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ASYMPTOTICALLY HYPERBOLIC MANIFOLDS
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ABSTRACT. We define the forward and backward radiation fields on an asymptotically hyperbolic man-
ifold and show that they give unitary translation representations of the wave group, and as such can be
used to define a scattering matrix. We show that this scattering matrix is equivalent to the one defined by
stationary methods. Furthermore, we prove a support theorem for the radiation fields which generalizes
to this setting well known results of Helgason and Lax & Phillips for the horocyclic Radon transform.
As an application, we use the boundary control method of Belishev to show that an asymptotically
hyperbolic manifold is determined up to invariants by the scattering matrix at all energies.

1. INTRODUCTION

The purpose of this article is to define the radiation fields on asymptotically hyperbolic manifolds
and to use them to study scattering and inverse scattering theories. The radiation fields on R™ and on
asymptotically Euclidean manifolds were introduced by F.G. Friedlander in a series of papers starting in
the early 1960’s [10, 11, 12, 13, 14]. His program of using the radiation fields to obtain the scattering
matrix in that general setting was completed in [48]. Here we carry out the analogous construction on
asymptotically hyperbolic manifolds. After defining the radiation fields, we use them to give a unitary
translation representation of the wave group and to obtain the scattering matrix for such manifolds. As
an application, we use them to study the inverse problem of determining the manifold and the metric
from the scattering matrix at all energies.

Asymptotically hyperbolic manifolds are smooth compact manifolds with boundary equipped with a
complete metric that resembles the hyperbolic space near the boundary. The basic examples of such
manifolds are the hyperbolic space and its quotients by certain discrete group actions, see [43], but any
C* compact manifold with boundary can be equipped with such a metric.

There is a history of interest in scattering theory for this class of manifolds, motivated by several
problems of mathematics and physics, which goes back to the work of Fadeev and Pavlov [8], followed
by Lax and Phillips [36, 37], and later by several people, see for example [2, 6, 20, 28, 39, 43, 45] and
references cited there. More recently there has been interest in this class of manifolds in connection to
conformal field theory, see [9, 15, 16] and references cited there.

Mazzeo, Mazzeo and Melrose [39, 40, 43] first studied the spectral and scattering theory of the Laplacian
in this general setting and gave a thorough description of the resolvent and its meromorphic continuation.
Their methods have been applied in [6, 16, 17, 20, 28] to study the scattering matrix starting from a
careful understanding of the structure of the solutions to the Schrodinger equation on a neighborhood of
infinity.

We will develop the scattering theory for this class of manifolds using a dynamical approach in the
style of Lax and Phillips [35, 36, 37], but we do this by following Friedlander [10, 11, 12, 13, 14]. In
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fact Lax and Phillips used radiation fields to study the translation representation of the wave group on
certain quotients of H?, [34].

We define the forward radiation field for asymptotically hyperbolic manifolds as the limit, as times
goes to infinity, of the forward fundamental solution of the wave operator along certain light rays. The
backward radiation field is defined by reversing the time direction. These are generalizations of the Lax-
Phillips transform [33, 36] to this class of manifolds. We will show that this leads to a unitary translation
representation of the wave group and a dynamical definition of the scattering matrix as in [35].

In section 6 we establish the connection of the radiation fields and the Poisson operator, which in
this context is also called the Eisenstein function. This is then used to show that the stationary (via
Schrodinger’s equation) and the dynamical (via radiation fields) definitions of the scattering matrix are
equivalent.

To show the existence of the radiation fields, we adapt the techniques of [13, 14] to this setting. To
connect the radiation fields, the Poisson operator and the scattering matrix, we use the construction of
the resolvent of the Laplacian due to Mazzeo and Melrose [43] and the construction of the Eisenstein
function from the resolvent from [20, 28].

In section 3, as an example, we compute the forward radiation field for the three dimensional hyperbolic
space H? and show that it is given by the Lax-Phillips transform, which is based on the horocyclic Radon
transform.

In section 7 we prove a precise support theorem — in the terminology of Helgason [23, 24] — for the
radiation fields. Theorem 7.1 below generalizes to this setting a theorem of Lax-Phillips, Theorem 3.13
of [36], see also [33], obtained for the horocyclic Radon transform. Helgason [21] proved this result for
compactly supported functions, but in more general symmetric spaces. Theorem 7.1 below extends this to
asymptotically hyperbolic manifolds, where the horocyclic Radon transform is replaced by the radiation
field. This can be thought of as a result in control theory which, roughly speaking, says that the support
of a function is controlled by the support of its radiation field.

Radon type transforms are often used to study properties of solutions of hyperbolic equation, but here
we use the equation to study support properties of the radiation field. This allows the use of uniqueness
theorems for partial differential equations to establish support properties of these transforms. The main
ingredients of the proof of the support theorem are Hérmander’s uniqueness theorem for the Cauchy
problem, see Theorem 28.3.4 of[26], and two of its refinements, one due to Alinhac [1] and another one
which is due to Tataru [49]. The study of support properties of Radon transforms is a topic of interest
in its own, see for example [23, 33] and references cited there.

In section 8 we use the characterization of the scattering matrix through the radiation fields and the
boundary control method of Belishev [4], see also [5, 29, 30], and the book by Katchalov, Kurylev and
Lassas [31], to study the inverse problem of determining the manifold and the metric from the scattering
matrix at all energies. We prove that the scattering matrix of an asymptotically hyperbolic manifold
determines the manifold and the metric up to invariants.

2. ASYMPTOTICALLY HYPERBOLIC MANIFOLDS AND RADIATION FIELDS

A smooth compact manifold X with boundary, 90X, is called asymptotically hyperbolic, see [43], when

[e]
it is equipped with a Riemannian metric g, which is smooth in the interior of X, denoted by X, and is
such that for a smooth defining function x of dX, that is z > 0 in the interior of X, x = 0 on dX and
dr #0 at 0X,

(2.1) r?g=H,
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is a smooth Riemannian metric on X non-degenerate up to 9X. Furthermore we assume that
|d:17|H =1 at 0X.

It can be shown, see [39, 43|, that under these assumptions, the sectional curvature approaches —1 at
0X.

Observe that g determines  and H only up to a positive factor. Hence g induces a conformal structure
at 0X.

Throughout this paper, X denotes a n + 1 dimensional smooth compact manifold with boundary, and
n > 1. g will be a Riemannian metric on X satisfying (2.1) and A will denote the (positive) Laplace
operator with respect to the metric g.

As stated in [44], see [28] for a proof in this general setting, fixed a defining function z of X, then for

all f e C*°(0X) and A € R, XA # 0, there exists a unique u € C‘x’()o() satisfying
2 o
(A—)\2—%)u:Oin X,
u=aEffamMEf L fL e CF(X), filox = f.

This leads to the stationary definition of the scattering matrix at energy A # 0, see for example
[20, 28, 44], as the operator

(2.2)

A(N) : C®(9X) — C=(9X)

23) [ f-lox.

As pointed out in [44], the expansion (2.2) gives two parametrizations, corresponding to £, of the
generalized eigenspace of A — "Tz with eigenvalue A\? by distributions on 9.X. The scattering matrix is the
operator that intertwines them.

Notice that if ¥ is a diffeomorphism of X, fixing x and dx on 0X, then the scattering matrix will
be invariant under the pull back of the metric by ¥. Moreover, this definition of the scattering matrix
depends on the choice of the function z. It can be invariantly defined as acting on appropriate bundles,
see for example [28].

It is shown in [28] and [15], that if g satisfies (2.1), and fixed a representative hg of the conformal class
of g at X, there exists € > 0 and a unique product structure X ~ [0,¢) X 9X in which

dz? | h(z,y,dy)

(2.4) 9=+ 22

, ho = h(oa Y, dy)
One can think of h(z,y,dy) = h(x) as a one-parameter family of metrics on the boundary dX. We will
fix such a decomposition, and from now on z € C*°(X) will be as in (2.4). This is equivalent to fixing
a conformal representative of 22g|aox. We will also work with the A()) defined by (2.3) where z is given
by (2.4).

Here, as in [13, 14], we will use the wave equation to define the radiation fields and arrive at an
equivalent definition of the scattering matrix.

We will prove

Theorem 2.1. For fi, fo € C(‘J’o(;(), compactly supported in the interior of X, let u(t,z) € C° (R4 x )%)
satisfy

2 o
(Df—A—i—%) u(t,z) =0, on Ryx X,

u(0,2) = f1(2), Dwu(0,2) = fa(2).

(2.5)
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Let z = (z,y) € (0,€) x X be local coordinates near X in which (2.4) hold. Then there exist vy €
C*(R x 0X), such that
afgu(s —logz,x,y) ~ ka(s,y)xk.
k=0

Clearly vg(s,y) depends on the choice of z, and we make no attempt to define a bundle where it would
be invariant. We refer the reader to Lemma 2.2 of [15] for the relationship between two functions that
satisfy (2.4) corresponding to two different conformal representatives.

Theorem 2.1 defines a map

o

Ry : O (X) x O2(X) — C®(R x 0X)
R+(f)(8, y) = x_%Dtu(S - log:v, :E7y)|:v:0 = DSUO(S7 y)7
which will be called the forward radiation field.

Similarly one can prove that if u_ satisfies (2.5) in R_x X then

(2.6)

lin}J 7 u_(s+logz, z,y) = v_(s,y)

Tr—

exists, is smooth, and thus define the backward radiation field

o

2.7) R : CF(X) x CF(X) — C(R x 0X)
R_(f)(s,y) = 2~ 2 Dyu_(s +logx, x,y)|s=0 = Dsv_(s,y).

Finally we remark that, since the Lorentzian metric associated to g is

da*  h(z,y,dy)
w2 T 2z

h(zx,y,dy)

o =dt* - =d(t — logz)d(t + logz) — PR

)
the surfaces

{t—logz =C}, {t+logax=C}
are characteristic for the wave operator, and thus a point (t',2'), 2’ = (2/,y’), has a past domain of
dependence, A~ (¥, 2’) satisfying
(2.8) ATt ) c{(t,z,y): t —logx <t —loga’, t+logz <t +loga'}.

3. THE THREE DIMENSIONAL SPACE WITH CONSTANT NEGATIVE CURVATURE

In this section, as an example, we study the particular case of the hyperbolic space

da? dy|?
(3.1) H? = {(z,y) : y € R?, z € R, x> 0}, with the metric g = iz + dy] .
x

22
In this case the radiation fields can be explicitly computed. The formulee obtained in [32], see also [22],
can be used in the same way to compute the radiation fields in H™. This is done in [34].

For convenience, we will work in the non-compact model, which does not quite fit the framework of
section 1, but it is isometric to the compact model given by the interior of the ball with Poincaré’s metric
X=B={zeR?:|z| <1} andgz%.

For z € H3, let S(z,t) denote the set of points in H? whose geodesic distance to z is t. Let A(t) be the
area of S(z,t), which is independent of z. Given f € C§°(H?), supported in the interior of H?, let

1

M2 = [ s,

be the mean of f over the sphere S(z,1).
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According to [22, 32|, the solution to (2.5) with f; = 0 and fo = f is given by

(3.2) u(t, z) = (sinht) M (f,t, 2).
Therefore, the forward fundamental solution is, for ¢ > 0,
inht
U(t,z,2') = Sj(t) §(t—d(',2)),
where the distance is given by
2 12 a2
(3.3) coshd(z,2') = e |/y v :

2z
Then the sphere in the hyperbolic metric centered at (x,y) with radius ¢ corresponds to the Euclidean
sphere with center (zcosht,y) and radius xsinht. We find that A(t) = 47 sinh®¢, and hence

1
[](t7 zZ, Z/) = m(g(t — d(Z, Z/))

But lim,_,o x sinh(s — logz) = lim,_,0  cosh(s — logz) = % So the Schwartz kernel of R is

0 0 1 e’ e’
ANEERT -1Y . n_9 e e ’
(3.4) R+(s,y,z)—i1ir%)x 8SU(S logx, z,2") Ep (47”555(2 de [(z,y),z]>)

where d, denotes the distance in the Euclidean metric.
So, for f € C§°(H?), one obtains R f(s,y) by integrating f over the surface of the Euclidean sphere

with center (%, y) and radius %, with respect to the measure induced by the metric g. This sphere is

tangent to {x = 0} at (0,y) and the integration of f on those spheres is known as the horocyclic Radon
transform, see for example [24]. The transformation given by (3.4) is called the Lax-Phillips transform,
see [33].

4. THE PROOF OF THEOREM 2.1

In this section we work with the forward radiation field and we will drop the index =+ from the notation.
We will work with a product decomposition X ~ [0,€) x X on which (2.4) holds. Then h(x,y,dy) =
h(z) is seen as a one-parameter family of Riemannian metrics on 0X.
We will also denote, in local coordinates,
(4.1)

h(z,y,dy) = Z hij(z,y)dyidy;, |h| =det (hi;), and h~" = (k") the inverse of the matrix h;;.

ij=1
Proof. Without loss of generality, we may assume that f; = 0 and that f; is compactly supported in
{z > zo}, with z¢ small enough. Hence u(t,z,y) € C*(R x (0,€) x dX) satisfies

n2
(Dt2 —A+ I) u(t, z,y) =0,

u(0,z,y) =0, Dwu(0,z,y) = f(x,y).

Here we are considering the solution in ¢ € R, and in this case the solution u is odd in ¢. Moreover (2.8)
and the finite speed of propagation guarantee that for  small,

(4.2)

(4.3) u=0 if logxr—logxg <t <logxg—logz, =z <zp<e.
We will show that

(44) v(s,x,y):xfgu(s—log:r,x,y)
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(o aa )
P=x2 Dt A+4 T2

and substitute ¢t = s — log z. Then using (4.2), we find

is smooth up to z = 0. We denote

. 0 0 0 0 0
(45) Pu(s,z,y) =0, in R x (0,¢) x 90X, P—%<2%+ B >+xAh+Aa + Ax %—I— Ly}

v(logz,,y) =0, Dsv(logz,z,y) =z % f(z,y)
Recall that h(z,y,dy) = h(x) is a one-parameter family of metrics on 0X. Here Ay is the Laplacian

on X associated with the metric h(z,y, dy). In local coordinates is A, = \Tlr_ doii=1 8y (|h| 2 h' 2 )
2

and A = L[|~ 16‘}1'.
Equation (4. 3) 1mplies

(4.6) v=0for 2logx —logzy < s <logzy, x < xg<e.

The operator P is not strictly hyperbolic at = 0, so the argument of Friedlander [14], which is based
on a theorem of Leray, cannot be used directly. We will refine the method of [13] and obtain energy
estimates which hold uniformly up to {z = 0}.

It is worth observing that if the tensor h(z,y, dy) is an even function of z, then after setting r = 22,
the operator r~% P is smooth and strictly hyperbolic. So Friedlander’s method can be applied directly.
Such metrics have been recently studied by Guillarmou in [17] and include the case where the metric has
constant curvature near X, see [19]. In the general case this trick does not work because the resulting
operator would not be smooth at r = 0.

In section 7 we will need to understand the behavior of the forward radiation field as s — —o0, so
we will compactify the problem and obtain uniform estimates as s — —oo. So we make the change of

variables

(4.7) s=2logt', z=2at.
This choice of coordinates is designed to do two things: first it transforms the operator 8% (2% + xa%)
into 5= 8‘2,, and secondly it compactifies the half-line (—oo, 0]. Thus let

n tl
V(' t',y) =vRlogt 2t y) = (2't') " 2u (log <?> ,x’t',y) :
Then V is smooth in ¢ > 0, 2’ > 0 and, as v is odd in ¢, V(2/,t',y) = =V (t', 2/, y). Moreover for

0 0 1 0 0 n

/7__ WA S Al v < At

g A+ A (¢ ol ) B A )
PV =0, />0, t>0,

(4.8) ,

Vi) =0, oVl y) = T ),

Here Ay is the Laplacian with respect to the metric h(z't’,y,dy) which in local coordinates is A =

e DR (UGN LI RICTAETY B

[h(at"y)| 2
The support properties of v given in (4.6) translate into

(4.9) V' t',y)=0 if 2 </xg, t' < /0.
The coefficients of P’ are smooth up to {#/ = 0} U {¢' = 0} and therefore can be extended smoothly,
although not uniquely, to a neighborhood {|z’| < \/Zo} U {|t'| < \/To}. To obtain the desired regularity
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of V we will differentiate the equation (4.8) and obtain energy estimates for the resulting system of
differential equations. We begin by proving

Lemma 4.1. For T > 0, let Q = [0,T] x [0,T]. Let V(2',t',y) be a N x 1 vector, smooth in =’ > 0,
t' >0,y € 90X, satisfying the system

at’ ox'
(4.10) E@ t,y)V=0in 2/'>0, '>0 and

(ii —|—$tAh)V+$tB($ t y,aa)V+C(Il,t/7y)ta_V+D(II,t/,y)I/a_V+
X

/

aVv
V(xlvxlvy) :fl(xlvy)v O /(‘T ! y) fQ(xlvy)7 >0,
where B (x’, t',y, 8% is an N X N matriz of first order differential operators having derivatives in y only,

C, D and E are N x N matrices of functions. Moreover B,C,D and E are smooth in |2'| < T, |t'| < T,
y € 0X. Let the data f1 and fa be such that

(4.11)
/ ( |f |2 +x | |2 3|dh(x/2)f1|2) dVOlh(I/z) dl‘l < o0, $I|f2|2dV01h(z/2) dCL'/ < 0.
[0 T]X(’?X [O,T]X(?X
Then for T small
ov|? v |?
/ |V|2 + x/t/(x/ + tl) |dh(ac/t')V|2 +a' | —| +t|=— dvoly (g dx'dt’ <
Qx9X oz’ ot’

(4.12)
)
C(T) / (w 1A+ 2 | o] + gc'|—fl,|2 + 2 |dparmy 1 |2) (@', y)d Vol (yr2) da'.
[0,T)|x8X Ox

In (4.11) and (4.12) dp(wr2y and dp gy are, respectively, the d-derivation on the section 0X with the
metric h(z'®) and h(z't").

/ OV _ v v

av. _¢0 9

Notice that the operator z’ az o

Proof We begin by multiplying the system (4.10)
is E written in these coordinates. We obtain

v |?

ox’

+ t’2x’|dh(x,t/)V|2> Vh('t' | y)

(S T O
2\/E($'t', y) ot

2
(4.13) B N
2V/h(z't!,y) O’ ot

oV; ,0V; , 0V 0V ov
+ Zx/tléh(x/t/) ((,Tla—; —t 8tf€> d 't Vk) + Q ( 8_ t W,l'/t/a—yj) .
k

Here 6j(,/47) is the divergence operator on the section 0.X, dual to dj(,) with respect to the metric
h(z't"), and @ is a quadratic form with smooth coefficients.
Let

+

+t'a:'2|dh<m/t/>w2> VRt y)

Qs =[6,T) x [6,T), Qf ={(2',t') € Qs; t' >2'}, and
Qup={(,t')€Q, a<a’ <t <b},

see figure 1.
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5 X, X o X
FIGURE 1. The regions Q,, 7 and Qs 4, .

Integrating (4.13) in g, 7 x 0X, using the compactness of X, the divergence theorem, and that the
part of the first term in (4.13) which is inside the brackets is positive, we have

(4.14)

1/ y
2 J(z1,T)x0X
< l/ '
2 Jiz1,1)x0x

Proceeding similarly in the region Qs x 0X gives

ov

ot’

2
+ t/x’2|dh(m/t/)V|2> (z1, ', y)dvoly(g, ) dt’ + / Q| dvoly(gry da’dt’
Quy 7 xOX

2
+x

ov
ox’

ov

at’

/

2
+22"° ]dh(x/z)V]2> (2, @', y)d voly(przy da'.

(4.15)
1 v |?
5/ <(EI F + ,’Eltl2|dh(z/t/)V|2> (xlathy)dVOIh(x/to) dl'/ +/ |Q| dVOlh(z/t/) dl'/dtl
[6,t0] xOX €T Q5,19 XX
1 [ v |? vt s 2
S 5/6 AX <I/ % + I’/ W + 2:17/ |dh(x/2)V} (x/,x/,y)dvolh(zm) dflf/.

Next we integrate (4.14) in zq € [, T] and (4.15) in to € [0, 7] and add the results to get

1
- / (' + 2 )|dpy VP + 2
2 Qf xox

T T
(4.16) / / |QId VOl () da'dt' dazy + / / QA voly (gryry da'di'dty <
5 JQuy rx0X 6 JQs,x0X

o [ ( :

+ '
With the exception of terms of @) containing products involving V;, all the others in the two middle
terms of (4.16) are trivially bounded by the terms in the first integral. To analyze the terms containing
V;, we will bound the integral of [V|? in Q. So we write for ¢/ > 2/,

2

vl
+t

ox’

ov
ot’

2
) (', 1", y)d volp(yrpy da'dt’ +

ov
ox’

ov

at’

2
+ 2;13/3 ‘dh(x’Q)V’2> (x’,x’,y)dvolh(x/z) dI/.

+

%
Vit ) = Vit )~ [ S st ds.
2! S



RADIATION FIELDS, SCATTERING & INVERSE SCATTERING 9

The Cauchy-Schwartz inequality then gives

2
ds.

t’ .
(@.17) Vi )P <2V )P 42 - ) [ s )

x

’

Hence, as v/h is bounded from above and below, there exists C' > 0 such that

T pt
/ [V (@', ', y) P dvoly(pryy da'dt’ :/ / / V(@' t',y)|Pd Vol da'dt’ <
Qf xox s Js Jox

T T ot t
C / / t/|Vj(t/,t’,y)|2dv01h(t,z)dt/—|—/ / / t’/
é 0X é 6 0X !

Switching the order of integration of y, ' and s in the last integral, and using that ¢’ < T, gives

oV, g
6_; (Sv t/v y)

dvoly(spry ds d:c’dt’) )

T
/ V(@' ', y)Pdvoly(uryy da'dt’ < C/ / Vit y)Pdvoly ey di'+
Qf xox s Jox

(4.18)
C'T/ s
Qf xox

2

A%
a—sj(s,t, y)| dvoly(syy dsdt’.

Hence

dx'dt' dty <

T T
/ / |Q| dVOlh(m/t/) dCC/dt/dCcl —|— / / |Qd Volh(wlt/)
8§ JQu, Tx0X 5 JQsx0X
v |? 1%
C(T -9) /
Qfxox

- ==
ar| v
T
Cc(T - 5)/ / o |V|? (', 2", y)dvolp 2y da’.
) 0X

After taking the limit as § — 0, we find that there exists K > 0 such that, for small T’

2
! + @'t)? |dpren Vs |2

T dVOlh(m’t/) dI/dt/—F

v’ v |
/+ (mltl(t/ + $/)|dh(m/t/)V|2 + $I % + t/ W ) dVOlh(z/t/) dl‘ldlfl <
QF x0X
(4.19) . A R
KT/ /ax <a:’|V|2 +a B +a 5 +2° |dh(m,2)V}2> (2", 2", y)dvolp 2y da'.
0

This does not quite give (4.12), as the term in |V|? is not yet included on the left hand side of the
inequality. However, taking § — 0 in (4.18), substituting it in (4.19), and choosing T" small enough, we
obtain

v v
/S2+><6X <|V|2 + wltl(t/ + .’L'/)|dh(m/t/)V|2 + E +t o ) dvoly (g da'dt’ <
(4.20)
T 2 2
oV ov
O(T)/O /BX <$/|V|2 + :E/ ? + IE/ W + .I/S |dh(m/2)v‘2> (x’,x’,y)dvolh(m,z) dI/.

As the operator in (4.10) and the estimate (4.20) remain of the same type after switching 2’ and ¢', this
estimate also holds in the region below the diagonal.

Notice that 2V (2',2',y) = = fi(2',y) = =V (2',2,y) + &V (2',2',y). So ZV(a',2',y) =
8‘2, fi(@',y) — f2(2',y), and thus the term on the right hand side of (4.20) is bounded by the right
hand side of (4.12)

This ends the proof of the Lemma. O
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Now we apply the Lemma 4.1 to prove Theorem 2.1. The goal is to prove that for f(z,y) smooth and
compactly supported, the solution to (4.2) is smooth up to {x = 0}. We know from (4.6) that the change
of variables (4.7) are smooth on the support of v, and we work in coordinates (z’,t"). We will show that
V(2',¢',y) is smooth up to {2’ = 0} U {t’ = 0}.

We first apply Lemma 4.1 to the special case of equation (4.8), noticing that in this case V is a single
function instead of a vector. The data on the surface {2’ = ¢’} is given by (4.8), so the integral on the
right hand side of (4.12) is equal to

T T
—n—1 2
[ 2wl g ol it = [ G Pdvol, < 1B
0 0X 0 0X

Thus the right hand side of (4.12) is bounded by the square of the norm of f in L?(X,dvol,) and

/Q><8X

Now we want to obtain such energy estimates for the derivatives of V. We begin by analyzing the

v |?
a/

v |?

V2 + 2t/ (2’ + 1) |dn ,t,)vy +z o

—I—t dVOlh(I/t/) dCC dt/ < O||f||L2(X)

derivatives of V' in the y variables and thus we differentiate equation (4.8) with respect to y. We get a
system of equations of the form

QY =0
where V is a (n + 1) x 1 vector whose transpose is
ov ov
VT = (‘/7 YRR —)7
ayl ayn

and @ is a matrix of second order operators with principal part

o 0
Q, = (%% + x/t'Ah> Id(n41)x (nt1)>

and lower order terms as in in (4.10). So we conclude that

/S;><6X
C (112 + ldny F1132x)) -

Using this argument repeatedly we conclude that

9\ o (9\" o [0\
—) v (=] Vv %
};k [/Qxax U(ay) 9z’ (3y) o' (3y)

¢y ||( ) By kEN,

|| <k+1

2

i gy

ox’

V|’

VP + 2t (2 + 1) | V] + 2 F

dVOlh( 2% dCC dt/

2 2 2

/ /

dVOlh(z’t’) dl'/dt/‘| S

Next we use the equation to obtain information about the derivatives of V' with respect to z’ and ¢'.
It is convenient to get rid of the first order terms in (4.8), and we do that by conjugating the operator
with the factor |h(2/t',y)|~%. Setting

(4.22) W (', t',y) = b1V (2,1, y),
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then W satisfies

02 0
(4.23) (8w’8t’ +2't' Ay 4+ 't Bt y, 8_y) +C('t, y)> W =0,
where B is a first order operator and C is a smooth function. Since |h| is smooth and positive, V and W
have the same regularity given by (4.21). Moreover W is also supported in {z’ > \/zo} U {t' > \/xo}.

We have shown in (4.21) that ¢ 2 %W € L*(2x 0X) for any a. In particular if QT = QN {t' > 2},

P30 0 gy e L2(QF x 9X). In view of the support of W we have -2, 2 W ¢ L?(Qt x 0X).

ot Dy ot Dy
We deduce from (4.21) and (4.23) that
(4.24)
(9 “ !yl 6 6 “ 1oyl 6 “ (9 6 !yl 2 + n
(8y> W't y), 57 (39) W't y), ay 8t’8x’W(x’t’y)€L QT x0X) V aeN

Writing, for ¢/ > 2/,

DN e 2 (Y i [ 20 (0
o () Wt =g (o) wed+ [ g (5) W) du

we see that, for ¢/ > 2/,
2

0 o\* iy
— [ = <
7 () Wt <
88“,,2,,/“888“, ?
2_(990’ (6_y) W', 2", y)| +2( —2') oo \ 5y W', p,y)| dp.

Integrating this in Q% x 0X, using that a?c’ %W(:v', a’,y) is smooth with compact support, and (4.24),
we find that

0 " 2/ n

So (4.24) and (4.25) show that
o\" o (0\" o [ 0\"
— | W, — (=] W and — (=) WeL*(Q" x0X N
(311) "o (3?4) o (3?4) ST 0X) e
Using the symmetry of W with respect to the diagonal, we in fact have
o\“ a [ o\“ o (0"
— | W, = (=) W and — (5] WeL(Qx0X N™.
<5y> o <3y) o <3y) L 0X), e
Differentiating (4.23) first with respect to y and then with respect to 2’ or ¢’ we find that

> 9 (9N I A 20+

B m=0,1

02 0 o\"“ ;g am
373 (33) W =% T Pl 0

8 m=0,1

9\’ 2yt
(a_y) W e L2(QF x 0X),

with Fj ., and Gg,n, smooth. Thus
0% 9 [0\" 92 9 (0\"
—— =) W, —=—= (5] WeL*Q" xoX).
da'* Ot (3?4) o2 ox (3?4) R

Proceeding as above, we find that

0? o\ 0% [ 9\" o 0 (o\” 2r4
W<6_y) w, W((?_y) W, and %@(@) W e L*(QF x 0X).
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Using the symmetry of W with respect to the diagonal we get that in fact

0? o\ 0% [ o\" o 0 (0\"

— = W, — (=] W, d —= (=] WeL*QxaX).

0z’ <6y> " o <6y) M owor (ay) € L2 x0X)
This argument can be repeated for all derivatives with respect to 2’ and ¢ and we conclude that W,
and hence V, is smooth in [0,7] x [0,7] x 0X for T small. Any interval [0,7’] can be covered by small
intervals in which the method above can be applied. So in fact this shows that the solution is smooth in
[0,T] x [0, T] x 0X for any T.

Since V is supported in {z' > /zo} U {t’ > /zo} and the change of coordinates (4.7) is smooth

in this region, this shows that v has a smooth extension up to {x = 0}. This concludes the proof of
Theorem 2.1. g

5. THE RADIATION FIELDS AND THE SCATTERING MATRIX

The spectrum of the Laplacian o(A) was studied by Mazzeo and Mazzeo and Melrose [39, 40, 43], see
also section 3 of [16] for a discussion. It consists of a finite pure point spectrum oy, (A), which is the set
of L?(X) eigenvalues, and an absolutely continuous spectrum o,.(A) satisfying

7’L2 2

(5.1) Oac(A) = [I’OO) , and opp(A) C (O, %) .
This gives a decomposition
L*(X) = L3, (X) @ L2.(X),

where L2 (X) is the finite dimensional space spanned by the eigenfunctions and L7 (X) is the space of
absolute continuity, which is the orthogonal complement of L2 (X).

With this choice of the spectral parameter, "Tz + )2, we have that if S\ # 0, then "Tz +X ¢ [”TQ, 00),
while if I\ < —3 it follows that "Tz + A2 € ]0,00). The eigenvalues of A are of finite multiplicity and are
described by points on the line ®\ = 0 and —4 < 3\ < 0. As the Laplacian is a non-negative operator,
the spectral theorem gives that the resolvent

2 —1
(5.2) R(g i) = (A - "Z - )\2) L L3(X) — L*(X), provided S\ < —g.

It was shown in [43] that it can be meromorphically continued to C\ <N as an operator acting on

appropriate spaces.
Let

Hp(X) ={(fi,f2): fi, fo€ L*(X), and df; € L*(X)}.

For wg, wy € C’go()o(), we define the energy of w = (wo,w;) by

1 2
(5.3) ||wl|% = —/ (Idwolﬁ— = IwO|2+|w1|2> dvoly,
2 Jy 1

where |dwg|y denotes the length of the co-vector with respect to the metric induced by g on T*X. But
||w||% is only positive when wy is in the space of absolute continuity of A, and only then it defines a
norm. We denote

Pac : LQ(X) - LEC(X)
the corresponding projector. Let

Euoc(X) = Pac (He(X)) = Range of the projector P, acting on Hpg(X).
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Eac(X) is a Hilbert space equipped with the norm (5.3).
One can use integration by parts to prove that if u(¢, z) satisfies (2.5), then

|| (u(tv .)7 Dtu(t7 .)) ||E = || (U(O, .)7 Dtu(07 .)) ||E

Since W (t) commutes with P, this gives, by for example slightly modifying the proof of Proposition 2.24
of [13], that the map W (¢) defined by

W(t) : C5°(X) x C5°(X) — C°(X) x C5°(X)
W(t) (flv fQ) = (u(tv Z)v Dtu(tv Z)) , te R
induces a strongly continuous group of unitary operators.

W (t) : Eac(X) — Eae(X), t€R.

(5.4)

By changing ¢t <+ t — 7, one has that R satisfy
(5.5) Rio(W(r)f)(s,y) =Ref(s+7y), TER

So Theorem 2.1 shows that Ry are “twisted” translation representations of the group W (t). That is,
if one sets Ry (f)(s,y) = R+ f(—s,y), then

(5.6) Ri(W(r)) = T+ Ry,

where T, denotes right translation by 7 in the s variable. So ﬁ; are translation representers in the sense
of Lax and Phillips. Moreover we will prove

Theorem 5.1. The maps R+ induce isometric isomorphisms
Re t Bac(X) — L*(R x 9X),
where L*(R x 0X) is defined with respect to ho fived in (2.4).
We deduce from Theorem 5.1 that the scattering operator
S:L*R x 0X) — L*(R x 0X)
(5.7) S=R;oR}

is unitary in L?(0X x R), and in view of (5.6), it commutes with translations. This implies that the
Schwartz kernel S(s,y, s’,y’) of S satisfies

S(Su Y, 8/7 y/) =8 (S - 8/7 Y, y/) )

and thus is a convolution operator. The scattering matriz is defined by conjugating S with the partial
Fourier transform in the s variable

A=FSF L.

A is a unitary operator in L?(R x dX) and, since S acts as a convolution in the variable s, A is a
multiplication in the variable A, i.e. it satisfies

(5.8) AF(\y) = / ANy, YF(\, y') dvolp, (y).
X
We will prove that the stationary and dynamical definitions of the scattering matrix are equivalent:

Theorem 5.2. With © given by (2.4) and X # 0, the Schwartz kernel of the map A(N) defined by (2.3),
is equal to AN, y,y"), defined in (5.8).

To prove Theorem 5.1 and Theorem 5.2 we will use the connection between the wave equation, the
resolvent, and the Eisenstein function from [28, 43].
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6. THE RADIATION FIELDS AND THE EISENSTEIN FUNCTION

The following is an important fact concerning the behavior of the solution to the wave equation:

Proposition 6.1. Let f = (f1, f2) € He(X) and let u(t, z) be the solution to (2.5) with initial data f.
There exists C = C(f) > 0 such that

(6.1) / |Dyu(t, 2)|*> dvoly(z) < CeZt, t> 0.
b'e

Proof. In view of (5.1) we can write

Fi(2) = eintn(2) +wy(2), j=1,2,

where ¢, is an eigenfunction associated with an eigenvalue pj = "Tz + A2 € (0, "Tz), Ak € iR_, and w; is
the projection of f; onto L2 (X).
We then have that

ult,z) = <cl,k cos(At) + cm%k sin()\kt)> O (2) + Uac(t, 2),

k

where g, is the solution to (2.5) with data w = (w1, ws).

As
2 n2\ "2 / )
uac(t,z):cost\/A—Zwl—l— (A_Z> sint A—Iwg,
it follows that
/ n? n?\ " * / n?
Pacu(t,z) = costy/ A — IPaCfl + (A - Z) sint{/ A — ZPacfQ = Une(t, 2).

In this case the energy

n2
/ <|Dtuac(t, z)|2 + |dguac(t, z)|2 — Z|uac(t, z)|2> dvoly(z) =
X

TL2
[ (120 + s @) = " () ) dvoly(z) = o > 0.

and in particular this gives

/X | Ditac(t, 2)|? dvoly(2) < C.

Since 0 > I\; > —F, the other part of the solution obviously satisfies (6.1) and this proves the proposition.
O

Next we present an elementary and useful Lemma. The proof we gave of this result in the first version
of this paper was incorrect. One of the referees pointed out the mistake and kindly provided us with the
proof we present.

Lemma 6.2. Let H be an infinite dimensional Hilbert space, let H be a subspace of H of finite dimension
and let H+ be the orthogonal to H. If E C 'H is a dense subspace of H, then ENH* # (), and EN H*
is dense in H+.
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Proof. We begin with the case dim H = 1 and we will prove that (E N HL)L = H. Tt is easy to see

that H C (EN HJ-)J'. To prove that (E N HL)J' C H we let H = span{¢}, ¢ # 0. As E is dense, pick
fi, f2 € E such that (f;,¢) #0, j =1,2. Then

<f27¢> 1
= fo— e ENH.
I=h= gl
Thus, if u € (E N HL)L , then (u, f) = 0. But this can be rewritten as
<f17u>

(fo,u—

<f1,¢>¢>:07 forall fo with (f2,¢)#0

Since FE is dense, this in fact holds for every fo and thus u = E}?Zi ¢. Therefore (E N HL)l C H.
The general case follows by induction. Suppose the result is true for dim H = N —1 and let dim H = N.
Then

H=HN_1® l)7 Hy_1 = span{gbl, ...,(bN,l} and D = span{(bN}, <¢)1, ¢J> = 0, 1< i,j < N.

As proved above, By = E N D is dense in ‘H; = D*. By assumption the result holds in dimension
N —1,s0 F1 N HﬁA is dense in the orthogonal to Hy_1 in D, which is the orthogonal to Hy in H.
As EyNHy_, = ENHy, EN Hy is dense in Hy in H.
O

The most important consequence of this is

Corollary 6.3. For L2.(X) defined as above, C§° ()%) N L2.(X) is dense in L2.(X).

Now we are ready to prove the first mapping property of R .

Proposition 6.4. Let u be the solution to (2.5) with data f = (f1,f2) € Cgo(;() N Eae(X). Then
Rif(s,y) € L*(R x 0X) and

IR+ fllr2®xox) < 2lIflle-

Proof. We modify the proof of Lemma 2.6 of [13]. Let u be the solution of (2.5) with initial data equal
to f. For t,T > 0 fixed, consider the integral
2

Ou
a(x,y,t) dvolg .

Er :/
z=(z,y)€X; t+logxz<T}

For t +logx < T, it follows that x — 0 as t — co. So, for ¢ large, we may work in local coordinates
where (2.4) holds. First we prove that

T
(6.2) lim ET,tz/ /a IRof|> dvoly, ds, VT €R.
o0 —o0 X

To see this we set, according to (4.4),
u(t,z,y) = z3v(t + logz, z,y),

and since s = ¢ + logx, we have %—1; =2z %. As ds = dm—m, it follows that dvol, = +/|h|(z,y) Zﬁ?{ =

VIR] (e y)e™t=9) ds dy. Since the initial data is compactly supported, there exists s such that v = 0

for s < sg. Thus
T
g
S0 0X

a 2
8_@ (57", y, 8)\/|hl(e=1), y) dy ds.
S
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From Theorem 2.1 the convergence is uniform and thus we obtain
T 2 T
Jlim Bz, :/ / VIR|(0,y) dsdy :/ / IRy f(s,y)° dvolp, ds <oco VT eR.
—> —oc0 JOX —oo0 JOX

For any (f1,0) € Eac(X), [y (|df1|§ - %2|f1|2) dvol, > 0. Thus the result follows by conservation of
energy. O

v
% (07 S, y)

In view of Corollary 6.3 this can be restated as

o [e]

Corollary 6.5. The maps Ry defined in (2.6) and (2.7) extend from (C§°(X) x C§°(X)) N Eac(X) by

continuily to maps
R : Eae(X) — L*(R x 0X).

The estimate (6.1) shows that we can take partial Fourier-Laplace transform with respect to ¢ of the
forward fundamental solution of the wave equation U(t, z,2’) and thus, for I\ < —%, we denote

n n?\ -
R (— + i)\) =(A-N—— = / Ul(t,z,2 e Mdt
2 4 .
It is easy to see that if u(t, z) satisfies (2.5) then V(¢,2) = H(t)u(t, z) satisfies

2 o
(Dt2 - A+ %) V(t,z) =if2(2)(t) +if1(z)D0(t), on Rx X
V(t,z) =0fort <0,
and lim, oz~ 2 D,V (s —logx,z,y) = lim,_o 2~ % Dyu(s — log z, x, 7).
So,

(6.3) R (g + i)\) (ifo+irf1) = / V(t,z)e"™dt, with f=(f1,f2) € CF(X) and I\ < —g.
R

In fact, if f = (f1, f2) € C§°(X) N Eae(X), conservation of (positive) energy gives that (6.3) holds for
3 < 0. Using local coordinates z = (z,y) near 90X, we are interested in lim, oz~ % DV (s — logz, 7, y).

From (6.3) we obtain, for I\ < -5,

/ z7 2D,V (s —logx,y)e ds = / xT 2DV (t, x,y)e NN loez gy —
R R

(6.4) .
25\ R (5 —i—z’)\) (ifz +iNf1)(2, ).
Next we study the behavior of the Schwartz kernel
(6.5) "2 7PR (g —l—i/\,z,z’) , 2= (z,y), Z=(y), SA< —g, asz | 0.

Mazzeo and Melrose show in [43] that R(% 4+ ¢A) has a meromorphic continuation from A < —% to
C\ £N. We briefly recall their construction and use it to study (6.5).
Locally, in the interior of X x X, and for S\ << 0, R(5 + i) is pseudo-differential operator, so its
kernel is singular at the diagonal
D=A{(z,y,2",y) e X x X;x=2",y=19'}.
To understand the behavior of the kernel of R(% +i)) up to
Dpx = DN (0X x 0X),

and for other values of A\, Mazzeo and Melrose blow-up the intersection Dgx. This can be done in an
invariant way, but in local coordinates this can be seen as introduction of polar coordinates around Dy x .
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FI1GURE 2. The blown up manifold X xg X.

3

Taking coordinates (z,y) and (z’,y’) in a product decomposition of each copy of X near dX, the “polar
coordinates’ are then given by
/ /
6.6 R+ +ly—y 23, p==, =L =479
(6.6) @+ 2"+ ly —y'[]2 p=g, V=g w="0p
A function is smooth in the space X x¢ X if it is smooth in (R, p, p’,y,w) about Dyx. As a set, X xo X

is X x X with Dyx replaced by the interior pointing portion of its normal bundle. Let
B: X xgX —XxX

denote the blow-down map.

The function R is a defining function for a new face, which is called the front face, ff. This is the lift
of Dgx = DN(0X x 0X). The functions p and p’ are then defining functions for the other two boundary
faces which are called the top face 7, and bottom face B, respectively, i.e.

ff:{R:O}7 B:{p/:()}, T:{p:O}'

See Figure 2, which is taken from section 3 of [43]. In X xo X the lift of the diagonal of X x X only
meets the boundary ff and is disjoint from the other two boundary faces.
The main result from [43] needed here is that the lift of the kernel of the resolvent satisfies

(6.7) B*R(ngz’)\) :Rl(g —l—z’)\)—I—Rg(g—i-i)\),

where R; is conormal of order —2 to the lifted diagonal, Dy, and smooth up to the front face, and, most
importantly for our purposes, vanishes to infinite order at the top and bottom faces. The second part,
Ry, is of the form

(6.8) Ry = p%mp’%mF(g +ie),

where F(2+i), ) € C* (X x( X) is meromorphic in A € C\ 4N, and holomorphic and in A € S\ < —2.
Now we use the construction above to verify that x’_%_MR(% + X, 2, 2")|{z=0y is well defined. This
is carried out in Proposition 4.1 of [28], and we briefly describe it.
We first look at the lift of x’%*MR(% +1A, 2, 2') under the blow-down map . Recalling that = = Rp,
we deduce from (6.7) and (6.8), and the fact that Ri(% 4 iA) vanishes to infinite order at the top and
bottom faces, that

wf —m—g no. . —n_ no . no .
B (7 E P RG + X2, 2) lmo = (Rp) 57 (Ru(G +i0) + Ra(5 +) ) o =

(6.9) 2oix A (T
(Rfffl p/2 F2(§ +i/\7p7plaR7w)) |p:0

Since F(% + i), ) is smooth, the restriction of p2 T F, to p = 0 is well defined.
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Notice that the composition of the restriction to p = 0 with the blow-down map [ gives a map
61 :6X><0X—>6X><X,

where 0X x¢ X denotes the manifold 9X x X with the submanifold {2’ = 0,y = ¢’ = 0} blown-up. By
an abuse of notation we continue to use R and p’ to denote the restrictions of the corresponding functions
to p = 0. In other words we consider

! /
= (22 e T YTy
[+ 1y =92, p 7Y 7

Therefore (6.9) above gives a well defined distribution on the manifold X xo X, namely
F = RN B(S +idp, 0, Bow)l o

By switching the variables z and ' in the proof of Proposition 4.1 of [28] it can be shown that the push
forward of F' to 0X x X under the map [ is well defined. In view of (6.7) and (6.8) this is essentially
the same thing we want to do here. Therefore the restriction 272 ~AR(2 + i), z, 2') =0 is well defined
and we shall denote it by

(6.10) E(g tiny, )% x_%_i’\R(g iz, 2 oo = B, F, AeC.

It is clear from (6.8) that E(% + 4\, y,2') has a conormal singularity at {z' = 0, y = y'}. This is the
transpose of the Eisenstein function, or Poisson operator, see for example [18, 20, 28].
This defines a meromorphic family of operators

B(5 +iX) : G5 (X) — = (@x)

(6.11) . . .
E(=+iNf(y) = /X E(§ +iNy, 2') (') dvoly(2'), AeC\ iN'

2
So we conclude from (6.10) and (6.3) that

/e—iksRJ’_(fl,fQ)(y’S)dS = /x—%(st)(s —logz,z)e”*ds =
R R

=0

(6.12) i)\/ E(g +iXy, 2")(f2(2") + Af1(2")) dvoly(2'), where
b
I\ < —g i fi,foeCR(X), and SA<O0 if fi, fo € OF(X) N Eae(X).

In view of (6.11) the right hand side of this equation has a meromorphic continuation to C\ <N, so the
left hand side can be meromorphically continued to C\ 5N.

Recall from (6.4) that R4 (f1, f2) € L*(R x 0X) if (f1, fa) € Eac(X). Thus the left hand side of (6.12)
is well defined when S\ = 0 for such initial data. We want to understand the extension of the right hand
side for this type of data, and we proceed as in [18]. An application of Green’s identity, see for example
the proof of Proposition 2.1 of [18], gives

(6.13) R(E +i\ 2, 2") — R(E —i\z, 7)) = —2i)\/ E(E +i\y, Z)E(E — i\ y, 2") dvolp, (y),
2 2 2 2
provided 4 % i\ are not poles of the resolvent R(e, z, 2’).
On the other hand, by using (6.13) and Stone’s formula, see the proof of Proposition 2.2 of [18], we
deduce that the map
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E: 0P (X) — C®(0X x Ry)

2
b — \/;/X E(g i)y, 2)e(2) dvoly(z'), A>0

induces a surjective isometry of the space of absolute continuity of the Laplacian

(6.14) E:L2(X)— L? (R"; L? (0X),\%d)).
Moreover it is an spectral representation in the sense that

n2
(6.15) EA = (Z + /\2) E.

A similar analysis can be carried out for the backward radiation field. We know that
2\ —1
n_y = e — AP 212 x n
R(2 m) (A A 4) /RU_(t,z,z)e dt, SA> 3,
and hence
. n .
F(R-(f1,2)) (90 = AE (5 = iA) (fa+ M), where
N> 2 (fo, f1) €CP(X) and SA>0 if (fo, f1) € C(X) N Eao(X).

2
Now we are ready to prove Theorem 5.1.

(6.16)

Proof. Using (6.14) we observe that, for A € (0,00) and f,g € L2.(X),
2 n o . n o .
(6.17) sghrac) = OB (5 £0) FAE (5 £17) 9) e, xo)-
On the other hand, as (% + i)\) =F (% — i)\) when A € (0, 00),
n .
1B (5 +i7) (A2 + X0l qenox) =

/RE (5 +30) A2+ X2)E (5 = iA) (Ao + X2T) dAdvoln, =

/OOO E (g + i/\) (Mo + N2f1)E (g - M) (\Fy + A2F,)dAdvoly, +

/ E (2 - M) (=Afa + A2 H)E (ﬁ + M) (=\Fy + A2F,) drdvoly, =
A 2 2
oo 2 o0 2
2/ ‘E(QH'A) )\f2’ dAdvoly, +2/ ‘E(QH'A) A%‘ ddvoly, .
0 2 0 2
Equation (6.17) shows that

/Ooo B (5 +i) Af2’2 dAdvol, = | fal )
But by (6.15)
NE(Z+iM) fi=B (5 +i)) (A _ %) i

and thus
2

/Ooo ’E (g n M) A2f1’2 drdvoly, = (\E (g n M) L AE (g n M) (A - ”—) 1) L2 @x0x) -

4

19
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Again by (6.17)
2 2

(A\E (g +i)\) J1,\E (g +i/\) (A - nz) f1) 2 rxox) = g<f17 (A - %) frex) =

m n2
3 [ (lan = 14 ) avol,.
X

So we conclude that for (f1, f2) € Eae(X),

n .
1B (5 +i2) O0f2 = X0l eexox) = 27l (1 fo)l By x)

Plancherel’s theorem and (6.12) show that Ry is norm preserving, and therefore its range is closed. It
is clearly dense, otherwise there would be ¢ € L?(R x 9X) orthogonal to the range of R, but by (6.14),
¢ = 0. This concludes the proof of Theorem 5.1. O

In view of equations (6.12) and (6.16), Theorem 5.2 is equivalent to
Proposition 6.6. For A € R, X\ # 0, the scattering matriz is the unitary operator
A(N) : L*(0X) — L*(0X)
that satisfies
(6.18) E (g + M) — ANE (g - m) .

Proof. We need three things: equations (6.10), (6.13), and the expansion for F (% +i\y, y’) asx’ — 0,
which can be found in Propositions 4.1 and 4.2 of [28], i.e
(6.19) E (2 +i\y, @ y') = L‘L“’_i)‘(S(y y') + Lx’i’\A(/\)(y y')+o(x), asz’|O0.
2 T 20\ ’ 2i\ ’ ’
Now multiplying (6.13) by 2/~ and applying (6.10) and (6.19), the result follows.
This is a known argument and can be found for example in the proofs of Proposition 2.5 of [20], or
Corollary 2.6 of [18], which deal with Riemann surfaces. Here we used the results of [28] where needed. O

7. THE SUPPORT THEOREM

The main goal of this section is to prove

Theorem 7.1. If f € L2.(X) and R4 (0, f)(s,y) is supported in s > so, with so << 0, then f is supported
in {x > e%}.

Theorem 7.1 is a “support theorem” in the terminology of Helgason [23, 24] and is a generalization of
Theorem 3.13 of [36], which is Theorem 7.1 for the hyperbolic space H?. Helgason [21, 24] proved such a
result for functions that are compactly supported, but for more general symmetric spaces.

It is important to observe, as emphasized by Lax in [33], that this theorem does not have an analogue
in (asymptotically) Euclidean space. In that case the function f has to be rapidly decaying at infinity—
see Theorem 2.6 and Remark 2.9 of [24]- which would correspond to infinite order of vanishing of f at
x = 0. Here the only requirement is that f € L2 (X). However, in coordinates (2.4) the distance along
a geodesic that approaches X perpendicularly is —logx, so the requirement that f € L?(X) already
imposes an exponential of decay of f near the boundary.

The first step in the proof of Theorem 7.1 is

Lemma 7.2. If f € L2.(X) and R.(0, f)(s,y) is supported in s > so, then f is compactly supported.
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Proof. Without loss of generality we may assume that f € C°°( )O( ). Indeed, we recall from equations
(6.12) and (6.15) that the Fourier transform in s of the forward radiation field is a spectral representation
of A — ”TQ. Then if F denotes the Fourier transform in the s variable then

2

@0 aFR0 N0 =R (0 (A=) 1)L FELAX. ¥ ge S

If ¢ € Cg°(R), is an even function, which we choose to be supported in (—¢,€), then its Fourier
transform ¢ is also an even function, and there exists a smooth function ¥; € S(R) such that

(7.2) B(N) =11 (A?).
Therefore by (7.1)
(73) 63 Re0.0) = Re (0.0 (8- ) 1)

As Lo ¢+ R (0, f) € L*(R x OX), k= 1,2, ..., then

(A - %)kwl (A - %) feL*(X).

A — "72 is a standard elliptic operator in the interior of X, so ¢ (A — ’2—2) fe COO()O(). Moreover, by

elliptic regularity for totally characteristic operators, see Theorem 3.8 of [41],

2
(7.4) (xDy,xDy,, ..., x Dy, )" 1 (A - HZ) fer*X), aeN"t

If ¢ € C§°(R) is even, and R4 (0, f)(s,y) = 0 for s < sg, ¢ * R (0, f)(s,y) = 0 for s < sg — €. So from
now on we will assume that f, instead of ¢ (A — "Tz f, satisfies (7.4). Since the solution to the Cauchy

problem is smooth for all (finite) times, the solution V' to (4.8) is smooth in (0,7) x (0,7) x 0X. We
do not know a priori that V is smooth up to {' = 0} U {t/ = 0}. We proved in Theorem 2.1 that this

is true if f € C3°( )O( ), but here f is not yet known to be compactly supported and may be singular at
{z/ =t =0}.

To illustrate our method, let us assume for a moment that V' is smooth up to {2’ = 0} U {¢' = 0}.
Using the equation, and that V(z/,2’,y) = 0, one can prove that if R (0, f)(s,y) = 0 for s < s,
then all derivatives of V vanish at {&’ = 0} U {¢ = 0}. Therefore we can extend V smoothly across
{t'! =0} U {2’ =0} as V = 0. We then want to use a uniqueness theorem to conclude that V = 0 near
{2 =t = 0}. In particular this will imply that f(x,y) = 0 in a neighborhood of {x = 0} and we will be
done.

The operator P’ in (4.8) extends (although not uniquely) to a neighborhood of {2/ = t' = 0}, however
notice that the coefficients of the terms of (4.8) involving second order derivatives in y vanish to second
order at 2’ =t/ = 0, so Hormander’s uniqueness theorem cannot be used to guarantee that V = 0 near
{t’ = 2’ = 0}. The uniqueness theorem which deals with the Cauchy problem for second order operators
with this type of degeneracy is due to Alinhac, Theorem 1.1.2 of [1]. We will apply his result to the
operator P and the function ¢(2’,t') = 2’ +¢'. Notice that, although P’ is real, it is not of principal type
at {#/ = t' = 0}, so the result of Lerner and Robbiano, see [38] or Theorem 28.4.3 of [26], cannot be
applied either.

The principal symbol of P’ is
(7.5) p=o02(P") ==& —2't'h(2't  y,n), h(2't y,n)= Z B2t y)nin;.

)
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A t t
support of V support of V
P'V=0
V=0 X V=0 X’

FIGURE 3. Unique continuation for V. P’ is degenerate at ' = ¢’ = 0, but V is supported
in the wedge {2/ > 0, t' > 0}

If H, denotes the Hamilton vector field of p and ¢(z’,t') = 2’ + ¢/, is as defined above, then

0 0 2 0 2 0
(76) Hp = —T% — 5% — .I/tth =+ (t/h + {Elt/ hl)a_g + (Ilh, =+ t/{E/ hl)a,
where Hj, denotes the Hamilton vector field of & in the variables y and 7 only, and h;(2't’,y,n) denotes
the derivative of h in the first variable. Hence

H§¢ = —(a +t) [t y,n) + 2"t hi (2"t y,m)],

Since h(0,y,n) is non-degenerate, it follows that for z’, ¢ small
1
2 2
—¢H, ¢ > 5(;5 h.

We can therefore apply Theorem 1.1.2 of [1] to P’ and ¢ (with Ag = (), and @ = C = 0 as in the statement
of Theorem 1.1.2 of [1]) to guarantee that ¥V = 0 in a neighborhood of {z’ =t = 0}. See figure 3. In

particular this shows that f(x,y) =0 near x =0, so f € 030()0(), as we want to prove.

We emphasize that the key reason this works is the fact that the extension of V' would be supported
in the wedge {2’ > 0,¢' > 0}, so the intersection of the support of V and {¢ = 0} is compact, as required
by Theorem 1.1.2 of [1].

The main difficulty to apply this method to prove Theorem 7.1 is that V is not known to be smooth
up to {#/ = 0} U {t' = 0}, and Theorem 1.1.2 of [1] is proved for smooth functions. We have to show that
our assumptions guarantee enough regularity of V' to make Alinhac’s argument work.

We will work with W, which is defined in (4.22), instead of V. The advantage is that W satisfies (4.23)
which has no first order derivatives in 2’ or t'.

The proof is divided in two steps:

Step 1: We will use that W (z',2’,y) = 0, 2’ > 0, and R4 (0, f) = 0, to show that W can be extended
as a (distribution) solution to (4.23) in a neighborhood of {2’ =t = 0} vanishing when either 2/ < 0 or
t' <.

Step 2: We use the method of proof of Theorem 1.1.2 of [1] to show that W = 0 in a neighborhood of
{z' =t = 0}.

Proof of Step 1. We will show that the conditions W (z',2’,y) = 0, 2’ > 0, and R(0, f) = 0 for s < sq,
imply that W has an extension W satisfying

(7.7) W e H** ((=T,T) x (=T, T); H?*(9X)), keN
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and

82 / 9 141 feperd . ~
<8 ,6t,+xtAh+:17tB(xt y,ay)—l—C(a:t,y))W_Om [9)

ﬁ//(x’,t/,y) =W/, t',y) ifa’ >0, >0
W' t',y)=0 ifa’ <0, ¢ <O0.

(7.8)

Here we have extended the operators Ay, B and the coefficient C' smoothly across {2/ = 0} U {¢' = 0}.

It was proved in Lemma 4.1 that when f € L?(X), and T is small, the solution W of (4.23) satisfies
o) W, "2 Dy W, #2DpW € L2 ([0,T] x [0,T] x 9X),
' 't (2 + )2 Dy, W € L2 ([0,T) x [0,T] x 0X), 1<j<n.

We emphasize that, due to the smoothness of f, W is smooth in the region {2’ > 0,¢' > 0}.
We will show (7.7) for k = 1. For that, let ¢ € C*°(0X) and

(7.10) G(a',t) = o W ('t y)é(y) dy.
Using equation (4.23) and (7.9) we deduce that
*W (', t',y)
Ox'ot!
Differentiating (4.23) in 2’ we have

(7.11) € L*([0,T] x [0,T); H'(0X)).

& o
(7.12) o' Ot
/ 141 / /8 / 141 / /8 0
—tAhW—ItQW—tAhx%W—tBW—ItBlw—tB (9 W 01W Oa /W

where ) and B; are second and first order operators respectively, involving y derivatives only. Using
(7.9) we find that

1 0% 0 2 —2

(7.13) ' o ﬂgw € L*([0,T] x [0,T); H*(0X)) .

Since W (¢, t',y) = 0, ¢’ > 0, equation (4.23) shows that 8‘1%‘; (t',t',y) =0, t' > 0 and thus we can write
PG L0 s o
8I/8t/(ac,t)—— » @ﬁG(s,t) ds, ift' >a" >0.

Therefore

’ 2 ’
2G ., . Y92 o AN ?
(' )| = o t') ds| <log|— ') ds.
aaar ") /z 552 gy 0%+ 1) ds| < log <x’)/ }a 70| ds

So from (7.13) we obtain for T small and § < 3,

2 2
/ / 1—28 6/;/ (CL' ,tl) dz' dt’ <
T st 1 2 2
s 1 0° 0 , ,
/O /0 (1_25) (( 25) o s| + - 5) ’828t,G(s,t) ds dt’ <

9% 9
5% o0 20 m)x o i 2 () < 0

1
|22



24 SA BARRETO

So
_s 0°G 1

7.14 /=0 L2t >2' >0)), 6< =
( ) € 8x/8t/€ ({ ey > })7 <27
with uniform bound up to 2’ = 0. This together with (7.13) imply that

0 0*W 1
7.15 — (2 L2 ({t' >2' >0}; H2(0X —.
(7.15) o () e 2t = o > 0p B 0x)) 7>
Thus the restriction (a:"y aam/?;) (0,t',y), t' > 0, is well defined for any v > % In particular this shows
that

0

(7.16) (x’FW) (0,t',y) =0, in (0,T) x OX.

In view of (7.11), the restriction WW(O t',y) is well defined.
Recall that in these coordinates, and in terms of W, the radiation field is given by

1, 1 OO
1 — |nft AL il —0.
(r.17) Ro(0.0) = gt o) (¢S - 55| =0
So (7.17) and (7.16) show that
(7.18) O Wy =0, i (0,T)x dX.

ot
Again applying the regularity of W given by (7.11) and using (7.18), we have for ¢’ > 0,

’ 2 ’
oG 2 voorq AREL G 2
- - - < 4 _
a0 = gean () ds —5+1/0 57 |son ()| ds I< g,
and we find that
T 2
,—1-s | OG 3
(7.19) /O ¢ SR <o, G
In particular this shows that
ow W _
(7.20) 5 (2,2, y), 50 (z',2',y) € L*([0,T]; H%(0X)).

We can then write

ow ow " 92
5 (2, y) = v — (2,2’ y)+/, 95 6t’(s t',y) ds and
ow

ow 02w
oz’ («',t',y) = %(xlvﬂﬂ/,y) + /, M(II,S,ZH ds

and use (7.20) to show that
ow
ot
Therefore W(0,t',y), t' € [0,T], is well defined and, by (7.18), W(0,t,y) = F(y). Since W(z',2',y) = 0,

and we want to construct a smooth extension to G, we must have

(7.21) (', t',y) and

813’ (2, t',y) € L* ([0,T] x [0,T] H*(0X)) .

(7.22) W(0,t,y) =0, t' >0.
Substituting (7.21) back in (7.12) we deduce that
(7.23) 9 9 9 —W e L*([0,T] x [0,T]; H*(8X))

ox' 0x' O’
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Therefore 57 8‘2,W(0 t',y) is well defined and from (4.23) and (7.22)

(7.24) 88 8(z/W(O t',y)=0, t' >0.
But we need to prove that % 2o = 0on [0, T]. To do this we take the derivative of (4.23) with respect
to t'.
o 0?
(7.25) ) oz’ ot'? 5 )
— ' AW — 2" QLW — 2/ At ﬁW — o' BW — 2't' BsW — o' Bt 8t’W CoW — C’8 w,

where as in (7.12), Q1 and By are second and first order operators respectively, involving y derivatives
only. Using (7.9) and (7.21) we find that

o * L
(7.26) G 52" € L2 (10.7)x [0.7] H2(0X)) .
Therefore (7.21), (7.23) and (7.26) imply that
(7.27) W and %%W € H' ([0,T] x [0,T); H*(0X)) .
From (7.25) and (7.26) we deduce that %J’g (0,t")]zr=0 is well defined and by (7.18), %JZ (0,t")]zr=0 = 0.

BW

7 (2’,0) = 0. Thus we can write

PW ., “ Y 92
8t/2 (x,t,y)—/o %WWCZS

PwW Yy 92
92 (' t')y) —/0 &—ZMIQW ds.

and then conclude that

O*W O*W ~

e (', t',y), pE (', t',y) € L* ([0,T] x [0, T); H*(0X)).
From (7.9) and (7.21) we have
(7.28) W e H?([0,T] x [0,T]; H*(9X)).

Moreover W =0 on {2/ =0} U {t' = 0}.

Now we write

9°G "9 9a
)= [ ——5(st) d
8t,2( ) ) 0 85 8t,2 (5; ) S
As in the proof of (7.19) we use (7.26) to show that G(t',t') € C1([0,T]) and, by symmetry,
oG oG
5 (0.0) = 22(0,0) = 0.
From (7.27) 2 W(0,t',y) € H([0,€]; H2(0X)), From this and (7.18) we deduce that
ow ., oW B ,
(7.29) 50 (0,t,y) =0, B (2',0,y9) =0, in [0,7]x 0X.

This and the regularity of W given by (7.28) are enough to guarantee that if W(:z:’, t',y) is the extension
of Wto (-T,T) x (=T,T) x 0X, with W =0 in {2’ <0} U{t' <0}, then it satisfies (7.8) and

(7.30) W e H? (-T,T) x [-T,T); H%(9X)) .
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To prove (7.7) we substitute the regularity (7.30) back into (4.23) and iterate following the argument

above. This also shows that all derivatives of W vanish at {z/ = 0} U {t' = 0}. This ends the proof of
step 1.
Proof of step 2: We will show that the regularity of W is enough to guarantee uniqueness. The operator P’
in (4.8) is much simpler than the general case of [1], and the necessary Carleman estimates are relatively
simple to obtain. So we are able to present a self-contained proof of the result, which of course, is based
on the ideas of [1].

We first re-examine (4.15). Observe that it follows from the fact that V(2/,t',y) = =V (¢',2/,y), the
form of the quadratic terms @, and the result of Lemma 4.1 that

Jowson”

[O,Io]XBX

/ | OV
x| —

[O,tg]an

oV

ot’

2
+ t'I'2|dh(z/t/)V|2> (2o, ', y)dvoly(goery dt’ < C|[flZ2(x), o € [0,T],
(7.31)

ox’

2
+ xlt/2|dh(m’t’)v|2> (:ZT/, to, y)dvolh(wlto) dx’ < O||f||%2(x), to € [O,T]

We can use this and the fact that V(2/,2’,y) = 0 to show that
(732) / |V(I/,t0,y)|2 dVOlh(w’to) dI/ S O||f||%2(x), to S [O,T]
[O,tQ]XBX

We make the change of variables

t=p+v, 2 =p—w.

From (4.23) U(p,v,y) = W(u + v, p — v, y) satisfies

PU =0, with

03) R a oD (0. e s )
P_a—MQ_W_FZL(IUJ _V)Zayi h a_y_] +(:u _V)B /Layvyaa_y +O(/L5V7y>a

2]

where B is a first order operator involving only derivatives in y and C a smooth function. Since W is
supported in {2’ > 0, ¢’ > 0} and ﬁ//(:zr’, t'y) = W(t’, 2',y), it follows that U is supported in p > |v| and
Ulp, v, y) =U(p, —v,y).

First we work in local coordinates in a neighborhood Y of a point yo € 0X. Let ¢ € C§°(Yp) and
x(y) € C§°(R™), x(0) = 1, and [, x(y) dy = 1. For § > 0,let xs5(y) =6 "x (%) . Then let vs = Yo+ (WU),
where as in [25], *’ means that the convolution is taken in the variable y only. In view of (7.7), and the
fact that all derivatives of W vanish at {z/ = 0} U {t/ = 0}, v; € C°([0, T), x (=T,T), x Yp), vanishes
to infinite order on {u = v} U {u = —v}, and is compactly supported in Yy for § small enough. Moreover
vs (v, y) = vs(p, =1, y).

Let v € R, with v > 0, and set vs = pYws. Define

0
Py=p"PpY = P+ry(y—1)p 2+ 2w‘1a—u,

and set Z, = P+ ~(y — )2
We want to estimate the L2 norm || Pyws||?, in the region Rx Yy, R={u—v <T, u+v <T, p> |v|}.

This corresponds to 0 < 2/ <T,0<t < T, y € Yy, in coordinates (', t',y).
We write

1 Pyws]|* = (| Zyws||* + 492 |~ uws||* + 4y R(Zyws, ™ Opws)
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T/2 T n

FIGURE 4. Region of integration in the proof of step 2.

and integrate by parts the third term. We assume that ws is real valued, as it makes no difference for our
purposes. Since ws vanishes to infinite order at the surfaces X3 and ¥4, see figure 4, which correspond
to {u = —v} and {p = v} respectively, we find that

/ (02w — 2ws) p~ s dpudvdy = / 1% ((Ouws)® + (Dyws)?) dudvdy+
RxYo 2 RXYO

1

(7.34) _
2v2 Js1 xvo

pt (Opws — 81,105) do + — pt (Opws + 8l,w5)2 do >

\/_ EQXYO

1, _ _
Sl By 5l By
where do denotes the surface measure. Next we see that

Z/ (1* = )0y, (K98, ws) p~ ' Opws dudvdy =
- JRXY)

2. .2 2_ .2
Z/ (M —ZV i 4 Y Buh”) Oy, w0y, ws dudvdy—
g JRxYo H H

1 —10,2 _  2\1ij L —10,2 _  2\1ij
— po(p® = vo)hY 0y ws Oy, ws do — )y —— o (p® = v7)h 0y, ws 0y, ws do.
; 2\/— 31 XYo Y Y ; 2\/— Yo XYo Y Y

Since ws is odd in v, the last two integrals are equal, and since h%(0,y) is positive definite, we can pick
T so small that

Z/ (n? — 2 (h 8ij5),u 10,ws dudvdy >
RXY()

(7.35) X

1
- Vw5 |? dudvdy — —/ pH(p? = v?)|Vyws|? do,
2/nyo Y V2 S xv, Y

where |Vyws|? = 37, - "0y, wsd,,ws. We also pick T' so small that

|<(:u2 - V2)B(,u7 vy, 0 )wJa ,u_la,uw5>| S
(7.36) 10

(O, 1™ O] < sl P+ ol O]

|V ws]? + —Ollu_lauW«sII?,
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The last term we want to evaluate is

_ _ 1 _
(n~2ws, p~ ' Opws) = 5/}% L 20 (w§) dpdvdy =
X Yo

(7.37) .

_ 3 _
5[ Ot wd) dudviy+ 5 [ i) = Sl
2 RXY() 2 RXYO
Putting (7.34), (7.35), (7.36) and (7.37) together we arrive at

6 _ _
|| Pyws][* + / — V) IVyws|* do > (497 + 29Il s I + 291w Dows| P+
(7.38) S
2 _
gvllvywall2 +(69%(y = 1) = =)l 2w
To get rid of the negative parts on the last term of the right hand side, we use the Hardy type inequality

| 0ws|? = 2|~ 2ws]||?, see for example Lemma 5.3.1 of [7]. So we conclude that for 7' small enough
and all v > 0,

1Pyws | + 47 / 1 (6 — )|V ywsl?] do >
(7.39) 1 x Yo
Y 119 ywsl[* +~ |1~ 8uws||* + | Bpws||* + 42 ||~ 2ws| |

This gives the following estimate for vs :

= Pesl oy [ [ = Vsl do 2

(7.40) o x Yo

_ _ _ 2 — 2 o 2
e Vs 2+ 72 ([ 0u (Y 08) ||+ | |67 D ||+ 47 || s |
Now we want to take the limit of (7.40) as § — 0. We write
Pus = x5 ' (PYU) + [P, x5 [T,

(7.41)
[Pv X5*/] =

. o 0 B
2_ 2 17 2_ .2 = (1,2 _ .2 .
> ((u V)(h (n ”’y)ayiayj‘LbJ(“ v,y)ay

) + (/1’2 - V2)CI(M2 - V27y)> 7X5*/
i J
Equation 2.4.18 and Theorem 2.4.3 of of [25] show that, for u € H*~}(R") and a € C§°(R"),
lla(u* xs) = (au) * x5 < Clul|ge—r,  and
a(u*xs) — (au) xxs — 0, in HS(R") as & — 0.

This is known as Friedrich’s lemma. Applying this to our case, it follows from (7.41) that, if v > 0 is
such that

(7.42) I~ (* = v*)V,U|| < o0, and [|u™(1* = v*)U]| < oo,
then
lim [~ [P, x5)(0)]| =
As PU = 0,

(7.43) PyU = PU + [PY]U = [P,Y]U = (u® — v*)L(p, v, y,8,)U,
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where L is a first order differential operator with derivatives in y only. Therefore if U satisfies (7.42) then
(7.44) ||~ PyU|? < .

Thus, if U satisfies (7.42) for a certain v > 0, it follows from (7.44) that we can take the limit as § — 0
in (7.40), and hence

0 > lu T PUTIP + 49 [
21><Y0

~ ~ 2 ~ 2 ~112
Wllu’”Vyi/fUIIQ+72Hu’13u(u’”1/fU)H +7Hu*”*18u(1/)U)H +73Hu’2*”1/fUH :

Here we used (7.31) and (7.32), and that g > T/2 on ¥, to guarantee that the integral on the left hand
side is finite.

We know from (7.9) that [|[(12 —12)]2V,U|| < oo and that ||U]| < co. Since U is supported in p > |v/,
this implies that

2 (2 = )0 do >
(7.45)

e (1® = v*) VU] < o0 and ||~ (4 — v*)pU || < oo
So applying (7.45) with v = 1 we obtain
™'V U|| < o0, [|p~ U] < oo.

Since ) is arbitrary, (7.42) holds for v = 2, and hence we can apply (7.45) with v = 2. Repeating this
argument we find that (7.45) holds for every v > 0.

Now let ¢, j = 1,2,..., N be a square partition of unity of X, that is 21/132 = 1. Again using that
PU = 0, we see that there exists some constant C' > 0, independent of v, such that

15~ P12 < 2/l 0, PO + Cllu 0|2 = Ol VT2,
WYy UNP > (v = D=4V, 01 = Cy2||w U2

Substituting that in (7.45), using that PU =0, and adding from j = 1 to N, we see that there exists 7o
such that for all v > ~,

(7.46)
o = oy D 4 O] do 2 gl ey DI+ 5 w20
Since 1 > T/2 on X1 we deduce from (7.31) and (7.32) that there exists C' > 0 such that, for v > o,
Cy (T/2)™ 71 2 Pl 202 oy (—rmyxox) = (T/2)™ T VPNTNR 20,072y x (12, 1/2)x0%)-
So in particular
3
(7.47) Cy (g) > VN0U1720,r/2)x (< 1/2m/2)%0%)s ¥ > Yo-

Therefore U = 0 in (=T/2,T/2) x (=T/2,T/2) x 8X. In particular f(u2,y) = -3 o, U (1, 0,y) = 0
if p< % This ends the proof of the Lemma. g

To conclude the proof of Theorem 7.1 we need

Lemma 7.3. If f € L? ()o() and R4 (0, f) is supported in s > sg, with so << 0, then f is supported

comp
m x> e,
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t' v
77777 t, b
_ supp f
V=0 suppf  pv=0  V=0|v=0
V=0 | V=0 V=0| V=0 | y=0
1/2 1/2 ,
) . %) :

FIGURE 5. Unique continuation for V. Away from 2’ = t’ = 0, the level surfaces of ¢ are
strongly pseudo-convex.

Proof. Let ¢ € C§°(R) be even, supported in (—1,1), and @e(s) = e "¢(s/e). Then ¢, * R4 (0, f) is
supported in s > so —e. Let 11 € S(R) and ¢1 . € S(R) be the functions obtained from ¢ and ¢, by (7.2).
It follows from Lemma 7.2 that ¢ (A — "{)f is compactly supported. If we prove that 11 (A — %Q)f
is supported in x > e® "¢ then by letting ¢ — 0 we have proved Lemma 7.3. So we may assume that
fe Og°(§(), and let us say that f(z,y) = 0 for © < xg. Then (4.3), which is due to the finite speed of
propagation, gives that

(7.48) V(' t'y)=0 if ¢ </zo.

Moreover we know from Theorem 2.1 that V is smooth up to 2’ = 0. Since by assumption V(0,¢',y) =0
for t' < to = exp(%), then, as proved above, V' extends to a smooth solution to (4.8) for 2’ < 0 which
vanishes in {2’ <0, ' <to}.

The principal symbol of P’ is given by (7.5), so it is easily seen that the level surfaces of ¢ =
—t' — x4 /T are not characteristic for P’. The Hamiltonian of p’, H,, was computed in (7.6). Then

p/(O, t/v Y, 57 T, 77) = _57-7 (H;D”/}) (05 t/a Y, 55 T, 77) =7+ 57 and
(H;%’U)) (Ovt/vyagvTv 77) = t/h’(oa yvn)a

and therefore, for ¢’ > 0,

if p'(0,¢',y,&,7,n) = (Hyy) (0,t',y,&,7,m) =0, with (§,7,7) #0 then
(Hz;’l/]) (Out/7y7§77—7 77) > 0.

This, according to section 28.4 of [26], implies that the level surfaces of 1) are strongly pseudo-convex
with respect to P’, as long as ¢ > 0. So applying Hormander’s theorem, Theorem 28.3.4 of [26], to (4.8)
and the surface {1) = 0} we find that V(2',t',y) = 0 near (0, /Zo, y). Now we can repeat this argument
to show that V = 0 in a neighborhood of the segment [0, ¢y]. And we can proceed in the same way to
conclude that in fact V' =0 in {(2/,¢',y) : 0 < 2’ < \/Tp, 0 <t < tp}. By the symmetry of V, it follows
that V =0 in {(2/,t',y) : 0 <t < \/Tg, 0 < 2’ < to}, see figure 5. This is the point where we use that
the initial data is (0, f).

Now going back to the variables (x,t,y) which are given by x = 2't’, t = logt’ — loga’, this implies
that the solution u(x,t,y) of (2.5) with initial data (0, f) satisfies

(7.49) u(z,t,y) =0 for {(x,t,y):0 <z <wzo, logzg —so <t < sy—logxo}.
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One particular case of Tataru’s theorem [49], see also [27, 46, 47, 50], states that if u(¢,z) is in H}}
and satisfies

(Dt2 —A— %2) u(t,z) =0
u(t,z) =0 =T <t<T, and d(z,29) <9, 0 >0,
where d(z, z9) is the distance between z and zg with respect to the metric g, then
(7.50) u(t, z) =0 for |t| + d(z, z0) < T.

We then deduce from (7.49) and (7.50) that w(0, 2) = D;u(0, z) = 0 on the set of points z = (x,y) at
a distance less than sg — log g from the surface {x = z¢}. In these coordinates the distance is given by
logx — log xg. So f(z,y) = Dyu(0,z,y) = 0 for logx < so. This proves Lemma 7.3. O

8. THE INVERSE PROBLEM

We consider the inverse problem of determining the manifold and the metric from the scattering matrix
A(N), at all energies A € R\ 0.
We will prove

Theorem 8.1. Let (X1,91) and (Xo,g2) be asymptotically hyperbolic manifolds which have the same
boundary 0X; = 0Xo = M. Let z; € C*(X;), j = 1,2, be a defining function of M for which (2.4)
holds, and let Aj(N), j =1,2, A € R\O, be the corresponding scattering matrices defined in (2.3) in terms
of xj. Suppose that A1 (\) = Az(X) for every A € R\O. Then there exists a diffeomorphism ¥ : X1 — Xo,
smooth up to M, such that

(8.1) U=Id at M and V¥ gy = g1.

We are fixing a defining function z; € C*(X;), j = 1,2, of M for which (2.4) holds near M and
using it in (2.3) to define A(\). According to Lemma 2.1 of [15], x; is uniquely determined near M by the
choice of the conformal representative ho j = 27 g;|ar. So to define the scattering matrix we fix a conformal
representative hg ;. On the other hand, we recall from Theorem 1.1 and Corollary 1.1 of [28] that A;(\),
for A fixed, determines the conformal representative hg ;. So when we say that the two asymptotically
hyperbolic manifolds (X7, g1) and (X2, ¢g2) have the same scattering matrix, as defined by (2.3), that is
A1 (X)) = A3(N\), A € R\ 0, it is implicit that we are fixing the same conformal representative for :C?gj| M
j=12.

Since A;(A) has a meromorphic continuation to C\ £N, see [28], if A1(A) = A2(A), A € R\ 0, then
A1(A) = Az(A) for A e C\ 5N.

As mentioned in the introduction, the proof is an application of the control method of Belishev [4],
see also [5, 31, 29, 30]. We will also use a result, which is an application of this method, and is due to
Katchalov and Kurylev [29, 30]

First we construct a diffeomorphism between neighborhoods of the boundary that realizes (8.1) and
later show that it can be extended to a diffeomorphism between the two manifolds.

We recall that Lemma 2.1 of [15] states that fixed a conformal representative hg there exists a unique
defining function z;, in a neighborhood of M for which (2.4) holds. However x; can be continued to X,
although not uniquely. As explained in the paragraph after Theorem 8.1, it is implicit that we are fixing
a conformal representative

(8.2) ho = 21g1|m = x392|nr-
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Note that, as observed in the paragraph following the proof Lemma 2.1 of [15], for € > 0 small, a
defining function z; for which (2.4) holds near M gives an identification of [0,€) x M with a collar
neighborhood U; . C X; of M by

(8.3) U,.:00,¢) x M — Uj,

where W; (z,y) is the point obtained by flowing the integral curve of V2, x; emanating from y by z
’ J
units of time. So x is the arc-length along the geodesics normal to the boundary M with respect to the
metrics :c?gj, or the distance from the point (z,y) to M with respect to this metric. We can pick € small
such that these maps are diffeomorphisms. Then z is a smooth defining function of M,
z:[0,e) x M — R, z=ux;+o0(zr;), and
(8.4) da?  h;
_ i
gj—?—FF, ]—1,2.
In fact for each y € M there exists €;(y) > 0 such that for z < ¢;(y) the distance between (z,y) and
M, with respect to the metric x?gj, is equal to x. So ¥; . extends to a diffeomorphism

(8.5) Ui J10,61) x {y} — X;\ T,
yeM
where I'; is the cut-locus of X; with respect to x? g;. It is known that the set I'; is a closed subset of
measure zero and I'; N M = (). The number € in (8.4) is less than the smallest of the distances between
Fj and M.
We will fix one such function throughout this section and we will prove

Proposition 8.2. Let (X1, g1) and (X2, g2) be asymptotically hyperbolic manifolds satisfying the hypothe-
ses of Theorem 8.1. Then there exists € > 0 such that in the product decomposition X ~ [0,€) x M where
(84) hOldS, h,l = h2.

The fact that the metrics are equal in these coordinates imply that

(8.6) Ui (ailo,, ) =5 (9200, )
with ¥, . defined in (8.3), and therefore
(8.7) A2 (92|U216) = gily, . -

This gives a diffeomorphism between neighborhoods of the boundary satisfying (8.1).

8.1. Preliminaries. Here we define some spaces that will be useful in the proof of Proposition 8.2.
Notice that if u is a solution of (2.5) with initial data (0, f), then u(t, z2) = —u(—t, z), t € R. Similarly,
if u is a solution of (2.5) with initial data (f,0), then u(t, z) = u(—t, 2), t € R. This implies that

(88) RJr(va)(_Say) = R*(va)(svy)a and RJr(fa O)(_Svy) = _R*(fa O)(Say)

Proposition 8.3. Let (X, g) be an asymptotically hyperbolic manifold and let x be a defining function
of 0X for which (2.4) holds. For F € L*(R x 0X), let F*(s,y) = F(—s,y). Let Ry denote the radiation
fields defined with respect to x, and let S = R, R_" be the scattering operator. Let

(8.9) M ={Fcl?Rx0X): F=SF*} and M'={FecL?’RxdX): F*=SF},
where f and b stand for forward and backward. Then
(8.10) M= (R (0,f): feLZ(X)} and M'={R_(0,f): feI2(X)}
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Proof. We will prove the first equality. The proof of the second one is identical. If F' = R4(0, f), then
according to (8.8), F* =R_(0, f), and so

SF*=R,R'F*=R.(0,f)=F.
Notice also that if F' =Ry (g,0), then according to (8.8), F* = —R_(g,0), and so
SF* =R, R_'F*=-R,(9,0) = —F.

Conversely, let I € L?(R x 0X). We know from Theorem 5.1 that there exists (fi, f2) € Eac such that
F= R+(f1,f2). Let Fl = R+(f1,0) and F2 = R+(0,f2). If F= SF*, then

F=F +F,=SF; +SF;.

In view of the discussion above, SFy = F» and SF) = —Fy. So Fy + F» = —F; + F», and thus F; = 0.
By uniqueness, f; = 0. 0

As ranges of bounded operators, Mf and M? are closed. By Proposition 8.3 and Theorem 5.2 they
are also defined in terms of the scattering matrix and the space L?(R x 0X), which depends on the
volume element of the metric h(0,y, dy). However, as discussed above, the scattering matrix determines
the tensor h(0, z,dy), so M/ and M® are determined by A(\), A € R\ 0. Thus we have

Corollary 8.4. Let (X, g) be an asymptotically hyperbolic manifold. Let x be a defining function of 0X
for which (2.4) holds and let R+ denote the radiation fields defined with respect to x. Then the spaces M7
and M® defined in (8.9) are closed subspaces of L*(R x X)), and so are Hilbert spaces with the inherited
norm. Moreover, M’ and M are determined by the scattering matriz A(X), for all X € R\ 0.

We will need

Lemma 8.5. Let (X, g) be an asymptotically hyperbolic manifold. Let MY and M" be defined in (8.9).
For 1 € (0,€), we have

(8.11)

M (21) E{F e MI, F(s,y) =0 if s<logzi}={Ry(0.f): feL(X), f=0 if z<m},
Mb(z) CAF e MY, F(s,y)=0 if s>—logai} ={R_(0,f): feL’(X), f=0 if z<a}
Proof. Finite speed of propagation guarantees that if f € L2.(X) and f = 0 in {z < 1}, then F =
R (0,f) € Mf(21) and F = R_(0, f) € M®(z1). On the other hand, if F € M/(x;), in particular
F € M/, and thus by Proposition 8.3, F = R (0, f) with f € L2.(X). Since F(s,y) = 0 if s < logz, it
follows from Theorem 7.1 that f =0 in z < 2.

If F € Mb(zy), then F =R_(0,9). So F* =R, (0,9) and F* = 0 for s < logz;. Therefore Theorem
7.1 gives that g =0 in x < 3. 0

We emphasize that the proof of Lemma 8.5 required the full power Theorem 7.1 and this is where the
support theorem enters in the study of the inverse problem.

In what follows, for F € M/, or F € M", we will use, by an abuse of notation, R;lF = f, and
Rif = F instead of RZ'F = (0, f) and R4(0, f) = F, respectively.

8.2. The case of no eigenvalues. To better explain our methods, we will first consider the case where
the manifolds have no eigenvalues. In this particular case, Proposition 8.2 is an easy consequence of

Proposition 8.6. Let (X1, g1) and (X2, g2) be asymptotically hyperbolic manifolds satisfying the hypothe-
ses of Theorem 8.1. Moreover assume that Ay, j = 1,2, have no eigenvalues. Let Rj +, j = 1,2, denote
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the corresponding forward or backward radiation fields defined in coordinates in which (8.4) holds. Then
there exists € > 0 such that

| (2, y) R F (2, y) = |hol (2, y)R3 L F(z,y), (z,y) € (0,€) x M, ¥ Fe M,
(8.12) |3 (2, y) Ry F(2,y) = ha|T (2, y)R5 L F(2,y), (2,y) € (0,¢) x M, ¥ Fe M/,

Indeed, suppose Proposition 8.6 has been proved. We will prove Proposition 8.2.
Proof. Let x be such that (8.4) holds. We know that for any F € M?,

0? n? _
(8.13) R;! (a 2F> (Ag]. - Z) R;LF.

So the first equation in (8.12) implies that for (z,y) € (0,€) x M, and any F € M?,
|ha | (2, y) Ry L F (2, y) = [ha| ¥ (2, y)R3 L F(2,y), and

1 2\ o 1 n?\ __
il o) (80 = 5 ) ReE Fen) = el (o) (80 = 2 ) Re Pl

Set RIEF = f. Since F is arbitrary and the metrics have no eigenvalues, equations (8.14) give, in

(8.14)

particular,

2 2 1
) (80 = ) S = el o) (8 = 5 ) T2 ),
Y f e C((0,€) x M).

(8.15)

Therefore the operators on both sides of (8.15) are equal. In particular the coefficients of the principal
parts of Ay, are equal to those of A, , and hence the tensors hy and hy from (8.4) are equal. This proves
Proposition 8.2. g

We begin the proof of Proposition 8.6 with

Lemma 8.7. Let (X,g) be an asymptotically hyperbolic manifold such that A, has no eigenvalues. Let
x be such that (2.4) holds in (0,€) x OX. For z1 € (0,¢€), let PE denote the orthogonal projector

’Pmbl c ME— MP(2y),
and let xz, be the characteristic function of the set {x > x1}. Then for every f € L2.(X) = L*(X),
R0, ) = R (0, xa, f) € MO ().
Proof. Since P% is a projector, then for all G € M®(z1)
(P2 R_(0, f), G r2@®xax) = (R-(0, f), G) r2mxox)-
In particular, since L2.(X) = LQ(X)7 then for all g € CgO(X) supported in {z > z1},
(P2 R_(0,f),R=(0,9)) L2mxox) = {f,9)12(x)
On the other hand, by Lemma 8.5 there exists f,, € L?(X) supported in {z > =z} such that
b R_(0,f) = R_(0, fu,). Therefore, for all g € C§° ()O() supported in {z > z1},
(P2 R_(0,£), R-(0,9)) r2xox) = (R=(0, f2,), R=(0,9)) r2@xox) = (fors9)12(x)-
Thus
<f1?17.g>L2 <fa >L2 (X)» v g€ L (X) supported in {I 2 Il}v
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and so [z, = Xz, f-
This ends the proof of the Proposition. O

Remark 8.8. Since the spaces M/, M M7 (x;) and M?(x1) are determined by the scattering matrix,
so are the projectors PJ and P2 .

We use this and properties of propagation of singularities for solutions to the wave equation to prove

Lemma 8.9. Let (X, g) be an asymptotically hyperbolic manifold which has no eigenvalues. Let x be a
defining function of 0X such that (2.4) holds. Let Ry be the radiation fields with respect to x. Then, there
exists € > 0, such that for any z1 € (0,¢/4), any F € M®, any ¢ € C§°(R) even, and the corresponding
1 be defined by (7.2),

— 1 _» h% 1,
RyRZN(PLG) (s,y) = 521 2w(x1,y)M

(s —logz1)Y + smoother terms,
h|3(0,y)
(8.16) [h[%(0,

2
if s <logx; +log4, where G=¢+F, and w=R'G=1 (Ag—%>R:1F.

Notice that by (7.3) G € M", and that, according to Remark 8.8, the left hand side of (8.16) is determined
by the scattering matriz of g.

Proof. We choose € > 0 so that the maps ¥, . defined by (8.3) are diffeomorphisms. That is, the distance
from T, the cut-locus, to 0X is greater than €, and take x1 < 7. From Lemma 8.7 we know that

(0, Xz, w) = R~ (,P:IEIG) )

with x5, being the characteristic function of the set {x > z1}, which is the set of points whose distance
to M is greater than or equal to x1, and hence

R4 (0, Xz w) = R4yRZT (PLG).

So we want to analyze R4 (0, xz,w). Recall from the definition of the forward radiation field that
this amounts to finding the solution w to (2.5) with initial data (0, x,,w), then taking v(s,z,y) =
r~3u(s — logx,z,y) and restricting % to x = 0. We remark that, although this is the definition of the

forward radiation field for C§°( )o( ) data, it follows from the discussion in section 7 that this also holds for
initial data in L2, (X) = L?(X), see equations (7.13) and (7.16). We are concerned with the restriction
of % to x = 0, so we will only consider the behavior of v for s > log x.

The initial data x,,w has a conormal singularity at S = {s = logxz, x = x1}, therefore the wavefront
set of v will be contained in the flow-out of N*S N X, where ¥ is the characteristic variety of P, which
is defined in (4.5). The principal symbol of P is p = —2¢0 — 262 — zh(x,y,n), o is the dual to s. So the
null bicharacteristics satisfy

b= 2026, =2, j= -2 f=@thtall =z
on Or dy

JI(O) =71, S(O) = longl, y(O) = Yo, 5(0) = 507 o = 7o, U(O) =00, 205 + xé—? + xh(‘rvyan) =0.
Note that since p = 0 is satisfied for the solutions to this system, and o = g # 0, we must have
1
E=— (—0’0 + (07 — th)%) .
T

Since we are concerned with the forward singularities, we must have og > 0. Then it follows that £ <0,
and thus s is non-decreasing.

& =0,
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s=log x

log x; s+

FIGURE 6. The singularities of v in s > logx.

We analyze the singularities that start over N*S = {z = 1, s = logz1, 179 = 0}. Using z as a
parameter, we find two families of curves

s=logxy, y=yo, £€=0, n=mng, c =09 if £ =0, and

s=2logz —logxy, y =1y, =m0, 0 =09, &= 50%, if & <0, and 200+ z1& = 0.

These curves make up the two characteristic surfaces of P emanating from S = {s = logz, « = x1},
which are X7 = {s = logx1} and ¥~ = {s = 2logz — logz1 }. So, in s > logz, v is singular along X+
and X 7. See figure 6.

A bicharacteristic in X%, let us say, starting over (x1,yo) will hit R x X at (logz1,y0), see figure
6. On the other hand, since s > logz, note that ¥~ consists of null bicharacteristics which go into the
interior of X, so they might also intersect the boundary. They could, however, become trapped in the
interior and not reach 0X. Take one such curve, v, starting over (z1,y), y € 0X, which intersects the
boundary at another point ¥’ € 90X, vy’ # y. The projection of v onto X is a geodesic with respect to
the metric 2%g, which connects the points (z1,y) and 3y’ € X and which is orthogonal to {z = z;}
at (z1,y). To reach the point 3’ this geodesic has to pass through the cut-locus I' and again reach the
surface {x = x1}. Since € is less than the distance from I" to 0X and x; < €/4, and along v, for x < €,
t = s —logz = logz — logx1, the geodesic reaches T' for ¢ > loge — log(e/4) = log4. Thus it reaches
{z = 21} for t = T > log4. Now we analyze the flow of H), starting at the point ¢ where 7 intersects
{z = x1}. The surface t = T becomes s = T + logz and we think of this singularity as starting at
{s =T +logx, x = x1}. But, as observed above, s is increasing along the part of v connecting ¢ to a
point over &X. Then this singularity will hit the boundary at 3 for s > T +log x1 > log 4 + log x;. Hence
the singularity of R4 (0, xz,w) at s = logz; comes only from X7, and these can be computed explicitly.
Moreover R4 (0, xz,w) is supported in s > log x1, therefore

R+(0, xgyw) € C%° ((—00,logz1 +1og4) \ {logz1} x 0X).

As commonly done in this type of problem, we will find a conormal expansion for v along ¥ = {s =
logz1} and ¥ = {s =2logz —logx1}. We will construct

o0

V(s,z,y) ~ Zvj(x,y) (e® — xl)i and V7 (s,x,y) ~ Zv;(x,y) (z° — xles)i ,
Jj=1 j=1
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that is VT and V'~ are the asymptotic sums of those series, such that, V* is supported in a neighborhood
of ¥F (this can be arranged, as in the proof of Borel’s lemma), and in the set

D, ={logz < s <logxy +log4d, 0 <z <e¢/2},

e C™(D,), v(s,z,y) —VT(s,z,y) =V (s,2,y) € C(D,),
where P is defined in (4.5). Moreover they satisfy
V*(logz,z,y) + V™ (logz, z,y) € CF°,
(8.17) v V-
55 1082, 7,y) + —-

Once this is accomplished, we then have

(logz,2,y) — v~ 2w(z,y)(z — 1)} € C§°.

Plv—V*t—-V7)eC>®(D,),

Av—V+t—-V7)

(U - V+ - V_)| e CgO(X)7 88 |S:lOgI

€ O (X).

s=log x

Then the energy estimates from section 4, adapted to the case where the right hand side is not equal to
zero, but is smooth up to 9X, give that (v — VT —V7) | _is C™ in (—o0,logz; + log4) x 0X.
We have

(8.18)

VH(logz,z,y) + V™~ (logz,z,y) ~ > _ (v] (x,y) + 270 (z,y)) (z — 21)’. ZZ (z1,y)(x — 1)),
Jj=1

1 oF
with  Z;(z1,y) = Z T ek (vt + 2™y, (21,y)
ktm=j, k>0,m>1
and
oV ov— _
P (s,:my)—i-w(s,w Y) Zje vl (z,y) (e —x1)} Yt Zywle v; (, y)(x? — ze®)
j=1 j=1
So, in particular, when s = log z,
v+t ov— = i
5 (loga, z,y) + ——(log, z,y) )~ > (o) (x,y) — jradv; (z,y)) (@ — 21)} " ~
j=1
(8.19) Z M;(z1,y)(x — xl)ﬁr_l, where
m oF _
M;(z1,y) = Z o BaF (zvf, — z12™v,,) (21, 9).

m+k=j3, m>1,k>0

Since

> 1 et
(8.20) o™ w(w, y)(x — 21)% ~Z i @ Fw) (21, ) (@ — 1)1,
]:1
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we conclude from (8.18), (8.19) and (8.20) that conditions (8.17) translate into

(8.21)
1 oF

Ziwny) = D g m e (a1,9) =0, GEN,
k+m=j, k>0,m>1 "~
m 8k m_ — 1 8j71 _n .
Mj(z1,y) = Z % Oxk (M;Q—ﬂilﬂi Um) (xl,y)zmm(x 210) (z1,9), jEN.

m+k=j, m>1,k>0

In particular, the terms with j = 1 satisfy

n

v (z1,y) + o] (o1,y) =0, and  zyv] (z1,y) — 2oy (21,y) = 27 Zw(w1, y).
Hence
(3:22) of (@1,) = —aavq (@0,) = 2oy b wlan,y).
Let 0 9 5
Q=P-25— — A

That is, @ is the part of P that does not have derivatives in s. As discussed above, the singularity of v
in ¥~ will not hit the boundary for s € (logx1,logx; +log4). Since we are interested on the singularity
of R4 (0, Xz, w) at s = log x1, we will restrict our computations to V1, but keeping in mind that, at least
for z < € and s < logx; + log4, similar computations also hold for V.

Since A and the coefficients of @ do not depend on s,

0
PV (s,z,y) ~ 3:1(2%111" + Avf)(e® — 1))+

0 0
Z((j-l—l)xl (2%+A>vj+1+<2ja —|—jA—|—Q> )(e —3:1) ~0 in z<uz.
j=1

Since we want PV (s,z,y) € C™ in {z < x1}, all the coefficients in (8.23) must be equal to zero, and
so we get the transport equations for U;f, 7 =1,2,..., which are

(8.23)

<2§—|—A)v1 (x,y) =0, o<,

(8.24) and
_ 0 n 0
G+ Dy 2%+A vl + 2]8 +jA+Q | vf =0, x <,

with the initial conditions vj(:vl,y), j=1,2,..., given by (8.21).
Since A = %%%, we deduce from (8.24) and (8.22) that
L any) 5o

'rl w(xlay)v .IS.Il.

(3.25) o ) = 5

But
0 i
gVJr(s,xy Zjev (z,y)(e’ —:101] ! Zje — @1 + 21)v] F(, )(es—xl)ﬂrlm
(8.26) =

ool (@,y)(e* —20)S + Y (G + Dawvyyy (,9) + o) (2,9)) (¢ —21)].
j=1
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The highest singularity of R4 (0, xz, w) = % |6X at s = log 1 is the highest singularity of %V* (s,0,9),
which is

L|als (z1,y) -3

0 _ U 2 S 0
= - X w\ry, e —X .
+ 2 |h|i(0,y) 1 ( 1 y)( 1)+

This gives (8.16) and the Lemma is proved. O

(8.27) xlvf((),y)(es — 1)

Now we can finish the proof of Proposition 8.6.

Proof. We know from Lemma 8.9 that there exists e > 0 such that for any ¢ € C§°(R) even, and F € M?,
then

hi|% z, n? _ ho|® x,
Mwl (Agl _ Z) Rl)l_F(x,y) — M
|h1]7(0,y) lha|(0,y)

where 11 is determined by (7.2). Now take a sequence ¢,, such that ¢, * F — F in L?(R x X) as
m — o0o. Then, by the continuity of R; _, j=1,2,

2
1 (Agz — %) R2_1_F(x,y), (z,y) (0,€) x X,

2
UVim (Agj - %) Rj_iF — Rj_lF in L?(X;) with respect to g;.

Since |h1](0,y) = |h2|(0,y), (8.12) holds for the backward radiation field.
Let F =8!G =Ry Ry G =Ry R, G, then
h1|3 (2, y)RTALG = |ha| T (2, y)R5LG, in (0,€) x OX.

Since S is unitary and G is arbitrary, therefore (8.12) holds for the forward radiation field. This ends the
proof of Proposition 8.6. g

Since |h1| = |hz| the following is an immediate consequence of Proposition 8.6.

Proposition 8.10. Let (X1,91) and (X2, g2) satisfy the hypotheses of Theorem 8.1 be such that Ay,
j =1,2, have no eigenvalues. Then there exists € > 0 such that in coordinates for which (8.4) holds, the
Schwartz kernels of the radiation fields R 1 (s,y, 2), for (s,y) € R x M, z € (0,¢€) x M, satisfy

(828) RLJF(Sv Y, Z) = R2,+(Sa Y, Z) and R177(S7 Y, Z) = RQ,*(Sa Y, Z)

Next we want to show that ¥ extends to a global diffeomorphism from X; to X5, as claimed in Theorem
8.1. We could follow the method of [4, 5, 29], see also [30, 31], and construct the diffeomorphism. However
it is easier to show that one can apply their result to construct W.

Proposition 8.11. ([4, 5, 29]) Let (Z,g) be a smooth compact Riemannian manifold with boundary with
boundary 0Z. Let v;, v; < vi1, j € N, denote the Neumann eigenvalues of the operator Ay, on Z and let
~; denote the corresponding eigenfunctions. Then (Z,g) is uniquely determined, modulo a diffeomorphism
that is the identity at 0Z, by the collection

(8.29) vi and loz, j€N\J, where J is a finite subset.

This result is proved in [4, 5] for J = () and in [29, 30] for J # 0.
So far we have shown that there exist diffeomorphisms ¥; ., j = 1,2, satisfying (8.3) such that (8.6)
holds. Therefore ¥ = W5 . o \Iffi is a diffeomorphism
v U275 i U11€

which satisfies (8.7).
Observe that X; . = X; \ Uj. are smooth compact manifolds with boundary and their boundaries
0X1 ., 0X2 . can be identified by the diffeomorphisms with M x {e} = M., see figure 7.
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FIGURE 7. The maps ¥, ., j = 1,2 and their extension to Z.

We think of M. as the boundary of some smooth compact manifold Z. We will prove that the fact that
the two metrics have the same scattering matrix imply that Ay, in X, ¢, 4 = 1,2, have the same Neumann
spectral data in M., that is, they have the same eigenvalues and the same traces of the eigenfunctions.
Then Proposition 8.11, with J = @), put together with Proposition 8.2 proves Theorem 8.1. We should
also remark that method of proof of Proposition 8.11 guarantees that the resulting map is C'*°.

As in [42], we recall that the graph of the Calderén projector of A, — A2 — "Tz in X;.,7=1,2,
denoted by C} », is the closed subspace of L*(M.) x H'(M.) consisting of (f,g) € L*(M.) x H*(M,) such
that there exists u satisfying

2
(Agj —)\2—%>u=0 in X =12
ula, = f, Ovulm, = g.

Here J,u denotes the normal derivative of u at M.. We will show that if 4;(\) = A2(A), A € R\ 0, then
Cyx = Cyx, A € R\ 0. But the Calderén projector depends continuously on A and so does its graph.
Thus Cl)\ = CQ))\, A €eR.

Since Agy,, j = 1,2, has no point spectrum in L*(X;), the operators Ay, — 1—2, j = 1,2, are positive in
X;. In particular their restriction to X . are also positive. Therefore A2 4 ’2—2 is in the Neumann spectrum
of Ay, in X, if and only if Cj x contains a subspace of pairs of the form (g,0), g # 0. Therefore, once
we prove that C; » = C 5, A € R, then the eigenvalues of the Neumann problem for A, in X, and
the traces of the corresponding eigenfunctions on M., are equal to the corresponding ones of Ay, in Xy .
Then Proposition 8.11, with J = (), can be used to prove Theorem 8.1.

To prove that C1 5 = C2.x, A € R\ 0, we apply the same argument used in the proof of Lemma 3.2,
chapter 3.8 of [44], see also the proof of Lemma 2.1 of [52], to show that for any A # 0, the set of functions
given by

(8.30) vj(2,A) = /M E} (g + M) (z:9)o(y), j=12, ¢€C™(M),

where E7 is the Eisenstein Function, or Poisson operator, which is the adjoint of the operator E; defined
in (6.10), is dense in the set of solutions of
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2

(8.31) <A—/\2—%)u_0 in X, j=1,2,

in the Sobolev space H*(X; ), for any k > 2.

The dual to H¥(X; ) can be identified with the space of f € H~¥(X;) supported in X; . If such
[ satisfies (f,v) = 0 for all v given by (8.30), then E; (% +4)\) f = 0. This implies that the function
h=R (% + i)\) f vanishes to infinite order at M. Notice that f is supported in X ., so h is smooth near
M. Then unique continuation, see Theorem 14 of [40], implies that h is supported in X . and therefore
f= (Agj _ "72> h, with h supported in X; .. Then (f,u) = 0 for any u satisfying (8.31).

Since E} (% + i)\) (z,y) is the partial Fourier transform in s of R;i (s,y,2), j =1,2, Proposition 8.10
implies that for all v;, j = 1,2, given by (8.30), which we know is smooth in X, satisfy v1(z, ) = va(z, ),
z=(x,y) € (0,€) x M, A € R\ 0. Therefore their traces and normal derivatives at M, are equal, and the
density of this set implies that the same is true for solutions of (8.31). Thus C; x = Czx, A € R\ 0 and
this proves our claim.

8.3. The general case. Now we remove the extra assumption on the non-existence of eigenvalues.
Let (X, g) be an asymptotically hyperbolic manifold. The only poles of the resolvent R(% + i\) =
(A — "Tz —A%)~1in {3\ < 0} correspond to the finitely many eigenvalues of A,. Proposition 3.6 of [16]

states that if A\g € {R_ is such that "4—2 + A2 is an eigenvalue of A, then the scattering matrix has a pole
at Ao and its residue is given by

ITy if —iX € N/2
.32 AN = 0’ ’
(83 ) Res)\o (A) { H)\g_pl; lf —7;)\0:%, ZEN,
where p; is a differential operator whose coefficients depend on the tensor h, defined in (8.4), and its
derivatives at 0.X, and the Schwartz kernel of II,, is

No
(8.33) K (y,y') = —2ixo Y67 @ 65y, v/), 65(y) = 27520, (z, y)|a=o-
j=1

Here Ny is the multiplicity of the eigenvalue - + A2 and ¢j, 1 < j < Ny, are the corresponding
orthonormalized eigenfunctions.

If two asymptotically hyperbolic manifolds (X1,¢1) and (Xs,g2) have the same scattering matrix
A1(A) = Az(N) for all A € R\ 0, we know from [28] that in coordinates where (8.4) is satisfied, all
derivatives of hy and hy agree at = 0. Therefore the operators p; in (8.32) are the same. Thus,
(8.32) and (8.33), and the meromorphic continuation of the scattering matrix, show that Ay, and Ay,
have the same eigenvalues, with the same multiplicity. Moreover, (8.33) implies that if ¢;, and ;,
1 < j < Ny, are orthonormal sets of eigenfunctions of Ay, and Ag,,, respectively, corresponding to the
eigenvalue "Tz + A3, then there exists a constant orthogonal Ny x Ny matrix A such that ®° = A¥? where
(@) = (69,99, ..., 8%, ), and (¥O)T = (49,49, ...,4%, ). So by redefining one set of eigenfunctions from
let us say, U to AV, where U7 = (11,2, ..., N, ), we may assume that
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We remark that this does not change the orthonormality of the eigenfunctions in X5 because A is or-
thogonal. Let us denote

2
wi = nz + )\f, Aj €iR_, ¢5, 1 <5 <N, all the eigenvalues and eigenfunctions of A,

(8.35) 5
Wi = L )\5, Aj €iR_, 9, 1 <j <N, all the eigenvalues and eigenfunctions of Ag,,

4

with g1 < pe < ... < un, and the corresponding eigenfunctions chosen to satisfy (8.34) for each eigenvalue
Hj-

When there are eigenfunctions, Lemma 8.7 is no longer valid. To present the correct statement we
begin with the following lemma, which was suggested and proved by one of the referees,

Lemma 8.12. Let V be a finite dimensional subspace of a Hilbert space H and let Q) be the orthogonal
projector onto V. Let Py, t € [0,a], be a strongly continuous family of projections with Py = Id and
PPy = P, if t < t'. Then there exists € € (0,a), and a unique continuous family of bounded operators
T(t): H—V,te|0,¢, such that QP,(Id =T'(t)) = 0. Moreover, if f,, € H is a bounded sequence, then
there exists a subsequence fr, such that T(t) fm converges uniformly in [0, €].

Proof. As Q(P;)|v is continuous and Q(Fp)|v = Id |y, there exists € € (0,a) such that QP, : V — V is
invertible on V for t € [0, €]. If R(t) is its inverse, then R(¢) is continuous for ¢ € [0, €], and

QP (Id-R(H)QF) = QP — (QPR)R(H)QP, = 0.

So we take T(t) = R(t)QP,. Then T(t) is bounded and continuous in ¢. If T() is another solution,
QP.(T(t) — T(t)) = 0, so multiplying by R(t) on the left, we get T(t) — T(t) = 0.

If f, is a bounded sequence of functions on H, then P f,, is bounded. From the strong continuity of
Py, P; f is equicontinuous and hence it has a convergent subsequence P, fy,,,. Thus T'(t) frnr = R(E)QPs frn
converges. This ends the proof of the lemma. O

The application of this lemma that we have in mind is:

Corollary 8.13. Let (X, g) be an asymptotically hyperbolic manifold and let x be a defining function of
0X for which (2.4) holds. Let V = L? (X), be the space spanned by the set of orthonormal eigenfunctions
of Ay, ¢j € L*(X), 1 < j < N. Let x; denote the characteristic function of the set {x >t} and let P,f =
xtf- Then there exists € > 0, and a unique continuous family of bounded operators T(t) : L*(X) — V,
t €10, ¢, such that

(8.36) xie(f =T f), ) =0, k=1,2,...,N.

Moreover, any bounded sequence f,, € L*(X), m = 1,2, ..., has a subsequence fn such that T(t)(fm:)
converges uniformly in [0,¢€|, j = 1,2, ..., N. In this case the operators R(t) and QP; are given by

(8.37) R(t) = (R(t)ij), R(t)i; = (xeCir i)y (QPS)T = ((xe S5 Gy (Xt S G2)s s (a1 G -
When there exist eigenfunctions, Lemma 8.7 has to be replaced by

Lemma 8.14. Let (X, g) be an asymptotically hyperbolic manifold and let {¢; : 1 < j < N} denote the
L3(X) eigenfunctions of A,. Let ’Pgl denote the orthogonal projector

PL o MP— M (z1).
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Let x; be the characteristic function of the set {x > t}. Then there exists ¢ > 0 such that for every
z1 € (0,€) and every f € L2.(X)
Pi)lR* (07 f) = R* (07 f11)7 where
Ja (,T, y) = Xz (,T, y) (Id _T(‘Tl)) /s
and T'(xz1) is the family of operators given by Corollary 8.13.

(8.38)

Proof. We follow the proof of Lemma 8.7. We know from Lemma 8.5 that there exists f., € L2.(X)
supported in {z > z} such that P2 R_(0, f) = R_(0, f,,) and that
(fer — frg) =0 forall ge C{;"()O() NL2.(X) supported in{z; < x}.

Therefore there exist constants «;(z1), j = 1,2,..., N, such that

N
For = Xar | [+ aj(@1)¢

j=1

Since fr, € L2.(X1), it follows that (f;,,(x) = 0, 1 < k < N. Then, by uniqueness, Zjvzl a;(x1)¢ =
—T'(z1)(f), is the family of operators given by Corollary 8.13. O

If there are eigenvalues, then Lemma 8.9 is replaced by

Lemma 8.15. Let (X,g) be an asymptotically hyperbolic manifold and let x be a defining function of
0X such that (2.4) holds. Let Ry be the radiation fields with respect to x. Then there exists € > 0 such
that for all F € M®, ¢ € C§°(R) even, and 11 defined by (7.2), and any x1 € (0,¢/4),

RyR™N(PLLG) (s,y) =

1 _» i (x Y
(8.39) 301 2 (Id=T(x1)) w(a:l,y)%(s —logz1) + smoother terms,
2
if s<logz, +log4, where G=¢*F, andw, =R'G =1 (Ag — %) RZ'F.

Here T(x1) is the operator given by Corollary 8.13. Notice that by (7.3), G = ¢ * F € M®, and that the
left hand side of (8.39) is determined by the scattering matriz A(N).

Proof. We follow step by step the proof of Lemma 8.9. We know that the eigenfunctions are smooth
in the interior of the manifold. So the only thing that changes is the singularity of the initial data in
equation (8.21). The initial data of v}, which was given by (8.22), must, according to (8.38), be replaced
by

1 _n_
ot (ery) = 5oyt (=T (@) wn(e1,y).
O

As in the proof of Proposition 8.6, we take a sequence ¢,, such that ¢,, * F — F in L?(R x M), in
Lemma 8.15, and we obtain

Proposition 8.16. Let (X;,g;), j = 1,2, be asymptotically hyperbolic manifolds satisfying the hypothe-
ses of Theorem 8.1. Let R;_, j = 1,2, denote the corresponding backward radiation fields defined in
coordinates in which (8.4) holds. Let T;(t), j = 1,2, be the operators given by Corollary 8.13. Then there
exists € > 0 such that for any F € M,

(8.40) | (2, y) (1d =T () RELF(2,y) = |hal|T (2,y) (Id —To(x)) Ry F(z,y) in (0,¢) x M.



44 SA BARRETO

We deduce from (8.40) and (8.13) that for every F € M?,
b3 (Id = T4 (2)) Ry L F(w,y) = |hol 3 (1d =To(2))Ry L F(,y), (,y) € (0,€) x M, and

n? n?
B0l =T (A = ) RiEF) = ol (10-Tafo) (8, = 5 ) R Flav)
(2, 9) € (0,€) x M.

We will use this to conclude that the tensors h; and hy are equal, and thus prove Proposition 8.2.
This is based on the following lemma, which is a direct consequence of Corollary 8.13.
Lemma 8.17. For § > 0, let Ks be the characteristic function of {x < d}. Then there exists € > 0 such
that for every § € (0,¢€), the operators Tj, j = 1,2, defined by Corollary 8.13 satisfy

KTy« L*(X;) — L*([0,6] x M), j=1,2,

where L? is defined with respect to the metric g;, and moreover are compact.

We can then prove Proposition 8.2.

Proof. We just need to observe that it follows from (8.41) and Lemma 8.17 that for ¢ > 0 small,
(8.42)
K|h "Ry F(z,y) = Kc|ho| 7R3 F(z,y) + K.RF(2,y), R compact, and

2 2
K|h|4 (Agl - %) RiLF(z,y) = K|hso|i (Am - HZ) RyLF(x,y) + K.SF(z,y), S compact.

Let § € (0,¢) and set Rl_l_F = f. We find that for all f € L2 (X1), with respect to g1,

7’L2

n2 h i ~ ~
(8.43) Kis|ho| (Agz - I) :hl:i f=Ks|h| (Agl - Z) f+KsSf, S compact.
2

Let @ be the differential operator

1 7’L2 |h1|i 1 n2
= |nso]7 (A, — — — i (A, — — .
Qf <| 2|4 ( g2 4> |h2|i | 1| < g1 4> f

Since any f € L?(X;), with respect to g1, can be written as f = Pacf + Ejy:1<f, ®j)¢;, it follows from
(8.43) that

N N
KsQf = KsQPacf + D (f.6;)KsQ¢; = KsSPacf + ) _(f.6))KsQ0;, [ € L*(X).
j=1 j=1
The first term of the sum is compact because S is, and the second term is of finite rank. Therefore
KsQ : L*(X1) — H~%(]0,4] x M) is compact. But @ is also a second order differential operator. This
implies that K5Q = 0. See for example exercise 6.2 on page 52 of [51]. Therefore the tensors h; and hq
are equal in [0, 0] x M, and this proves Proposition 8.2. O

Now we need to show that the diffeomorphism can be extended to the whole manifold. We will use
the same method as in the case of no eigenvalues. We have shown that Ay, = Ay, in coordinates (8.4)
in (0,€) x M. Using (8.34) and the equation satisfied by the eigenfunctions, it can be shown that (8.34)
is satisfied to infinite order, that is all derivatives of the °
Therefore unique continuation for this type of operators, see Theorem 14 of [40], shows that there exists
€ > 0, such that the eigenfunctions of Ay, and those of Ay, are equal in [0,€) x M. That is

(8.44) ¢j(x,y) = vj(z,y), 1<j<N, (z,y) €[0,¢) x M.

‘rescaled eigenfunctions” agree at {x = 0}.
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We deduce from the first equation in (8.41) that the Schwartz kernels R Y (s,9,2), (5,y) € Rx M and
= (z,y’) € (0,¢) x M satisfy

(8.45) (I —Ti(2))Ry (5,9, 2) = (I — Ta(x)) Ry (5,9, 2).

Since T}, j = 1,2, is a linear operator, we may take Fourier transform in s of (8.45) and deduce that
the Schwartz kernels (5 +1iA)(2,y), 7 = 1,2, (A\,y) € R\ 0 x M, and 2 = (z,y') € (0,€) x M satisfy

(8.46) (I = Ty(@)B{ (5 +iM)(2,9) = (I = Ta(@) B3 (5 +iN)(z.0).
We will use this to prove

Proposition 8.18. There exists € > 0 such that for every A € R\0,y € M and z = (z,y’) € (0,¢) x M,
(8.47) El( +iN)(z,y) = EQ( +iM)(z,y).

Proof. Let ¢ € C*°(M) and let vj(z, ), j = 1,2, be the functions given by (8.30). We will show that
there exists € > 0 such that for § € (0, ¢), there exists A = A(d) > 0 such that

(8.48) v1(6, 9", ) =v2(8,¥/,N), V ¥ € M, and |\ > A.

Since by the analytic continuation of E;(§ +i)), A € R\ 0, vj(z, ), j = 1,2, is real analytic in A € R\ 0,
for each z, it follows that (8.48) holds for every A € R\ 0. Since § is arbitrary, (8.47) follows.
Equation (8.46) implies that

(8.49) v1(z,A) —va(z,A) = Ty (z)v1(2,A) — Ta(z)va(2,A), 2= (z,9y") € (0,€) x M, A€ R\O.
Let us denote

O(z,y) = (41(2,9), -, On (2, 9)), W(z,y) = (Ya(a, y) o YN (2,9)),

N
Ty (2)vi(2z,N) = ZC (x, N (x,y), Ta(x)va(z,A) = ZCQCE/\’Q/J](CEy)

where, by equation 8.37,
O, 0) & (@, 05(2,0) = [Ri(x)] " FI(2,\), j=1,2, where
( )T © Fl(,’E,’Ul( ))T = (<X1U1(Zv )‘)7¢1>7 HS] <X1'U1(Zv )‘)7¢N>)7
( T, )T « F2 x702( )) = (<va2(27)‘)7w1>7 HE] <X1'U2(Zv/\)7wN>)
R'(x) = (Rjj(x)), Rij(2) = (xatjs b5), R*(x) = (Rj(x)), Ri(x) = (xathj¥5),
We know that (@i, ¢;) = (¥s,%;) = d;;, we also know that if < ¢, then (1 — xz)¢; = (1 — x2)¢s. But,
(Xa®i, 85) = (b5, 05) — (1 = Xa) i, 85) = (B, 05) — (1 = Xa) @i, (1 — Xa)Bj) =
(Wi 7)) = (1 = Xa )i, (1 = Xa)¥5) = (¥is ¥5) — (1 — Xa)¥i, ¥5) = (Xati, ¥5)-

(
(

Hence
(8.50) R}j(iv) = (X«%i, 9j) = Rlzj () = (Xai, ¥j)-
We denote R(x) = R'(z) = R?(x). We can pick € small so that R~!(z) is uniformly bounded for z € [0, €.
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Recall that u; = ”72 + )\f, Aj € iR_, is the eigenvalue corresponding to ¢;, as defined in (8.35). For
0 < €, the divergence theorem gives

(xov1(2,A), ¢5(2)) = M%(X(svl(z, A)s Qg 95(2)) =

1 n? 0¢;

A 00+ g [ |G N6 - B

S 5.9 0)63(6.3)| dvoluc.
Doing the same computation for (xsv2,;), using that p; = "Tz + )\5 and (8.44), we obtain
(8.51)

(xsv1(2,A), 95(2)) = —W/ [ 1(0,y, ) ;;J (6,y) — %(5 Y, A)o; (0, y)} dvoly sy,
81)2

(xse 3(6)) = = o [ [0 N G20 - 5

We conclude from (8.51) that there exists Ko(d) > 0, such that

2% (5., )66 y>] dvolns) -

(9’()1 (%2

Ko(d
(8.52) [F}(5,)) - F2(5, )] < iﬁ)[szpwl(&,y,A)—v2<6,y,A)|+s$p

This and (8.50) imply that there exists K7(d) > 0, such that
S}\I}) |T1 (5)’01 (53 Y, >\) —15 (5)1)2 (57 Y, /\)| <

(8.53) K16 ) )
12 ) Sup|vl(5,y,)\) _v2(57yaA)| =+ sup ﬂ((sayv)\) v2 (6 Y, ) :
A M M ox
Setting x = ¢ in (8.49) and using (8.53) we get
(8.54)
Ki(6 Oov
sup 03,3 ) = (6. 91 < 4 Foup 03 (6,.3) = 206,000+ s 526,03 — S22 5.5

To estimate the terms 1nv01v1ng L (0,y,\), we differentiate (8.49) in z. We get that

%(m,y, /\) - %(m,y,)\) = %(Tl(w)vl)(xayv /\) - %(TQ(‘T)UQ)(‘Tvya)‘)'

Since ® = U for x < €, we have Tjvj(x,y,\) = R~} (x)F?(z,\) - ®(z,y), and thus
0
5 Li@)vs)(@,y, A) =
(8.56) i _ Cd o 0%
— R J . - — F . - J R
R W) P o) B+ B @)L P ) - o) + B @) S ),

The first and the third terms are much like T;v;(z, A), and because of (8.52), satisfy an estimate like
(8.53). The second term has to be considered separately. Notice that

d . T d d
(%FJ(.I,)\)) = <%<szj;¢l>a%<xzvja¢1\/>) B

(8.55)

and

d 1
7 Xaiy On) loms = — 5o /M 0 (6,y, N) i (6, y)d voly(s) -

Then
d 1
(8.57) . ((X2v1, k) — (XaV2; Pk)) |pes = ST /M (v1(8, 9, A) = v2(0,y, A)) ¢x(0, y)d volps) -
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Then there exists K2(d) such that

(8.58) 4 s — %Fz(& /\)‘ < K209)

dx A2
So from (8.52), (8.55), (8.56) and (8.58) we find that there exists K3(d) such that
(8.59)

(9’()1
Skl/lp |%(53 Y, >\)

Sup lv1(d,y,\) — v2(0,y, A)|.

Ova K5(9) Oy Oy
_% 22 s}\l4p|vl(5ay7>\)_v2(57ya/\)|+sx4p|%(5vyaA)_%(&yaA” .

So we conclude from (8.54) and (8.59) that

(0,5, )] <

6’1}1 6’1)2
6, y, \) —va(d,y, A — 6, y,\) — —(6,y,\)| <
S;l/jph}l( 'Y, ) U?( 'Y, )|+S]1\l4p|8$( 'Y, ) 8$( 'Y, )|—
K1(6)+K3(6) ov (%2
0

1
22 |:S}\l/lp |U1 (67 Y, )‘) - UQ((SJ Y, )‘)| + S}\l}) |_{E(57 Y, )‘) - %(57 Y, )‘)|:|

Taking A? > K;(8) + K3(8), equation (8.48) follows. This ends the proof of the Proposition. O

As in the case of no eigenvalues, this can be used to show that the graphs of the Calderén projectors
satisfy C1 » = Co.x, A € R\ 0 and by continuity of C; , if A € R. However, in this case, the operators
Ay, — ”TQ, 7 = 1,2, are not positive, and this only determines the Neumann eigenvalues, and the traces
of the corresponding eigenfunctions, of A, for eigenvalues v; > 1—2. But since the set J = {j : v; < "Tz}
is finite, we may again apply Proposition 8.11, this time with J # 0.

Observe that for 0 < e fixed, (8.48), and the density of v;(\, z), 7 = 1,2, imply that C1 5 = Ca.x,
A2 > A% in X;s. This gives the spectral data with eigenvalues v; > A and we could apply Proposition
8.11 already at this stage.

Then Proposition 8.11 combined Proposition 8.2 proves Theorem 8.1. Again, we remark that the
method of proof of Proposition 8.11 guarantees that the map is C*°.
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