where

fx1
(x, y) = χx1

(x, y) (Id−T (x1)) f,
(8.38)

and T (x1) is the family of operators given by Corollary 8.13.

Proof. We follow the proof of Lemma 8.7. We know from Lemma 8.5 that there exists fx1
∈ L2

ac(X)

supported in {x ≥ x1} such that Pb
x1
R−(0, f) = R−(0, fx1

) and that

〈fx1
− f, g〉 = 0 for all g ∈ C∞

0 (
◦

X) ∩ L2
ac(X) supported in{x1 ≤ x}.

Therefore there exist constants αj(x1), j = 1, 2, ..., N, such that

fx1
= χx1


f +

N∑

j=1

αj(x1)ζj


 .

Since fx1
∈ L2

ac(X1), it follows that 〈fx1
, ζk〉 = 0, 1 ≤ k ≤ N. Then, by uniqueness,

∑N
j=1 αj(x1)ζj =

−T (x1)(f), is the family of operators given by Corollary 8.13. �

If there are eigenvalues, then Lemma 8.9 is replaced by

Lemma 8.15. Let (X, g) be an asymptotically hyperbolic manifold and let x be a defining function of

∂X such that (2.4) holds. Let R± be the radiation fields with respect to x. Then there exists ǫ > 0 such

that for all F ∈ Mb, φ ∈ C∞
0 (R) even, and ψ1 defined by (7.2), and any x1 ∈ (0, ǫ/4),

R+R−1
−

(
Pb

x1
G
)
(s, y) =

1

2
x
− n

2

1 (Id−T (x1))w(x1, y)
|h1| 14 (x1, y)

|h1| 14 (0, y)
(s− log x1)

0
+ + smoother terms,

if s < log x1 + log 4, where G = φ ∗ F, and w1 = R−1
− G = ψ1

(
∆g − n2

4

)
R−1

− F.

(8.39)

Here T (x1) is the operator given by Corollary 8.13. Notice that by (7.3), G = φ ∗ F ∈ Mb, and that the

left hand side of (8.39) is determined by the scattering matrix A(λ).

Proof. We follow step by step the proof of Lemma 8.9. We know that the eigenfunctions are smooth

in the interior of the manifold. So the only thing that changes is the singularity of the initial data in

equation (8.21). The initial data of v+
1 , which was given by (8.22), must, according to (8.38), be replaced

by

v+(x1, y) =
1

2
x
−n

2
−1

1 (Id−T (x1))w1(x1, y).

�

As in the proof of Proposition 8.6, we take a sequence φm such that φm ∗ F → F in L2(R ×M), in

Lemma 8.15, and we obtain

Proposition 8.16. Let (Xj , gj), j = 1, 2, be asymptotically hyperbolic manifolds satisfying the hypothe-

ses of Theorem 8.1. Let Rj,−, j = 1, 2, denote the corresponding backward radiation fields defined in

coordinates in which (8.4) holds. Let Tj(t), j = 1, 2, be the operators given by Corollary 8.13. Then there

exists ǫ > 0 such that for any F ∈ Mb,

|h1|
1
4 (x, y) (Id−T1(x))R−1

1,−F (x, y) = |h2|
1
4 (x, y) (Id−T2(x))R−1

2,−F (x, y) in (0, ǫ) ×M.(8.40)
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We deduce from (8.40) and (8.13) that for every F ∈ Mb,

|h1|
1
4 (Id−T1(x))R−1

1,−F (x, y) = |h2|
1
4 (Id−T2(x))R−1

2,−F (x, y), (x, y) ∈ (0, ǫ) ×M, and

|h1|
1
4 (Id−T1(x))

(
∆g1

− n2

4

)
R−1

1,−F (x, y) = |h2|
1
4 (Id−T2(x))

(
∆g2

− n2

4

)
R−1

2,−F (x, y),

(x, y) ∈ (0, ǫ) ×M.

(8.41)

We will use this to conclude that the tensors h1 and h2 are equal, and thus prove Proposition 8.2.

This is based on the following lemma, which is a direct consequence of Corollary 8.13.

Lemma 8.17. For δ > 0, let Kδ be the characteristic function of {x ≤ δ}. Then there exists ǫ > 0 such

that for every δ ∈ (0, ǫ), the operators Tj , j = 1, 2, defined by Corollary 8.13 satisfy

KδTj : L2(Xj) −→ L2([0, δ] ×M), j = 1, 2,

where L2 is defined with respect to the metric gj, and moreover are compact.

We can then prove Proposition 8.2.

Proof. We just need to observe that it follows from (8.41) and Lemma 8.17 that for ǫ > 0 small,

Kǫ|h1|
1
4R−1

1,−F (x, y) = Kǫ|h2|
1
4R−1

2,−F (x, y) +KǫRF (x, y), R compact, and

Kǫ|h1|
1
4

(
∆g1

− n2

4

)
R−1

1,−F (x, y) = Kǫ|h2|
1
4

(
∆g2

− n2

4

)
R−1

2,−F (x, y) +KǫSF (x, y), S compact.

(8.42)

Let δ ∈ (0, ǫ) and set R−1
1,−F = f. We find that for all f ∈ L2

ac(X1), with respect to g1,

Kδ|h2|
1
4

(
∆g2

− n2

4

) |h1|
1
4

|h2| 14
f = Kδ|h1|

1
4

(
∆g1

− n2

4

)
f +KδS̃f, S̃ compact.(8.43)

Let Q be the differential operator

Qf =

(
|h2|

1
4

(
∆g2

− n2

4

) |h1| 14
|h2| 14

− |h1|
1
4

(
∆g1

− n2

4

))
f.

Since any f ∈ L2(X1), with respect to g1, can be written as f = Pacf +
∑N

j=1〈f, φj〉φj , it follows from

(8.43) that

KδQf = KδQPacf +

N∑

j=1

〈f, φj〉KδQφj = KδS̃Pacf +

N∑

j=1

〈f, φj〉KδQφj , f ∈ L2(X1).

The first term of the sum is compact because S̃ is, and the second term is of finite rank. Therefore

KδQ : L2(X1) −→ H−2([0, δ] ×M) is compact. But Q is also a second order differential operator. This

implies that KδQ = 0. See for example exercise 6.2 on page 52 of [51]. Therefore the tensors h1 and h2

are equal in [0, δ] ×M, and this proves Proposition 8.2. �

Now we need to show that the diffeomorphism can be extended to the whole manifold. We will use

the same method as in the case of no eigenvalues. We have shown that ∆g1
= ∆g2

in coordinates (8.4)

in (0, ǫ) ×M. Using (8.34) and the equation satisfied by the eigenfunctions, it can be shown that (8.34)

is satisfied to infinite order, that is all derivatives of the “rescaled eigenfunctions” agree at {x = 0}.
Therefore unique continuation for this type of operators, see Theorem 14 of [40], shows that there exists

ǫ > 0, such that the eigenfunctions of ∆g1
and those of ∆g2

are equal in [0, ǫ) ×M. That is

φj(x, y) = ψj(x, y), 1 ≤ j ≤ N, (x, y) ∈ [0, ǫ) ×M.(8.44)
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We deduce from the first equation in (8.41) that the Schwartz kernels R−1
j,−(s, y, z), (s, y) ∈ R×M and

z = (x, y′) ∈ (0, ǫ) ×M satisfy

(I − T1(x))R−1
1,−(s, y, z) = (I − T2(x))R−1

2,−(s, y, z).(8.45)

Since Tj , j = 1, 2, is a linear operator, we may take Fourier transform in s of (8.45) and deduce that

the Schwartz kernels E∗
j (n

2 + iλ)(z, y), j = 1, 2, (λ, y) ∈ R \ 0 ×M, and z = (x, y′) ∈ (0, ǫ) ×M satisfy

(I − T1(x))E
∗
1 (
n

2
+ iλ)(z, y) = (I − T2(x))E

∗
2 (
n

2
+ iλ)(z, y).(8.46)

We will use this to prove

Proposition 8.18. There exists ǫ > 0 such that for every λ ∈ R \ 0, y ∈M and z = (x, y′) ∈ (0, ǫ)×M,

E∗
1 (
n

2
+ iλ)(z, y) = E∗

2 (
n

2
+ iλ)(z, y).(8.47)

Proof. Let φ ∈ C∞(M) and let vj(z, λ), j = 1, 2, be the functions given by (8.30). We will show that

there exists ǫ > 0 such that for δ ∈ (0, ǫ), there exists Λ = Λ(δ) > 0 such that

v1(δ, y
′, λ) = v2(δ, y

′, λ), ∀ y′ ∈M, and |λ| > Λ.(8.48)

Since by the analytic continuation of Ej(
n
2 + iλ), λ ∈ R \ 0, vj(z, λ), j = 1, 2, is real analytic in λ ∈ R \ 0,

for each z, it follows that (8.48) holds for every λ ∈ R \ 0. Since δ is arbitrary, (8.47) follows.

Equation (8.46) implies that

v1(z, λ) − v2(z, λ) = T1(x)v1(z, λ) − T2(x)v2(z, λ), z = (x, y′) ∈ (0, ǫ) ×M, λ ∈ R \ 0.(8.49)

Let us denote

Φ(x, y) = (φ1(x, y), ..., φN (x, y)), Ψ(x, y) = (ψ1(x, y), ..., ψN (x, y)),

T1(x)v1(z, λ) =

N∑

j=1

C1
j (x, λ)φj(x, y), T2(x)v2(z, λ) =

N∑

j=1

C2
j (x, λ)ψj(x, y),

where, by equation 8.37,

Cj(x, λ)
def
= Cj(x, vj(z, λ)) =

[
Rj(x)

]−1
F j(x, λ), j = 1, 2, where

F 1(x, λ)T def
= F 1(x, v1(z, λ))

T = (〈χxv1(z, λ), φ1〉, ..., 〈χxv1(z, λ), φN 〉),

F 2(x, λ)T def
= F 2(x, v2(z, λ))

T = (〈χxv2(z, λ), ψ1〉, ..., 〈χxv2(z, λ), ψN 〉)
R1(x) = (R1

ij(x)), R1
ij(x) = 〈χxφj , φj〉, R2(x) = (R2

ij(x)), R2
ij(x) = 〈χxψj , ψj〉,

We know that 〈φi, φj〉 = 〈ψi, ψj〉 = δij , we also know that if x < ǫ, then (1−χx)φi = (1−χx)ψi. But,

〈χxφi, φj〉 = 〈φi, φj〉 − 〈(1 − χx)φi, φj〉 = 〈φi, φj〉 − 〈(1 − χx)φi, (1 − χx)φj〉 =

〈ψi, ψj〉 − 〈(1 − χx)ψi, (1 − χx)ψj〉 = 〈ψi, ψj〉 − 〈(1 − χx)ψi, ψj〉 = 〈χxψi, ψj〉.

Hence

R1
ij(x) = 〈χxφi, φj〉 = R2

ij(x) = 〈χxψi, ψj〉.(8.50)

We denote R(x) = R1(x) = R2(x). We can pick ǫ small so that R−1(x) is uniformly bounded for x ∈ [0, ǫ].
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Recall that µj = n2

4 + λ2
j , λj ∈ iR−, is the eigenvalue corresponding to φj , as defined in (8.35). For

δ < ǫ, the divergence theorem gives

〈χδv1(z, λ), φj(z)〉 =
1

µj
〈χδv1(z, λ),∆g1

φj(z)〉 =

1

µj
(
n2

4
+ λ2)〈χδv1(z, λ), φj(z)〉 +

1

δn−1µj

∫

M

[
v1(δ, y, λ)

∂φj

∂x
(δ, y) − ∂v1

∂x
(δ, y, λ)φj(δ, y)

]
d volh(δ) .

Doing the same computation for 〈χδv2, ψj〉, using that µj = n2

4 + λ2
j and (8.44), we obtain

〈χδv1(z, λ), φj(z)〉 = − 1

(|λj |2 + λ2)δn−1

∫

M

[
v1(δ, y, λ)

∂φj

∂x
(δ, y) − ∂v1

∂x
(δ, y, λ)φj(δ, y)

]
d volh(δ),

〈χδv2(z, λ), ψj(z)〉 = − 1

|(λj |2 + λ2)δn−1

∫

M

[
v2(δ, y, λ)

∂φj

∂x
(δ, y) − ∂v2

∂x
(δ, y, λ)φj(δ, y)

]
d volh(δ) .

(8.51)

We conclude from (8.51) that there exists K0(δ) > 0, such that

|F 1(δ, λ) − F 2(δ, λ)| < K0(δ)

λ2

[
sup
M

|v1(δ, y, λ) − v2(δ, y, λ)| + sup
M

∣∣∣∣
∂v1
∂x

(δ, y, λ) − ∂v2
∂x

(δ, y, λ)

∣∣∣∣
]
.(8.52)

This and (8.50) imply that there exists K1(δ) > 0, such that

sup
M

|T1(δ)v1(δ, y, λ) − T2(δ)v2(δ, y, λ)| ≤

K1(δ)

λ2

[
sup
M

|v1(δ, y, λ) − v2(δ, y, λ)| + sup
M

∣∣∣∣
∂v1
∂x

(δ, y, λ) − ∂v2
∂x

(δ, y, λ)

∣∣∣∣
]
.

(8.53)

Setting x = δ in (8.49) and using (8.53) we get

sup
M

|v1(δ, y, λ) − v2(δ, y, λ)| ≤
K1(δ)

λ2

[
sup
M

|v1(δ, y, λ) − v2(δ, y, λ)| + sup
M

|∂v1
∂x

(δ, y, λ) − ∂v2
∂x

(δ, y, λ)|
]
.

(8.54)

To estimate the terms involving
∂vj

∂x (δ, y, λ), we differentiate (8.49) in x. We get that

∂v1
∂x

(x, y, λ) − ∂v2
∂x

(x, y, λ) =
∂

∂x
(T1(x)v1)(x, y, λ) −

∂

∂x
(T2(x)v2)(x, y, λ).(8.55)

Since Φ = Ψ for x < ǫ, we have Tjvj(x, y, λ) = R−1(x)F j(x, λ) · Φ(x, y), and thus

∂

∂x
(Tj(x)vj)(x, y, λ) =

[
d

dx
R−1(x)

]
F j(x, λ) · Φ(x, y) +R−1(x)

d

dx
F j(x, λ) · Φ(x, y) +R−1(x)F j(x, λ) · ∂Φ

∂x
(x, y).

(8.56)

The first and the third terms are much like Tjvj(z, λ), and because of (8.52), satisfy an estimate like

(8.53). The second term has to be considered separately. Notice that
(
d

dx
F j(x, λ)

)T

=

(
d

dx
〈χxvj , φ1〉, ...

d

dx
〈χxvj , φN 〉

)
,

and

d

dx
〈χxvj , φk〉 |x=δ = − 1

δn+1

∫

M

vj(δ, y, λ)φk(δ, y)d volh(δ) .

Then

d

dx
(〈χxv1, φk〉 − 〈χxv2, φk〉) |x=δ = − 1

δn+1

∫

M

(v1(δ, y, λ) − v2(δ, y, λ))φk(δ, y)d volh(δ) .(8.57)
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Then there exists K2(δ) such that
∣∣∣∣
d

dx
F 1(δ, λ) − d

dx
F 2(δ, λ)

∣∣∣∣ ≤
K2(δ)

λ2
sup
M

|v1(δ, y, λ) − v2(δ, y, λ)|.(8.58)

So from (8.52), (8.55), (8.56) and (8.58) we find that there exists K3(δ) such that

sup
M

|∂v1
∂x

(δ, y, λ) − ∂v2
∂x

(δ, y, λ)| ≤ K3(δ)

λ2

[
sup
M

|v1(δ, y, λ) − v2(δ, y, λ)| + sup
M

|∂v1
∂x

(δ, y, λ) − ∂v2
∂x

(δ, y, λ)|
]
.

(8.59)

So we conclude from (8.54) and (8.59) that

sup
M

|v1(δ, y, λ) − v2(δ, y, λ)| + sup
M

|∂v1
∂x

(δ, y, λ) − ∂v2
∂x

(δ, y, λ)| ≤

K1(δ) +K3(δ)

λ2

[
sup
M

|v1(δ, y, λ) − v2(δ, y, λ)| + sup
M

|∂v1
∂x

(δ, y, λ) − ∂v2
∂x

(δ, y, λ)|
]

Taking Λ2 > K1(δ) +K3(δ), equation (8.48) follows. This ends the proof of the Proposition. �

As in the case of no eigenvalues, this can be used to show that the graphs of the Calderón projectors

satisfy C1,λ = C2,λ, λ ∈ R \ 0 and by continuity of Cj,λ, if λ ∈ R. However, in this case, the operators

∆gj
− n2

4 , j = 1, 2, are not positive, and this only determines the Neumann eigenvalues, and the traces

of the corresponding eigenfunctions, of ∆gj
for eigenvalues νj ≥ n2

4 . But since the set J = {j : νj ≤ n2

4 }
is finite, we may again apply Proposition 8.11, this time with J 6= ∅.

Observe that for δ < ǫ fixed, (8.48), and the density of vj(λ, z), j = 1, 2, imply that C1,λ = C2,λ,

λ2 > Λ2 in Xj,δ. This gives the spectral data with eigenvalues νj > Λ and we could apply Proposition

8.11 already at this stage.

Then Proposition 8.11 combined Proposition 8.2 proves Theorem 8.1. Again, we remark that the

method of proof of Proposition 8.11 guarantees that the map is C∞.
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[25] L. Hörmander. Linear partial differential operators. Grundlehren Math. Wiss. 116, Springer Verlag, (1963)

[26] L. Hörmander. The analysis of linear partial differential operators. Vol 1-4, Grundlehren Math. Wiss. 256, Springer

Verlag, (1983)
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(1984/85).

[39] R. Mazzeo. The Hodge cohomology of a conformally compact metric. J. Diff. Geom. 28, 309-339, (1988)

[40] R. Mazzeo. Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds. Am. J.

Math. 113 25-45, (1991)

[41] R. Mazzeo. Elliptic theory of differential edge operators I. Comm. in P.D.E. 16(10), 1615-1664, (1991)

[42] R. Mazzeo. Remarks on a paper of Friedlander concerning inequalities between Neumann and Dirichlet eigenvalues.

Intern. Math. Res. Notices. 4, 41-48, (1991)

[43] R. Mazzeo and R.B. Melrose. Meromorphic extension of the resolvent on complete spaces with asymptotically constant

negative curvature. J. Func. Anal. 108, 260-310, (1987)

[44] R.B. Melrose. Geometric scattering theory. Stanford Lectures, Cambridge Univ. Press, (1995)

[45] P. Perry. The Laplace operator on a hyperbolic manifold, II. Eisenstein series and the scattering matrix. J. Reine

Angew. Math., 398, 67-91, (1989)
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