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Abstract

This work presents the numerical modeling of water 
ow in randomly heterogeneous
variably saturated soils employing a Monte Carlo simulation method. The water move-
ment is assumed to be described by Richards equation which is solved using a mixed
�nite element method for the spatial discretization combined with a backward Euler
and a modi�ed Picard iteration in time. The saturated conductivity Ks and the shape
parameters �vg and �gr in the van Genuchten and Gardner-Russo models are treated as
stochastic fractal functions known as fractional Brownian motion (fBm) or fractional
Gaussian noise (fGn). The mixed �nite element method employed allows for the simul-
taneous calculation of the water content and the Buckingham-Darcy 
ow velocity �eld
without performing numerical di�erentiation and is able to handle large variabilities
and discontinuities in the stochastic parameters in Richards equation. The statistical
moments of the pressure head, water content and water 
ow are obtained by averaging
over realizations of the fractal parameters in Monte Carlo fashion. Numerical examples
showing the performance of the mixed �nite element method to simulate and charac-
terize groundwater 
ow in highly heterogeneous soils and analyze the in
uence of the
heterogeneities in the water 
ow are presented. In particular the numerical procedure
is shown to be able to handle local heterogeneities in the shape parameters �vg and �gr
used to represent local variability in the capillary relations in the unsaturated zone.
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Introduction

This article concerns the numerical simulation of water 
ow in highly heterogeneous
soils. Groundwater 
ow in variably saturated soils is assumed to be described by
Richards equation (Richards, 1931), a highly nonlinear parabolic equation which is ob-
tained combining the water mass conservation equation with the Buckingham-Darcy's
law (Buckingham, 1907). To solve this equation, constitutive relationships of hydraulic
conductivity (K) and water content (�) versus pressure head (h) must be speci�ed.
Two of the models frequently employed in numerical simulation of water 
ow are
the Gardner-Russo and the van Genuchten models (Gardner, 1958, Russo, 1988, van
Genutchen, 1980); both of them involve the saturated hydraulic conductivity (Ks)
and shape parameters denoted by �vg for the van Genuchten model and �gr for the
Gardner-Russo model, respectively. At �eld scale these parameters show a high degree
of spatial variability and need to be characterized using a statistical approach. For a
statistical analysis of �eld data with measurements of the parameters �vg, �gr and Ks

we refer to Russo and Bouton (1992) and Russo and others (1997).
It has been also observed that heterogeneities in soil properties such as the saturated

conductivity Ks and the shape parameters �vg and �gr have logarithmic distributions
and exhibit long-range correlations comparable to the size of the domain being stud-
ied. A useful tool to characterize these type of subsurface heterogeneities is to employ
stochastic fractal functions, such as fractional Brownian motion (fBm) or fractional
Gaussian noise (fGn). Neuman (1994), Kemblowski and Chang (1993) and Molz and
Boman (1995) have reported evidence of fractal structure in saturated hydraulic con-
ductivity distributions. In those works Ks distributions are described using fGn or
fBm stochastic processes. The experimental information on the spatial variability of
the shape parameters is very limited. A statistical analysis performed by Russo and
Bouton (1992) and Russo and others (1997) concludes that �vg and �gr follow approx-
imately lognormal distributions and show small correlation with Ks. In this work we
will assume that Ks, �vg and �gr obey either fBm or fGn statistics and are incorrelated.

Given that the 
ow equations are of stochastic nature, assuming that the statistical
properties of the relevant soil properties have been determined from measurements, a
Monte Carlo simulation can be employed to compute the statistical moments of the
water 
ow. In this work we use this approach to characterize water 
ow in hetero-
geneous soils. More speci�cally, a set of realizations of the stochastic parameters Ks

and either �vg or �gr with given statistical properties is synthetically generated using a
spectral method. For each realization a deterministic problem associated with Richards
equation is solved using a mixed �nite element method for the spatial discretization
combined with a backward Euler and a Picard iteration for the time discretization. Af-
ter a large number of realizations the statistical moments of the pressure head, water
content and 
ow vector are calculated. The mixed �nite element procedure employed
is mass conservative and can handle extremely large variabilities and discontinuities
in the stochastic parameters. It also allows for the simultaneous calculation of the

ow vector and the pressure head with the same degree of accuracy without having
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to perform numerical di�erentiation, as it is the case when a standard Galerkin �nite
element method is employed.

The Stochastic Di�erential Model for Variably

Saturated Flow

Let 
 be a bounded porous domain with boundary @
. For x = (x; y; z) let � = �(x),
h = h(x) and q = q(x) denote the water content, the pressure head and the in�ltration
Buckingham-Darcy 
ow vector, respectively. It will be assumed that water 
ow in 

is governed by Richards equation stated in the form

@�(h)

@t
+r � q = 0; x 2 
; t 2 I = (0; T ); (1a)

q = �K(h)r(h + z); x 2 
; t 2 I; (1b)

with initial condition

h = h0; x 2 
; (2a)

and boundary conditions

q � � = q�; x 2 �N ; t 2 I; (3a)

h = h�; x 2 �D; t 2 I: (3b)

Equation (1b) is a statement of Darcy's law, with K denoting the (scalar) hydraulic
conductivity, assumed to be independent of h for saturated soils but varies strongly
with h in unsaturated soils; the z�axis is considered to be positive upwards. In (3a)
� denotes the unit outer normal to @
; �D and �N denote respectively the part of the
boundary where the pressure head values h� and the normal component of the 
ow q�

are being speci�ed, with @
 = �D [ �N , �D \ �N = ;.
To solve the di�erential problem (1){(3) additional state equations relating the de-

pendent variables � and h are needed. In this study we consider the following water re-
tention and hydraulic conductivity models; the van Genutchen model (van Genutchen,
1980):

�(h) =

8<:
�s � �r

[1 + (�vgjhj)n]m
+ �r; for h < 0

�s for h � 0
(4)

K(h) =

8<:Ks
f1� (�vgjhj)n�1[1 + (�vgjhj)n]�mg2

[1 + (�vgjhj)n]m=2
for h < 0

Ks for h � 0
(5)
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and the Gardner-Russo model (Gardner, 1958, Russo, 1988):

�(h) =

8<:
�
�s � �r

��
exp

�
0:5�grh

��
1� 0:5�grh

��2=(m0+2)

+ �r for h < 0

�s for h � 0
(6)

K(h) =

(
Ksexp

�
�grh

�
for h < 0

Ks for h � 0:
(7)

In the unsaturated zone, equation (4) (respectively (6) ) states a one-to-one relation
between the capillary forces and the water content (ignoring hysteresis e�ects), while
(5) (respectively (7) ) de�nes the e�ective or relative permeability of the soil (Bear,
1988). In the relations above �r and �s are the residual and saturated water contents,
respectively and Ks is the saturated hydraulic conductivity. Also, n, �vg and �gr are
shape parameters and m = 1� 1

n
; m0 is a parameter related to tortuosity.

According to Russo and Bouton (1992)Ks, �vg and �gr show a high degree of spatial
variability, while the other parameters in (4)-(7) are less variable. In this article the
spatial variability of Ks and �i; i = vg; gr will be modeled assuming that their spatial

uctuations are incorrelated and can be represented by stochastic processes obeying
fBm or fGn statistics. This will allow to include in the numerical model the long-range
correlations of subsurface properties observed in �eld data measurements using the
concept of self-aÆne fractal. The other parameters in (4)-(7) will be assumed to be
constant.

Generation of Fractals using the Spectral Method

Soil heterogeneities can be modeled as fractal fBm or fGn stochastic functions having
statistical self-aÆne structure at all scales and as a consequence having correlations
over long ranges.

Recall that a self-aÆne stochastic fractal f(x) in an Euclidean space of dimension
E satis�es the scaling relation (Voss, 1988)


(r) =< jf(x)� f(x+ r)j2 > / jrj2H; (8)

where < F > denotes the average of the random variable F , H is the Hurst exponent
and 
(r) is the variogram.

Following Russo and Bouton (1992) and Russo and others (1997) we assume that,
for F = Ks or F = �i; i = vg; gr,

logF (x) =< logF > +f(x) (9)

where the 
uctuation f(x) is a stochastic process. Further we assume that f(x) is either
a fBm or a fGn stochastic process. Self-aÆne stochastic fractals can be generated using
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spectral techniques. Next we give a brief explanation of this approach. Recall that
a fGn process is a stationary, zero mean process that can be constructed using the
increments of a fBm process. Thus for a fGn process the standard spectral theory
can be used to de�ne its spectral density as the Fourier transform of the associated
covariance function. On the other hand, even though a fBm process is not stationary, its
spectral density can be de�ned using the corresponding variogram (Moltz and others,
1997).

Thus, in the sense explained above, the spectral density of a fBm/fGn process f(x)
has the form of a power law:

Sf (k) =
So

jkj�
(10)

where S0 is a normalization constant, k is the spatial frequency (wave number), and
� is a parameter related to the Hurst exponent H and the Euclidean dimension E by
the formula

� =

(
2H + E for a fBm

2H + E � 2 for a fGn.
(11)

It should be noted that in the case of a fGn realization the spectral density given by
(10){(11) is only an approximate expression because it is associated with an approx-
imation to the covariance function of the stochastic process; a closed-form expression
for the spectral density of a fGn process is not available (Moltz and others, 1997).

The value of the Hurst exponent H indicates the type of correlation and degree of
persistence in fGn and fBn distributions. The range of H which is interesting and
physically meaningful is 0 < H < 1 (Moltz and others, 1997). For H > 0:5 there
is a positive and in�nite correlation both for fGn and the increments of fBm while
for H < 0:5 this correlation is negative and in�nite. When H approaches 0:5 the
correlation becomes essentially zero and in this special case the classical Gaussian
noise and Brownian motion are obtained. The Hurst exponent H is related to the
fractal dimension D by the equation H = 1 + E �D (Voss, 1988). It is important to
remark that the values of H can be determinated from measured data and it is also
possible to discriminate fBm from fGn distributions (Liu and Moltz, 1996).

The spectral density Sf(k) has a singular point at zero spatial frequency which
corresponds to the case of an in�nitely large porous media. However, the limit of the
heterogeneity could not be larger than the size of the domain 
. Therefore there is
a lower frequency cuto� kmin which is determinated by the diameter of 
. We also
consider an upper frequency cuto� kmax proportional to the inverse of the �nite element
mesh size used for the numerical simulation of water 
ow.

In order to obtain an expression of the normalization constant S0 in (10) in terms
of the variance �2f we integrate the spectral density (10) over the frequency domain in
the range (kmin; kmax). Then the spectral density of a fBm/fGn can be expressed as
follows:
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Sf(k) =

8>>><>>>:
C(E)�2f (E � �)

4�[kE��max � k
E��
min ]jkj

�
; kmax < jkj < kmin

0; elsewhere,

(12)

where C(E) = 1; ��1; (2�)�1, for E = 1; 2; 3, respectively.
To generate a fBm or a fGn realization we follow the ideas presented by Hassan and
others (1998) and Voss (1988). First a set of uniformly distributed random numbers
associated with the center of each cell of the �nite element mesh is obtained using
a random number generator. Then the fast Fourier transform (FFT) of this set of
numbers is taken and the resulting numbers are multiplied by a transfer function pro-
portional to [Sf(k)]

1=2 in the wave number space. Finally, taking the inverse FFT a
set of numbers with the desired spectral density (12) is obtained.

Figure 1 shows normalized 2D realizations of fBm and fGn stochastic processes f(x)
in a square domain of side length 10 m for several fractal dimensions D and �2f = :1,
with darker pixels corresponding to higher values of f . As expected, as the fractal
dimension D increases we have more heterogeneity in the values of f .

Figure 2 shows the covariance Cf (� ) of the fractal �elds f(x) in Figure 1 computed
using a discrete form of the formula

Cf(� ) = h(f(x+ � )� hfi) (f(x)� hfi)i (13)

and 500 realizations. Both for fBm and fGn distributions the correlation length dimin-
ishes as the fractal dimension D increases. In the case of a fGn, when D approaches
the value 2:5 the process tends to the classical Gaussian noise characterized by having
as covariance a Dirac distribution. This behavior of the covariance can be observed
numerically in Figure 2.b.

In the next section we describe how to solve numerically the 
ow equations with
stochastic coeÆcients Ks and �vg generated as explained above.

Approximate Solution of the Flow Equations using

a Mixed Finite Element Method

A Variational Formulation of the Flow Problem

The �rst step to approximate the solution of the 
ow equations is to discretize in time
(1) using a backward Euler method coupled with a Picard iteration scheme as follows:

�n+1;i+1 � �n

�tn
+r � q n+1;i+1 = 0; x 2 
; (14a)

q n+1;i+1 = �Kn+1;ir(hn+1;i+1 + z); x 2 
; (14b)
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where the superscripts n and i denote time and iteration level, respectively; �tn =
tn+1 � tn is the time step; �n+1;i+1 = �(hn+1;i+1) and Kn+1;i = K(hn+1;i).

Next, following Celia (1990) we expand �n+1;i+1 in Taylor series with respect to h:

�n+1;i+1 � �n+1;i + Cn+1;i(hn+1;i+1 � hn+1;i); (15)

where Cn+1;i =
�@�
@h

�n+1;i
.

Using (15) in (14) and rewriting the resulting equations in terms of the increment
Æhi+1 = hn+1;i+1 � hn+1;i we obtain:

�n+1;i � �n

�tn
+
Cn+1;i

�tn
Æhi+1 +r � q n+1;i+1 = 0; x 2 
; (16a)

qn+1;i+1

Kn+1;i
qn+1;i+1 +r

�
hn+1;i + Æhi+1 + z

�
= 0; x 2 
: (16b)

The next step will be to obtain a mixed weak formulation for (16). For this purpose
it is convenient to introduce some notation. Let

(v; w)D =

Z
D

v w d


denote the inner product in L2(D) for any subset D � 
. The subindex D will be
omitted in the case D = 
. Also, for any � � @
 let

hv; wi� =

Z
�

v w d�

denote the inner product on L2(�). Set

V = H(div;
) = fv 2 [L2(
)]E : r � v 2 L2(
)g;

V0 = fv 2 H(div;
) : v � � = 0 on �Ng;

W = L2(
):

To obtain a weak formulation of (16) we multiply (16a) by  2 W and integrate over

. Also, we multiply (16b) by v 2 V0 and integrate over 
, using integration by parts
in the second term in the left-hand side of (16b) and employing the boundary condition
(3b). Thus we can state a mixed weak formulation for problem (1) as follows: Assume
that (qn; hn) 2 V �W are known and satisfy (3). Then, given (qn+1;0; hn+1;0) 2 V �W
�nd (qn+1;i+1; Æhi+1) 2 V �W such that
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�
�n+1;i � �n

�tn
;  

�
+

�
Cn+1;i

�tn
Æhi+1;  

�
+ (r � qn+1;i+1;  ) = 0;  2 W; (18a)

�
qn+1;i+1

Kn+1;i
;v

�
� (Æhi+1;r � v)� (hn+1;i + z;r � v)

+hh� + z;v � �i�D = 0; v 2 V0; (18b)

qn+1;i+1 � � = q�; x 2 �N : (18c)

In the next section we will de�ne a �nite element procedure for the spatial dis-
cretization of (18) in a two-dimensional rectangular domain 
.

A Hybridized Mixed Finite Element Procedure

Let us consider the solution of the 
ow equations in the weak form given by (18) for

the case in which the domain 
 is a rectangle. Let T
eh be a non-overlapping partition

of 
 into rectangles 
j; j = 1; � � � ; nj of diameter bounded by eh :


 =

nj[
j=1


j ; 
j \ 
k = ; j 6= k:

Also, set �jk = @
j \ @
k, �j = @
j \ @
.
For l � 0 let V l and W l be the Raviart{Thomas-Nedelec ( see Douglas and Roberts

(1985) and Raviart and Thomas (1977)) mixed �nite element space of index l associated

with T
eh, i.e.,

V l = fv 2 H(div;
) : vj
j 2 Pl+1;l � Pl;l+1g;

V l
0 = fv 2 V l and v � � = 0 on �Ng;

W l = f 2 L2(
) :  j
j 2 Plg;

(19a)

where Pm denote the polynomials of total degree not greater than m and Pm;n denotes
the polynomials of degree not greater than m in the x-variable and not greater than
n in the z-variable. In order that elements v 2 V l be in H(div;
) their normal
components must be continuous across the inter-element boundaries �jk. The mixed
�nite element procedure for the approximate solution of the 
ow problem is de�ned as
the discrete analogue of (18) by replacing V , V0 and W by V l, V l

0 and W
l,respectively;

the associated algebraic problem consists of the solution of a linear system of equations
for the coeÆcients of the expansion of the 
ow vector and pressure head in a basis
of V l

0 �W l. Following Arnold and Brezzi (1985), we will simplify the algebraic form
associated with the mixed method by eliminating the constrain imposing the continuity
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of the normal components of the 
ow vector across the interior boundaries and enforcing
the required continuity instead using a Lagrange multiplier. Thus we introduce a space
of Lagrange multipliers �l which elements � are associated with the potential h+ z at
the inter-element boundaries �jk. Let

�l = f� : �j�jk = �jk 2 Pl(�jk)g;

V l
�1 = fv 2 L2(
) : vj
j 2 Pl+1;l � Pl;l+1g;

V l
0;�1 = fv 2 V l

�1 and v � � = 0 on �Ng:

(20a)

Next, to obtain a hybridized form of the mixed method we multiply (16a) by  2 W l

and integrate over 
. Also, we multiply (16b) by v 2 V l
0;�1 and integrate over 
, using

integration by parts at the element level in the second term in the left-hand side of
(16b) and the fact that the Lagrange multipliers are associated with the potential h+z
on �jk. Note that we can not use integration by parts globally in 
 because functions
in V l

0;�1 do not have divergence de�ned globally in L2(
).
Thus the hybridized mixed �nite element procedure is de�ned in the following

fashion : Let (Qn; Hn; �n) 2 V l
�1 �W l � �l be given and such that (Qn; Hn) satis�es

(3). Then, given (Qn+1;0; Hn+1;0; �n+1;0) 2 V l
�1 � W l � �l, �nd (Qn+1;i+1; Hn+1;i+1;

�n+1;i+1) 2 V l
�1 �W l � �l such that

�
�n+1;i ��n

�tn
;  

�
+

�
Cn+1;i

�tn
ÆHh;i+1;  

�
(21a)

+
P

j(r �Q n+1;i+1;  )
j = 0;  2 W l;

�
Qn+1;i+1

Kn+1;i
;v

�
�
P

j(ÆH
i+1;r � v)
j �

P
j(H

n+1;i + z;r � v)
j (21b)

+hh� + z;v � �i�D +
P

jkh�
n+1;i+1
jk ;v � �i�jk = 0; v 2 V l

0;�1;

Qn+1;i+1 � � = Q�; x 2 �N ; (21c)

P
jkh�;Q

n+1;i+1 � �i�jk = 0; � 2 �l: (21d)

Note that equation (21d) is equivalent to the condition that Qn+1;i+1 2 H(div;
).
In (21c) Q� is an approximation to q� de�ned locally on �N as follows:

Q�j�j = Q�

j for �j � �N ;

where Q�

j is determined by the relation

hQ�

j � q�; 'i�j = 0; ' 2 Pl(
j):
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Set hn+1 � hn+1;1, with hn+1;1 denoting the value of the pressure head after
convergence of the Picard iteration (18) has been achieved for a prescribed tolerance,
and de�ne qn+1; Hn+1;Qn+1 in a similar fashion. Then using the fact that a backward
Euler scheme is �rst order correct in time, the results given in Douglas and Roberts
(1985) imply that 

Hn+1 � hn+1




L2(
)

/ ehl+1 +maxn�t
n;



Qn+1 � qn+1



L2(
)

/ ehl+1 +maxn�t
n:

The method (21) was implemented for the lowest-order index case l = 0. The
corresponding degrees of freedom are the values of the pressure head Hn+1 at the
center of the rectangles 
j and the values of the normal component of the water 
ow
vector Qn+1 and the Lagrange multipliers �n+1 at the mid points of the sides of 
j.
Also, after employing a trapezoidal quadrature rule to compute the �rst term in the
left-hand side of (21b), we obtain a linear system for the values of the pressure head
Hn at the mid points of the rectangles 
j, so that in the case l = 0 the procedure (21)
may be regarded as a cell-centered �nite di�erence scheme. We also implemented a
dynamic time step control which signi�cantly improved the CPU eÆciency. The time
step is increased or decreased depending of the number of iterations required for the
Picard iteration to converge. The automatic time adjustment is stopped when the
time step becomes either smaller or greater than preselected minimum and maximum
step sizes. The numerical procedure just described was validated in Guarracino (2001)
by comparison with analytical solutions presented by Ross and Parlange (1994) and
Strivastava and Yeh (1991). In the next section we show numerical examples with the
implementation of this procedure to simulate 
ow in highly heterogeneous soils with
soil parameters obeying either fBm or fGn statistics.

Monte Carlo Simulations of Water Flow

The Monte Carlo simulation method consists in solving Richards equation for a large
number of realizations of the stochastic processes Ks and �i, i = vg or i = gr. We
computed the variance of the pressure head, water content and the water 
ow at the
cell centers of the �nite element mesh and observed that the variance values stabilized
after a certain number of realizations. Thus we adopted the criteria of stopping the
Monte Carlo simulation when a global measure of the variance of the pressure head,
water content and the water 
ow over the domain 
 have converged to asymptotic
values within a small tolerance. More speci�cally, for s = h; �; qx; qz we de�ned the
spatial average of the variance of s as follows:

k�2;ms k =

"
1

nj

njX
j=1

�
�2;msj

�2#1=2
(22)
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where �2;msj
denotes the variance of s computed at the center of the subdomain 
j after

m-realizations. Thus, setting ��2;ms = k�2;ms � �2;m�1s k, we consider that the Monte
Carlo simulation converges when for a given � suÆciently small we have that

��2;ms

��2;4s

� �: (23)

Once the convergence has been achieved we proceed to compute the statistical mo-
ments of the variables of interest. For the stochastic variable s we computed the mean
value hsjiN and variance �2;Nsj

associated with the center of the subdomain 
j and

the covariance CN
sjsk

associated with the centers of the subdomains 
j and 
k after N
Monte Carlo realizations using the relations

hsji
N = hsji =

1

N

NX
m=1

smj ; (24a)

�2;Nsj
=

1

N � 1

NX
m=1

�
smj � hsji

�2
=

N

N � 1

�
h(sj)

2i � (hsji)
2�
; (24b)

CN
sjsk

=
1

N

NX
m=1

(sj � hsji) (sk � hski) = hsjski � hsjihski: (24c)

To illustrate the use of the Monte Carlo method we will consider the water 
ow
in a rectangular domain 
 of 12 m in the horizontal direction by 8 m in the vertical
direction. The water table is considered to be horizontal and located at a depth of
6 m. We consider a hydrostatic initial condition (q = 0). At the upper boundary
of 
 (surface, z = 8 m) we specify a constant in�ltration rate of 12 mm/d over an
interval of size 6 m at the center of this boundary. At the bottom (z = 0) and lateral
boundaries of 
 we speci�ed the values of the pressure head corresponding to the
hydrostatic state. For the constitutive relations we chose the van Genuchten model
with parameter values corresponding to a sandy loam obtained by Carsel and Parrish
(1988) and given in Table 1, where we also give the values for the variance of Ks and
�vg used for the generation of the corresponding fractal �elds.

For the spatial discretization we employed a uniform mesh of 48� 32 subdomains.
The automatic time step adjustment described above was implemented with maximum
and minimum values of 1 hour and 6 seconds, respectively. The total simulation time
for each realization was 15 days in order to develop an in�ltration front in the upper
part of the domain. The experiments were run in the computer IBM SP2 at Purdue
University used as a single processor machine, with an average simulation time for each
realization of 5 minutes. We run a total of 1000 Monte Carlo simulations and then
computed all statistical moments at T = 15 days as explained before.

Figures 3 and 4 display realizations of the fractal conductivity �eld Ks correspond-
ing to the values in Table 1 for fBm and fGn distributions, respectively, and fractal
dimension D=2.2. The conductivity values show a high degree of heterogeneity, with
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an order of magnitude variation between minimum and maximun values. Also, as
expected, we observe more persistence in the fBm than in the fGn realization of Ks.

In Figures 5 and 6 we show the water content � at T = 15 days for a single realization
of Ks and �vg for fBm and fGn distributions and fractal dimension D = 2:2. In both
cases it is clearly observed the e�ects of the local heterogeneities on the water content
distribution in the soil.

Figures 7 and 8 display the corresponding 
ow �elds for the same single realization,
where we can observe the water motion where the in�ltration is taking place (upper
part of the domain), while in the rest of the domain the 
ow is negligible.

In Figures 9 and 10 we show the average and variance �2� of the water content � at
T = 15 days for the case of an fBm distribution and fractal dimension D = 2:2. Notice
that �2� vanishes in the saturated zone since in this region �(h) = �s. The variance
�2� attains its maximum values close to the water table, in the region known as the
capillary fringe. The variance also shows an increase along the in�ltration front.

Figures 11 and 12 display the average value and the variance of the vertical compo-
nent qz of the 
ow vector. It can be observed that the maximum values of the variance
�2qz are located in the region where the in�ltration is taking place.

Next we present an experiment that illustrates the stabilization of the variance
mentioned above. To show this behavior we selected somehow arbitrarily four points as
follows: P1 = (5:875; 6:625) in the in�ltration region, P2 = (5:875; 6:125) approximately
on the in�ltration front, P3 = (5:875; 5:625) about 0.5 m below the in�ltration front
and P4 = (5:875; 2:125) above the water table. Figure 13 shows the variance �2� of the
water content assuming fBm distributions and D = 2:2 at time T = 15 days; it can
be observed that the variance values stabilizes at the four points after 500 realizations.
The same stabilization e�ect was observed for the other variables (h, qx, qz) using
either the van Genuchten or the Gardner-Russo model, for fGn distributions and other
fractal dimensions.

Next we analyze the behavior of the variance of the water content �2� for the case in
which, for each realization of the stochastic permeability �eld Ks, the parameter �vg is
a random constant over the domain 
 with average value 0:075 cm�1 and variance of
ln(�vg) equal to 0:10. This simpli�cation (that contradicts experimental evidence) is
done by Tartakovsky and others ( 1999) to study stochastic unsaturated 
ow using a
Kirchho� transformation. Figure 14 shows values of �2� at the point P1 as function of the
number of Monte Carlo realizations for the case in which �vg is either a constant over the
domain 
 for each realization or a fBm process withD = 2:2. As expected, �2� stabilizes
much earlier in the former case. In particular, this Figure shows that the numerical
procedure is robust and capable to handle local heterogeneities in the parameter �vg,
used to represent local variability of the capillary relations in the unsaturated zone (c.f.
(4)-(6)).

Figure 15 shows a log-log plot of the increments ��2;ms as function of the number
of realizations m for s = �; h; qx; qz. The Figure shows that to obtain one order of
magnitude in the error reduction in the calculation of the moments we need to increase
in one order of magnitude the number of Monte Carlo realizations.
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Finally, the covariance of the vertical component of the 
ow qz in the horizontal
and vertical directions is displayed in Figures 16 and 17, respectively, at the points
P1; P2 and P3. It can be observed that the covariances depend on the point and the
direction at which are being calculated, showing numerically that the 
ow �eld is not
stationary. Also note that in Figure 17 the covariance tends to zero near z = 8 m, i.e.,
close to the surface. This is due to the fact that the boundary condition imposed at
such boundary is deterministic and of Neumann type; below the in�ltration front the
covariance also vanishes because the initial condition corresponds to the hydrostatic
case (q = 0).

Conclusions

In the present paper a robust, mass conservative mixed �nite element method was used
in Monte Carlo fashion to simulate unsteady variably saturated groundwater 
ow in
highly heterogeneous soils. The saturated conductivity Ks and the shape parameters
�vg and �gr in the van Genuchten and Gardner-Russo models were assumed to be
stochastic fractal functions obeying either fBm or fGn statistics. The numerical pro-
cedure is able to compute simultaneously the water 
ow and the pressure head with
equal accuracy without having to perform numerical di�erentiation or local smoothing
of the stochastic coeÆcients in Richards equations. A parametric analysis of the model
was performed, analyzing the sensitivity of the dependent variables with respect to
representative statistical parameters such as the fractal dimension and the distribu-
tion type (fBm/fGn) of the soil being modeled. The statistical moments of the water
content, pressure head and water 
ow were computed by averaging over realizations of
the fractal parameters characterizing the soil heterogeneity. A new practical criteria
to stop the Monte Carlo simulation based on the stabilization of the variances of the
computed variables is also presented.
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Figure Captions

Figure 1: Realizations of fBm distributions for a) D = 2.05, b) D = 2.25, c) D =
2.45 and fGn distributions for e) D = 2.05, f) D = 2.25, g) D = 2.45.

Figure 2: Covariance functions of fBm and fGn distributions for D = 2.05, 2.25 and
2.45.

Figure 3: Realization of a permeability �eld Ks generated using fBm distributions.

Figure 4: Realization of a permeability �eld Ks generated using fGn distributions.

Figure 5: Realization of a water content �eld generated using fBm distributions.

Figure 6: Realization of a water content �eld generated using fGn distributions.

Figure 7: Realization of a water 
ow �eld generated using fBm distributions.

Figure 8: Realization of a water 
ow �eld generated using fGn distributions.

Figure 9: Mean water content �eld for fBm distributions and 1000 Monte Carlo
realizations.

Figure 10: Variance of water content �eld for fBm distributions and 1000 Monte Carlo
realizations.

Figure 11: Mean qz �eld for fBm distributions and 1000 Monte Carlo realizations.

Figure 12: Variance of qz for fBm distributions and 1000 Monte Carlo realizations.

Figure 13: Stabilization of the water content variance at P1, P2, P3 and P4.

Figure 14: In
uence of the parameter �vg on the stabilization of the water content
variance at P1.

Figure 15: Convergence of the Monte Carlo simulation method.

Figure 16: Covariance of qz in the x�direction computed at the points P1; P2 and P3.

Figure 17: Covariance of qz in the z�direction computed at the points P1; P2 and P3.
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Ks (cm/s) �vg (cm
�1)

< F > 1.22 10�3 0.075
�2f 0.2 0.10

n 1.89
�s 0.41
�r 0.065

Table 1: Parameters of the van Genuchten model.
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