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A Nonconforming Mixed Method for the

Time-Harmonic Maxwell Equations

Jim Douglas, Jr.� Juan E. Santosy Dongwoo Sheenz

Abstract

We present a nonconforming mixed �nite element scheme for the time-harmonic
Maxwell equations in a three-dimensional, bounded domain with absorbing boundary
conditions on arti�cial boundaries. The numerical procedure is employed to solve a
direct problem in magnetotellurics.

1 Introduction

The magnetotelluric method, which is of interest in petroleum exploration and detection
of groundwater reservoirs and mineral deposits [1], is used to infer the distribution of the
earth's electric conductivity from measurements of natural electric and magnetic �elds
on the earth's surface and is based on a form of Maxwell's equations. The object of
this paper is to present a numerical procedure to determine the scattered electromagnetic
�elds induced inside the earth when a plane electromagnetic wave arrives normally to
the earth's surface; the earth is modelled as a horizontally-layered medium containing
arbitrarily shaped conductivity anomalies.

We present a nonconforming mixed �nite element scheme for solving the time-harmonic
Maxwell equations in a bounded domain with absorbing boundary conditions on arti�cial
exterior boundaries; the method employs a nonconforming element discussed in [4] for
solving second-order elliptic problems. The convergence of the numerical solution to
that of the di�erential problem is demonstrated in [3], where in addition the method is
hybridized and a parallelizable domain decomposition iterative procedure is described and
analyzed. Other numerical methods to solve the direct problem in magnetotellurics have
been proposed previously by several authors; see the references in [3].

The organization of the paper is as follows. In x2 we describe the physical problem
and the di�erential equations and boundary conditions employed for its mathematical
description and develop a mixed weak formulation of the problem. In x3 the nonconforming
mixed �nite element spaces used for the spatial discretization are de�ned, along with our
nonconforming mixed �nite element method. In x4 we state an a priori error estimate for
the �nite element method.
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2 The Di�erential Model

If E and H denote the electric and magnetic �elds for a given angular frequency !, the
time-harmonic Maxwell equations in a region free of sources are given by

(� + i!")E �r�H = 0;(1a)

i!�H +r�E = 0;(1b)

where �, ", and � denote the conductivity, electric permittivity, and magnetic permeability,
respectively. The terms �E and i!"E in (1a) represent conductive and displacement
currents, respectively.

In magnetotelluric modelling the medium parameters �, ", and � fall within a limited
range for which

!" << �;

and displacement currents can be neglected. Thus, Maxwell's equations reduce to

�E �r�H = 0;(2a)

i!�H +r�E = 0:(2b)

Our di�erential model is formulated in terms of scattered �elds (see also [2]). Consider
the primary model, without a scatterer, identi�ed withR3

+ = f(x; y; z) 2 R3 : z > 0g where
the medium parameters � and � are assumed to have known values �p and �p, respectively.
Suppose that a bounded scatterer 
s is embedded in R3

+; the primary medium parameters
�p and �p in 
s are then changed into the parameters � = �p + �s and � = �p + �s with
supp(�s) [ supp(�s) � 
s. Let Ep and Hp be physically meaningful solutions of Maxwell's
equations (2) inR3

+ for the primary model. Then, let Et = Ep+Es andHt = Hp+Hs denote
the total electromagnetic �elds in R3

+ with � and � induced by a plane, monochromatic
electromagnetic wave of frequency ! incident upon the boundary z = 0 of R3

+. Finally, let
Es and Hs be the scattered electromagnetic �elds due to the presence of the anomalies of

s; they satisfy the equations

�Es �r�Hs = ��sEp �F in R3
+;

i!�Hs +r�Es = �i!�sHp �G in R3
+:

Truncate the problem to a compact domain, so that a practical computational procedure
can be de�ned. Let 
 � R3

+ be a cube containing 
s and big enough so that � � @
 is
far away from 
s. Without loss of generality, the problem can be scaled so that 
 is the
unit cube whose bottom face is included in the boundary z = 0 of R3

+. Now, consider the
scattering problem to �nd (E;H) � (Es;Hs):

�E �r�H = F in 
;(3a)

i!�H +r�E = G in 
;(3b)

for given F and G. To minimize the e�ect of re
ections from the arti�cial boundary �,
impose the absorbing boundary condition

(1� i)P�aE + � �H = 0 on �; a = [�=(2!�)]1=2;(4)

where � denotes the unit outer normal to � and P�' = '� �(� � ') = �� � (� � ') is the
projection of the trace of ' on �.Assume that 0 < �min � � � �max, 0 < �min � � � �max,



Nonconforming Mixed Method for Maxwell's Equations 3

and that a is a real-valued, Lipschitz-continuous function on � such that 0 < amin � a(x)
for x 2 �. The following existence and uniqueness results for (3){(4) is proved in [5].

Theorem 2.1. Let F;G 2 [L2(
)]3 and ! 6= 0. Then, there exists a unique

electromagnetic �eld (E;H) 2 [H(curl; 
)]2 satisfying (3)-(4). If, in addition, F and G
belong to H(div; 
) and � and � are Lipschitz-continuous on 
, then E and H belong

to [H1=2(
)]3; more precisely, fE;Hg 2 [H(curl; 
) \ H(div; 
)] with boundary values in

[L2(�)]6.
Here, (Hs(
); k � ks) and (Hs(�); j � js) indicate standard, complex Sobolev spaces for

any real number s, with H0(
) = L2(
); k � k0;
 = k � k denotes the usual L2-norm with
the usual complex inner product('; ). Also, for a face f of 
, leth'; if denote the inner
product on L2(f), with associated norm j � j0;f . Let the Hilbert space

H(curl; 
) =
�
' 2 [L2(
)]3 : r� ' 2 [L2(
)]3

	
be equipped with the natural norm and inner product

k'kH(curl;
) = (k'k20 + kr � 'k20)
1

2 ; ('; )H(curl;
) = ('; ) + (r� ';r�  ):

Finally, denote by Lip(�) the space of all Lipschitz-continuous functions on � and by
Lip(�)0 the dual space of Lip(�). It is shown in [6] that (� � ') � P� 2 Lip(�)0 for all
'; 2 H(curl; 
).

The following generalized Green's formula on H(curl; 
) [6, 7] will be useful:

(r� '; ) � (';r�  ) = h� � '; i� = h� � ';P� i�; 8'; 2 H(curl; 
);(5)

where the boundary integral term h� � ';P� i� is understood as h(� � ') � P� ; 1i, the
duality pairing between � � ' � P� 2 Lip(�)0 and 1 2 Lip(�). Note that � � ' and P� 
belong only to [H�1=2(�)]3 for '; 2 H(curl; 
).

Test (3a) and (3b) against ' 2 H(curl; 
) and  2 [L2(
)]3 and apply (5) to obtain
the mixed, weak problem of �nding (E;H) 2 H�(curl; 
)� [L2(
)]3 such that

(�E;') � (H;r� ') + (1� i)hP�aE; P�'i� = (F;'); ' 2 H(curl; 
);(6a)

i!(�H; ) + (r�E; ) = (G; );  2 [L2(
)]3;(6b)

where H�(curl; 
) = f' 2 H(curl; 
) : P�a' = � � � for some � 2 H(curl; 
)g. The
boundary term in (6a) makes sense since hP�aE; P�'i� = h� � �; P�'i� = h� � � � P�'; 1i,
the last term being understood as a duality between Lip(�)0 and Lip(�):

begin of Dongwoo's remark Since we have the absorbing boundary condition as
in (4), we are considering H 2 H(curl; 
) and this implies that P�aE really belongs to
H�(curl; 
) in practice. In the existence paper, we have E 2 H�(curl; 
) implicitly since
we seek solutions E;H in H(curl; 
) satisfying the absorbing boundary condition, and we
do not use much about the weak formulation except that we take integration by parts only;
I should have stated it clearly in that paper.

Also alternatively, in the weak problem (6) we can say that the solution and the test
functions belong to the same space H�(curl; 
).

end of Dongwoo's remark

3 A Nonconforming Mixed Finite Element Procedure

For 0 < h < 1, let T h be a quasiregular partition of 
 into three-dimensional rectangles

j, j = 1; � � � ; J , with diameters bounded by h. Let bK be the cube [�1; 1]3 and let
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bQ = bQx � bQy � bQz, where (see [4])

bQx = Span

�
1; y; z;

�
y2 �

5

3
y4
�
�

�
z2 �

5

3
z4
��

;

bQy = Span

�
1; z; x;

�
z2 �

5

3
z4
�
�

�
x2 �

5

3
x4
��

;

bQz = Span

�
1; x; y;

�
x2 �

5

3
x4
�
�

�
y2 �

5

3
y4
��

:

Let �i, i = 1; : : : ; 6; be the centroid of the ith face of bK. The local degrees of freedom
for ' 2 bQ( bK) can be taken to be f(P�')(�i); i = 1; � � � ; 6g. De�ne a local interpolantb� : [H2( bK)]3 ! bQ( bK) by requiring that P� (b�' � ')(�i) = 0; i = 1; � � � ; 6. Then,
letbS = bSx � bSy � bSz, where

bSx = Span

�
1; y �

10

3
y3; z �

10

3
z3
�
;

bSy = Span

�
1; z �

10

3
z3; x�

10

3
x3
�
;

bSz = Span

�
1; x�

10

3
x3; y �

10

3
y3
�
;

and de�ne a local interpolant bP : [L2( bK)]3 ! bS( bK) by requiring thatZ
bK
( bP ` �  `)dx dy dz = 0;

Z
bK
curl( bP ` �  `)dx dy dz = 0; ` = x; y; z;

for  = ( x;  y;  z), where the two-dimensional curl is de�ned as usual:

curl  x =

�
@ x
@z

;�
@ x
@y

�
; curl  y =

�
@ y
@x

;�
@ y
@z

�
; curl  z =

�
@ z
@y

;�
@ z
@x

�
:

Note that r� bQ = bS.
If P� bQ or P� bS vanishes at the center of a face of bK, it is orthogonal to constants

on that face. This fundamental property of bQ and bS is important in obtaining e�ective
nonconforming methods [4].

De�ne Q(
j) and S(
j) by scaling and translating from bQ and bS.
Let�j = @
j \ � and �jk = @
j \ @
k = �kj, and set

e�h =
ne�h : e�hj�jk = e�jk 2 P0 � P0 for each face �jk of 
j; e�jk + e�kj = 0

o
:

Denote by hh�; �ii�jk the approximation to h�; �i�jk obtained by using the midpoint rule on
�jk; i.e., if �jk is the centroid of �jk, then

hhu; vii�jk = j�jkj(uv)(�jk); j�jkj = meas(�jk):

De�ne the nonconforming mixed �nite element space V h �W h as follows:

V h =

8<
:' 2 [L2(
)]3 : 'j
j

2 Q(
j) and
X
jk

hh�; P�'ii�jk = 0; 8� 2 e�h

9=
; ;

W h =
�
 2 [L2(
)]3 :  j
j

2 S(
j)
	
;
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and set

V h
j = V hj
j

and W h
j =W hj
j

:

Then, our nonconforming mixed �nite element procedure is to �nd (Eh;Hh) 2 V h�W h

such that

(�Eh; ') �
X
j

(Hh;r� ')j + (1� i)hhP�aE
h; P�'ii� = (F;'); ' 2 V h;(7a)

i!(�Hh;  ) +
X
j

(r�Eh;  )j = (G; );  2W h:(7b)

4 Convergence of the Nonconforming Mixed Finite Element Procedure

Since the regularity theorem stated earlier is not so strong as those for more standard elliptic
problems, it is not clear that optimal order convergence in comparison to approximability,
which is optimal in terms of broken norms, should result. What has been proved [3] is the
following. If (E;H) and (Eh;Hh); 0 < h < 1; are the solutions to (6) and (7), respectively,
then,

kE �Ehk0 + kH �Hhk0 + kr � (E �Eh)k0;h

� Ch1=2
�
kEk2 + h1=2kHk1

�
;

where

kuk2m;h =
X
j

kuk2m;
j
:
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