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RESUMEN

Se utiliza un m�etodo de simulaci�on Monte Carlo para estudiar el ujo de aguas sub-
terr�aneas en medios porosos fractales total o parcialmente saturados. El movimiento
del agua se describe mediante la ecuaci�on de Richards que se resuelve utilizando
un procedimiento mixto h��brido de elementos �nitos. Se considera que las hetero-
geneidades espaciales de los par�ametros hidr�aulicos obedecen a la estad��stica de un
movimiento fraccional Browniano (fBm) o de un ruido fraccional Gaussiano (fGn).
Se presenta un ejemplo num�erico para ilustrar la implementaci�on del algoritmo y el
c�alculo de los momentos estad��sticos de las principales variables.

ABSTRACT

A Monte Carlo simulation method is employed to study groundwater ow in variably
saturated fractal porous media. The water movement is assumed to be described by
Richards' equation which is solved using a hybridized mixed �nite element procedure.
Spatial heterogeneties in the hydraulic properties are assumed to obey fractional
Brownian motion (fBm) or fractional Gaussian noise (fGn) statistics. A numerical
example showing the implementation of the algorithm including the calculation of
the statistical moments of the main variables is presented.

INTRODUCTION

Field studies in soils sciences and hydrology during the last two decades have demonstrated
extensive variability in saturated and unsaturated hydraulic conductivities and water retention
properties. This conclusion has led to the development of stochastic models for the basic un-
derstanding and the prediction of water ow and contaminant transport processes in geological
environments.

To describe variably saturated ow and transport, the constitutive relationships of hydraulic
conductivity (K) versus pressure head (h) and water content (�) versus h must be speci�ed. At
�eld scale, these constitutive relationships exhibit a high degree of spatial variability [1] and they



are regarded as stochastic functions. As a consequence the ow equations have to be treated in
a stochastical framework.

The Gardner-Russo model [2,3] is commonly used to describe functional relationships in most
stochastic ow analyses. The main parameters of this model are the saturated conductivity Ks

and the soil pore size distribution �.

The spatial variability ofKs has been widely studied and it is commonly accepted thatKs follows
approximately lognormal distributions. Recently, the concept of fractal geometry has been used
to describe continuously evolving scales of heterogeneity. Neuman [4], Kemblowski and Chang
[5] and Molz and Boman [6] had reported evidences of fractal structure in Ks distributions in
di�erent soils. They found that Ks distributions can be described by related stochastic functions
known as fractional Gaussian noise (fGn) and fractional Brownian motion (fBm). The concepts
of fBm and fGn are generalizations of the classical concepts of Gaussian noise and Brownian
motion.

The experimental information on spatial distribution of � is very limited. Russo and Bouton [1]
found that � has also a lognormal distribution and negligible correlation with Ks.

In this paper we use the Monte Carlo simulation method in conjunction with a fBm and fGn �eld
generator to analyze the water ow in a stochastic farmework. In each realization the Richards'
equation is solved using a hybridized mixed �nite element procedure.

GENERATION OF fBm AND fGn

In this section we present a brief description of the spectral method used for the synthetic
generation of fBm and fGn. We consider a stochastic function which has the form logF (x) =<
logF > +f(x) where < logF > is a constant mean and f(x) is a perturbation �eld which obey
fBm or fGn statistics.

The spectral density of a fBm/fGn has the form of a power law:

Sff (k) =
So

jkj�
(1)

where S0 is a normalization constant, k is the spatial frequency (wave number), and � is a
parameter related to the Hurst coeÆcient H and the Euclidian dimension E given by

� =

�
2H +E for a fBm

2H +E � 2 for a fGn.
(2)

It should be noted that in the case of a fGn realization the spectral density given by (1) and (2)
is only an approximate expression because it is associated with an approximation to the auto-
covariance function; a closed-form expression of the accurate spectral density is not available.
On the other hand, the spectral density of a fBm process is associated with the corresponding
variogram [7].

The value of the Hurst exponent H indicates the type of correlation and degree of persistence
in fGn and fBn distributions. The range of H which is interesting and physically meaningful
is 0 < H < 1 [7]. For H > 0:5 there is a positive and in�nite correlation both for fGn and
the increments of fBm while for H < 0:5 this correlation is negative and in�nite. When H

approaches 0:5 the correlation becomes essentially zero and in this special case the classical
Gaussian noise and Brownian motion are obtained. The Hurst coeÆcient H is related to the
fractal dimension D by the equation H = 1 + E � D [9]. It is important to remark that the
values of H can be determinated from measured data and it is also possible to discrimine fBm
from fGn distributions [8].



The spectral density Sff (k) has a singular point at zero spatial frequency which corresponds
to the case of an in�nitely large porous media. However, the limit of the heterogeneity could
not be larger than the aquifer size. Therefore there is a lower frequency cuto� kmin which is
determinated by the lengh of the domain. We also consider an upper frequency cuto� kmax

proportional to the inverse of the �nite element mesh used for the numerical simulation of water
ow.

In order to obtain an expression of S0 in term of the variance �2f we integrate the spectral density

(1) over the frequency domain in the range (kmin;kmax). Then the spectral density of a fBm
and a fGn can be expressed as follows:

Sff (k) =

(
C(E)�2f (E � �)

h
2[kE��max � k

E��
min ]k�

i
�1

kmax < jkj < kmin

0 elsewhere
(4)

where C(E) = 1; ��1; (2�)�1, for E = 1; 2; 3, respectively.
To generate a fBm or a fGn realization we proceed here in the spirit of Voss [9]. The �rst step is
to generate a set of uniformly distributed random numbers associated with the center of each cell
of the �nite element mesh using a random number generator. Then the fast Fourier transform
(FFT) of this set of numbers is taken and the resulting numbers are multiplied by a transfer
function T (k) proportional to [Sff (k)]

1=2 in the wave number space. Finally, taking the inverse
FFT a set of numbers with the desired spectral density (4) is obtained.

The Constitutive Relations for the Flow Model

The Gardner Russo model was used to describe retention and hydraulic conductivity curves
[2,3]. This model reads as

K(x; h) = Ks(x)exp
�
�(x)h

�
(5)

�(x; h) =
�
�s(x)� �r(x)

��
exp

�
0:5�(x)h

��
1� 0:5�(x)h

��2=(m(x)+2)

+ �r(x)

where �r and �s are the residual and saturated water content, respectively, andm is a parameter
related to tortuosity.
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Figure 1: Realization of Ks �eld generated from fBm and fGn distibutions.

For simplicity we let m = 0 in this study. The variabilities of �r and �s are likely to be small so
that we consider them constants over the domain. Then, the local heterogeneities are modelled
assuming that both Ks and � are stochastic processes obeing either fBm or fGn statistics.



Table I gives the values chosen to generate the realizations and Figure 1 shows 2D realizations
of the conductivity �eld Ks generated as fBm and fGn processes.

Ks (cm/s) � (cm�1)
< F > 0.0058 0.028
�2f 0.1 0.010

H 0.8
�s 0.6
�r 0.1

Table I: Parameters of the Gardner Russo model.

NUMERICAL SOLUTION OF THE FLOW EQUATION

We will consider the numerical simulation of water ow in a rectangular domain 
. It will be
assumed that water ow obeys Richards' equation stated in the form

i)
@�(h)

@t
+r � q = 0 (6)

ii) q = �K(h)r(h + z)

where q is the water ow, z denotes the soil depth assumed to be positive upward, and t is time.
The corresponding boundary conditions were chosen to be of Dirichlet type on the left and right
boundaries and of Neumann type on the bottom and top boundaries. The initial condition was
selected as that of hydrostatic equilibrium.

Equation (6) was solved employing a hybridized mixed �nite element procedure in space com-
bined with a backward Euler in time scheme and a Picard iteration with adaptive time step as
explained in [10]. This procedure produces perfectly mass conservative numerical solutions and
accurately aproximations of both pressure head and water ow.

The Monte Carlo simulation method consists in solving Richards' equation for a large number
of realization of Ks and �. The simulation is terminated after the mean �eld of a particular
variable (�, for example) have converged to within a small tolerance. This tolerances is taken
to be 1% of the mean �eld.

NUMERICAL EXAMPLE

In order to show the implementation of the algorithm we will consider the e�ect of in�ltration
in a rectangular domain having a width of 1200 cm and a depth of 800 cm, with a horizontal
water table situated at 650 cm from the top bondary. The hydraulic properties of the porous
media are described by the parameters shown in Table I.

The selected boundary conditions are a constant in�ltration of 1.5 cm/day applied in a centered
interval of 400 cm at the top boundary, no-ow at the bottom boundary and speci�ed pressure
heads corresponding to the hydrostatic state at the two lateral sides.

Figure 2 shows the water content after 25 days of simulation for a realization of fBm and fGn
distributions. In both simulations the e�ect of the local heterogeneities is clearly observed.

To insure the convergence of the mean �elds of all the variables we runned 200 realizations. The
average values and variances for the water content, pressure head and z-component of water ow
are shown in �gures 3, 4 and 5, respectively.
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Figure 2: Water content realizations for fBm and fGn distributions.
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Figure 3: Mean water content and variance for a fBm distibution.
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Figure 4: Mean pressure head and variance for a fBm distibution.
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Figure 5: Mean z-component of water ow and variance for a fBm distibution.

CONCLUSIONS

We have presented a numerical method to include the e�ect of local heterogeneities in the hidro-
geological variables employing the theory of stochastic processes and relating �led measurements
with the spectral properties of such variables. The method employes a robust and mass conser-
vative �nite element procedure to compute accuratly the water ow in this type of heterogeneous
soils. This procedure can be combined with the solution of the transport equations to obtain
concentration statistics of contaminant substances in soils.
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