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ABSTRACT

Computational physics has become an essential research and interpretation tool

in many fields. Particularly, in reservoir geophysics, ultrasonic and seismic modeling

in porous media is used to study the properties of rocks and characterize the seis-

mic response of geological formations. Here, we give a brief overview of the most

common numerical methods used to solve the partial differential equations describing

wave propagation in fluid-saturated rocks, namely finite-difference, pseudospectral

and finite-element methods, including the spectral-element technique. The modeling
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is based on Biot-type theories of dynamic poroelasticity, which constitute a general

framework to describe the physics of wave propagation. We provide a review of the

various techniques and discuss numerical implementation aspects for application to

seismic modeling and rock physics, as for instance the role of the Biot diffusion wave

as a loss mechanism and interface waves in porous media.

INTRODUCTION

The theories of poroelasticity are essential in many geophysical applications, where

pore-filling materials are of interest, e.g., oil exploration, gas-hydrate detection, seis-

mic monitoring of CO2 storage, hydrogeology, etc. The most popular theory was

developed by Maurice Biot in the fifties (e.g., Biot, 1962; Bourbié et al., 1988; Allard,

1993; Carcione, 2007, Chapter 7), who obtained the dynamical equations for wave

propagation in a fully saturated medium. The theory assumes that the anelastic ef-

fects arise from viscous interaction between the fluid and the solid and predicts two

compressional (P) waves and one shear (S) wave. Basically, the fast P-wave has solid

and fluid motions in phase, and the slow (Biot) P-wave has out of phase motions. At

low frequencies, the slow wave becomes diffusive, since the fluid viscosity effects dom-

inate over the inertial effects. At high frequencies, the inertial effects are predominant

and the slow wave is activated, although under realistic conditions (low permeability,

high clay content, etc) this mode is also diffusive at high frequencies.

A major cause of attenuation in porous media is wave-induced fluid flow, which

occurs at different spatial scales, macroscopic, mesoscopic and microscopic (e.g., Pride

et al., 2004). The attenuation mechanism predicted by Biot’s theory takes place at

macroscopic scales. It is the wavelength-scale pressure equilibration mechanism oc-

curring between the peaks and troughs of the P-wave. The frequency of the relaxation

peak is fB ≈ ηφρ/[2πκ(ρT−φρf )] (see Table 1 for the meaning of the symbols), where

ρ = φρf + (1 − φ)ρs is the bulk density. The relaxation peak is generally located at
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the high frequencies of the order of tens of kHz.

At seismic frequencies, the mesoscopic loss mechanism seems to be the most im-

portant. For instance, for mesoscopic patches of gas in a water saturated sandstone,

diffusion of pore fluid in and out between different patches dissipates energy through

conversion of energy to the diffusive slow mode. The patches are assumed to be much

larger than the grain sizes but much smaller than the wavelength of the pulse. White

(1975) was the first to introduce this loss mechanism in the framework of Biot’s the-

ory. The corresponding peak frequency is fM ≈ κKf/(φηd
2), where d is the size of

the patches.

The microscopic mechanism is the so-called “squirt flow” (e.g., Pride et al., 2004),

by which there is flow from fluid-filled micro-cracks (grain contacts) to the pore space

and vice versa. This mechanism, which is not described by Biot theory, has a peak

frequency fSF ≈ (h/R)2Kf/η, where h/R is the crack thickness to crack length ratio,

and it is believed to be important at high frequencies. According to the values of

Table 1, fB = 106 kHz, fM = 42 Hz and fSF = 2.5 MHz, where we have assumed d

= 20 cm and an spect ratio h/R = 0.001.

Seismic modeling is a technique for simulating wave propagation in the earth. The

objective is to predict the seismogram that a set of sensors would record, given an

assumed structure and composition of the subsurface. This technique is a valuable

tool for seismic interpretation and an essential part of seismic inversion algorithms.

There are many approaches to seismic modeling. We classify them into three main

categories: direct, integral-equation and ray-tracing methods. In this work, we focus

on the first class of methods, which are the most used to solve the equations of

dynamic poroelasticity. These include finite-difference (FD), pseudospectral (PS),

low-order finite-element (FE) and spectral finite-element (SE) methods. To solve

the wave equation by direct methods, the geological model is approximated by a

numerical mesh, that is, the model is discretized in a finite numbers of points. Direct

methods are also called grid methods and full-wave equation methods, the latter since
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the solution gives the full wavefield. Direct methods do not have restrictions on the

material variability and can be very accurate when a sufficiently fine grid is used.

Furthermore, these techniques are well suited for the generation of snapshots which

can be an important aid in the interpretation of the results.

An important area of numerical modeling in poroelastic media, worth to mention

but not discussed here, is referred to as “reflectivity methods”. These methods have

been implemented for flat layers (Stern et al., 1985; Turgut and Yamamoto, 1988) and

for cylindrical structures (Rosenbaum, 1974). They are based on propagator-matrix

computations in the frequency-wavenumber domain.

It is important to point out when poroelastic effects are and are not relevant.

Generally, reflections at single interfaces and propagation in homogeneous media can

be simulated with equivalent elastic or viscoelastic formulations (Gurevich, 1996;

Carcione, 1998). In the case of interfaces waves and in the presence of heterogeneities

at spatial scales less than the wavelength of the signal, poroelastic effects become

important (e.g., mesoscopic losses). Morever, The algorithms can also be useful as

research tools and in practical applications (such as patchy saturated rocks), where

the use of analytical methods are precluded.

The numerical methods discussed here consider all frequency ranges, to be applied

at seismic, sonic and laboratory frequencies. Indeed, knowledge of the input param-

eters to compute synthetic seismograms requires high-frequency calibration data and

a proper understanding and simulation of the physics.

A detailed review of the different direct methods can be found for instance in

Carcione et al. (2002), where the authors discuss the time integration, calculation

of spatial derivatives, source implementation, physical boundary conditions, and ab-

sorbing boundaries. Here, we present the numerical aspects strictly related to the

poroelastic nature of the differential equations, specifically the methods and compu-

tational experiments.
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BIOT’S EQUATIONS

In this section, a brief outline of the equations and physics involved is given. For

simplicity and clarity, we consider the partial differential formulation given by Biot

(1962), without the shear wave. Although this wave is important, since there are

additional slow shear modes when the pore-filling material is solid (e.g., Carcione

and Seriani, 2001), the poroacoustic equations are representative of the physics of

porous media. By taking the solid rigidity equal to zero, we only model dilatational

deformations, i.e., the P waves.

Furthermore, for simplicity, we consider the 1-D velocity-pressure formulation of

Biot’s theory, including the JKD dynamic permeability model (Johnson et al., 1987)

to describe memory drag forces accounting for the interaction between the pore fluid

and the pore walls at all frequencies. The differential equations are

ρv̇ + ρf q̇ = −∂xp,

ρf v̇ +mq̇ = −∂xpf − η

κ

(

D

a
+ 1

)1/2

q,

−ṗ = KG∂xv + αM∂xq + s,

−ṗf = M(∂xq + α∂xv) + sf

(1)

(Lu and Hanyga, 2004; Masson and Pride, 2006; Carcione, 2007), where the v’s

and the q’s are the solid and fluid (relative to the solid) particle velocities, and p

and pf are the bulk and fluid pressures, respectively; q = φ(vf − v) = φ(u̇f − u̇),

where φ is the effective porosity and the u’s are the respective displacements. A

dot above a variable denotes time differentiation and ∂x is the spatial derivative.

Moreover, KG = Km + α2M is the Gassmann bulk modulus, with α = 1 −Km/Ks,

M = Ks/(1− φ−Km/Ks + φKs/Kf), where Ks, Km and Kf are the bulk moduli of

the solid, matrix and fluid, respectively; η is the dynamic fluid viscosity and κ is the

global static permeability; ρ = (1−φ)ρs+φρf is the composite density, with ρs and ρf

the solid and fluid densities, and m = Tρf/φ with T the tortuosity, a dimensionless
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parameter that depends on the pore geometry. (The sandstone given in Table 1 has

KG = 14 GPa and ρ = 2167 kg/m3.)

The second equation 1 is a generalization of Darcy’s law. The differential operator

(D/a+1)1/2 is a shifted fractional derivative operator, whereD = ∂t is the time deriva-

tive (iω in the frequency domain, where i =
√
−1 and ω is the angular frequency). It

is (D+a)1/2q = exp(−at)D1/2[exp(at)q], where D1/2 represents the Caputo fractional

derivative (Caputo, 1969). The parameter a = ωT/K, where ωT = ηφ/(ρfTκ), is a

transition frequency and K = 4Tk/(Λ2φ) is a geometrical factor, with Λ the pore

volume to grain surface ratio (e.g., Carcione, 2007; eq. (7.242)). If η = 0, the slow

mode is a wave at all frequencies, otherwise the theory predicts a diffusive – static –

mode at seismic frequencies.

The associated time-domain dynamic permeability to equations 1 is

κ̄ = κ

[

(

D

a
+ 1

)1/2

+
D

ωT

]−1

, (2)

The choice D = 0 inside the square root [κ̄ = κ(1+D/ωT )−1] gives Biot’s poroacoustic

equations (Carcione and Quiroga-Goode, 1995), while the approximation ω ≪ ωT

yields κ̄ = κ{1 + [1/(2a) + 1/ωT ]D}−1, i.e., the low-frequency equations obtained

by Masson and Pride (2006). Lu and Hanyga (2004) refer to this model as the

JKD model, which is quite general and matches experimental data very well. At

low frequencies the flow in the pores is laminar. At high frequencies, inertial effects

dominate the shear viscous forces, resulting in relative flow except at the grain walls,

where the relative motion at the viscous boundary layer is zero. The thickness of this

layer decreases as ω−1/2.

Generally, the application of the source considers three cases: i) A bulk source:

this case assumes that the energy is partitioned between the two phases. In this

case, the relation between the solid and fluid source strengths is equal to 1/φ− 1. In

the above particle-velocity/pressure formulation this means s = sf . ii) Source in the

solid: in this case, sf = 0. iii) Source in the fluid: in this case, s = φsf .
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FINITE-DIFFERENCE AND PSEUDOSPECTRAL METHODS

We present the developments of numerical poroelasticity in a nearly chronological

order. The details about the numerical methods – FD and PS spatial differentiation

and time integration – for solving the wave equation were summarized in Carcione et

al. (2002) and will not be discussed here (see more details in Carcione, 2007; Chapter

9). For a comprehensive review of all the theories and physical phenomena regarding

poroelastic wave propagation, readers may refer to Müller et al. (2010).

Early works

The first papers about the simulation of Biot waves with direct grid methods date

to the seventies. To our knowledge Garg et al. (1974) were the first to use them.

They computed 1-D Green’s functions (artificially damped) with a FD method. In the

eighties, Mikhailenko (1985) solved Biot’s equations with no loss (η = 0) in cylindrical

coordinates, with a finite Hankel transform along the radial coordinate (i.e., with

constant material properties along this direction) and a FD scheme along the vertical

direction, second-order accurate in space and time, i.e., o(2,2). Hassanzadeh (1991)

first solved Biot’s low frequency poroacoustic equations, written in the dilatation

formulation (e = ∂xu and ǫ = ∂xuf), by using an o(2,2) FD scheme. He uses the

stability condition dt < dx/(
√

2vP ), where dt is the time step, dx is the grid spacing

and vP is the high-frequency limit fast P-wave velocity. Boundary conditions at

interfaces are open and explicitly satisfied (the so-called homogeneous formulation).

The code is not tested against an analytical solution. The applications involve cross-

well experiments, and the author shows that the conversion from fast P waves to slow

P modes (diffusive) is significant.

Zhu and McMechan (1991) solved the corresponding 2-D P-S equations using the

displacement formulation (locally homogeneous) and a similar o(2,2) FD scheme to
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that of Hassanzadeh (1991). On the other hand, Dai et al. (1995) use a McCormack

predictor-corrector scheme o(2,4), based on a dimensional (spatial) splitting tech-

nique. The stability criterion is based on the fast P-wave, and they test the method

against an analytical solution with a propagating slow wave. In this work, the free

surface is modeled for the first time with finite differences. The method of character-

istics (e.g., Carcione et al., 2002) is used to stabilize the solution and set the stress

components and fluid pressure equal to zero. None of these works simulate and test

the slow static mode.

Özdenvar and McMechan (1997) developed a PS staggered-grid algorithm for the

poroelastic differential equations expressed in the displacement formulation. The

time derivatives are computed with a 2nd-order Euler forward approximation. The

standard stability criterion for P waves is used and the numerical results are not

tested with analytical solutions.

Stiffness of Biot’s equations and the slow mode

Carcione and Quiroga-Goode (1995) showed that the stiffness of the differential

equations requires a special treatment and were the first to model the Biot slow (static

or diffusive) mode at low frequencies and compare the simulation to an analytical

solution. The low-frequency theory is given by equations 1, but the second equation

becomes

ρf v̇ +mq̇ = −∂xpf − η

κ
q, (3)

They recast the dynamical equations in the particle velocity-pressure formulation

having the matrix form v̇ = Hv, where v is the field vector and H is the propaga-

tion matrix (the dot denotes time differentiation). Let us assume constant material

properties and a plane wave kernel of the form exp(ik ·x− iωcdt), where k is the real

wavenumber vector, x is the position vector and ωc is a complex angular frequency.
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Substitution of the plane wave kernel into the wave equation yields an eigenvalue

equation for the eigenvalues in the iωc complex plane. All the eigenvalues of H have

negative real part. While the eigenvalues of the fast wave have a small real part,

the eigenvalues of the slow wave (in the diffusive regime) have a large real part. The

presence of this diffusive mode makes Biot’s differential equations stiff. Although the

best algorithm would be an implicit method, which is unconditionally stable in the

left complex plane, the problem resides in the accuracy to resolve the static mode.

The largest negative eigenvalue corresponds to the slow mode

λ = −η
κ

(

ρ

ρm− ρ2

f

)

, (4)

that should lie in the left-half iω-plane, i. e., to be physically stable the medium must

satisfy ρm − ρ2

f > 0, otherwise, exponentially growing modes would exist. Carcione

and Quiroga-Goode (1995) propose two time integration methods to solve equations

1. The first is based on second-order staggered finite differences, which is A-stable,

i.e., the domain of convergence is the open left-half iω-plane, and the second is based

on a partition or (temporal) splitting of the dynamical equations, similar to the

so-called Strang scheme. Both techniques use the PS method to compute the spa-

tial derivatives. In the second technique, Biot’s equations are partitioned into a

stiff part and a non-stiff part, such that the evolution operator can be expressed as

exp(Hr + Hs)t, where r indicates the regular matrix, and s the stiff matrix. (The

latter contains terms proportional to η/κ.) The product formulas exp(Hrt) exp(Hst)

and exp(1

2
Hst) exp(Hrt) exp(1

2
Hst) are first- and second-order accurate, respectively.

The stiff part is solved analytically and the non-stiff part with a 4th-order Runge-

Kutta scheme. A snapshot in poroacoustic media is shown in Figure 1a. which shows

the pressure field p due to a fluid source. Above the interface η = 1 cp and below

the interface η = 0. The fast P-wave (P1) and the slow P-wave (P2) can be seen, the

latter below the interface. Above the interface the slow mode is diffusive.
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Anisotropy

The 2-D particle velocity-stress anisotropic equations for P and S waves were first

solved by Carcione (1996), showing that the slow P-wave may have cusps, as the

S-wave, and anomalous polarizations. He uses the splitting technique and proposes

to approximate the time-domain dynamic permeability or JKD model with a dis-

crete set of Zener mechanical models. It requires additional (memory) variables as

in the viscoelastic case. Although the exponential-type kernel associated with the

generalized Zener model does not satisfy the high-frequency dependence ω−1/2, the

approximation is appropriate for band-limited sources. Figure 1b shows a snapshot,

where all the modes are propagating waves. The particle velocity vy in an anisotropic

poroelastic homogenous medium, where the fluid has zero viscosity, is displayed; qP1,

qS and qP2 denote the fast quasi-P wave, the quasi S-wave and the slow quasi P-

wave. The qP2 wave shows cuspidal triangles as the shear wave, indicating that the

polarization vector has strong deviations from the normal direction to the wavefront.

Poro-viscoelasticity

Carcione (1998) first introduced poro-viscoelasticity in numerical modeling by

generalized the fluid-solid stiffness M to a relaxation function of the Zener type, in an

attempt to model the squirt-flow mechanism. In addition, he obtained the effective

viscoelastic differential equations by matching the Biot and squirt-flow relaxation

peaks with Zener elements associated with the P and S plane-wave moduli. The

solver is based on memory variables. The fit with the Zener kernels is almost perfect

for realistic values of the dissipation factor. In this work, the mesoscopic loss effect is

simulated for the first time considering periodic fine layers of gas and water saturating

the same porous medium (matrix or skeleton) (Figure 7 of that paper). The modeling

has been improved by Carcione and Helle (1999) by introducing the staggered Fourier
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method to compute the spatial derivatives, eliminating undesired numerical artifacts

present in the regular Fourier method.

Arntsen and Carcione (2001) use this approach to fit the first simulation of the

slow wave in a natural sandstone at ultrasonic frequencies. Making viscoelastic (i.e.,

time dependent) the dry-rock shear moduli, together with the coupling modulus M

and the viscosity/permeability factor η/κ, is enough to predict the observed ampli-

tudes. Figure 2 shows a microseismogram obtained by Kelder and Smeulders (1997)

for Nivelsteiner sandstone as a function of the angle of incidence θ (a), compared to

a numerical microseismogram obtained with Biot’s poro-viscoelastic theory (b). The

events are the fast compressional wave (FP), the shear wave (S), the first multiple

reflection of the fast compressional wave (FFP) and the slow wave (SP). The dis-

crepancy in the FP-wave amplitude after the critical angle (32 oC approximately) is

due to the fact that the source is closer to the sample compared to the laboratory

experiments.

Non-regular mesh

A scheme based on non-regular grids, allowing for surface topography and curved

interfaces has been introduced by Zhang (1999). The algorithm uses staggered

quadrangle cells and solves the velocity-stress formulation. In order to obtain non-

rectangular cells, the physical domain is mapped into square cells using the chain

rule to obtain the spatial derivatives. The time integration is the typical staggered

scheme with particle velocities computed at t+ dt/2 and stress components at t+ dt.

The Biot static mode is observed in the snapshots.

Composite porous media and Biot-type theories

Carcione and Seriani (2001) developed a numerical algorithm for simulation of

wave propagation in frozen porous media, where the pore space is filled with ice
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and water. The model, based on a Biot-type three-phase theory obtained from first

principles, predicts three P waves and two S waves at the high-frequency limit and the

corresponding diffusive modes at low frequencies. Attenuation is modeled with Zener

relaxation functions which allow a differential formulation based on memory variables.

The generalization of these differential equations to the variable porosity case is given

in Carcione et al. (2003), by using the analogy with the two-phase case and the

complementary energy theorem. A more rigorous generalization is given in Santos

et al. (2004a). In this way it is possible to simulate propagation in a frozen porous

medium with fractal variations of porosity and, therefore, varying freezing conditions.

A generalization of the splitting method to the three-phase case is performed to solve

these equations.

The simulation of two slow waves due to capillary forces in a partially saturated

porous medium is presented in Carcione et al. (2004), based on the theory developed

by Santos et al. (1990a,b). The pores are filled with a wetting fluid and a non-wetting

fluid, and the model, based on a Biot-type three-phase theory, predicts three P waves

and one S-wave. Again, realistic attenuation is modeled with exponential relaxation

functions and memory variables. Surface-tension effects in the fluids, which are not

considered in the classical Biot theory, cause the presence of a second slow wave,

which is faster than the classical Biot slow wave.

An alternative theory of poroelasticity derived by Hickey and coworkers (see

Quiroga-Goode et al., 2005), includes, in addition to Biot’s theory, thermoelastic

coupling and a differential equation describing temporal variations of porosity. Using

numerical modeling based on the PS method, Quiroga-Goode et al. (2005) show that

the two theories yield similar results in homogeneous media, and that the additional

effects are not significant, confirming the assumptions made by Biot to establish his

theory.
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Mesoscopic loss mechanism. Wave propagation

The mesoscopic loss mechanism was first verified by performing wave propagation

numerical experiments. Carcione et al. (2003) used the poroelastic PS modeling

algorithm to obtain the phase velocity and quality factor of White’s model, consisting

of a homogeneous sandstone saturated with brine and spherical gas pockets. The gas

saturation varies either by increasing the radius of the gas pocket or by increasing the

density of gas bubbles. Despite that the modeling is two dimensional and interaction

between the gas pockets is neglected in White’s model, the numerical results show

the trends predicted by the theory, i.e., increase in velocity at high frequencies and

low permeabilities. Similar test in more realistic (fractal) media were performed by

Helle et al. (2003) showing that partial saturation is a more efficient loss mechanism

compared to variable permeability (or porosity) and matrix heterogeneities at the

mesoscopic scale. A seismic application of the poro-viscoelastic modeling, including

the mesoscopic loss, for monitoring CO2 storage in the underground can be found in

Carcione et al. (2006).

Code implementation. Absorbing boundaries

Code performance and elimination of artifacts from the edges of the mesh is im-

portant. A classical implementation of the 3-D poroelastic equations based on an

o(2,4) fully staggered scheme is given by Aldridge et al. (2005), who show how to

optimize the algorithm using domain decomposition methods. They found that poro-

elastic modeling can be 2 to 6 times more expensive than single-phase modeling. The

popular perfectly-matched-layer (PML) absorbing-boundary method is implemented

by Zeng et al. (2001), who use an o(2,2) FD scheme to solve the 3-D displacement

formulation of the poroelastic equations. The convolutional form of the method (C-

PML) is described by Martin et al. (2008) using the classical staggered scheme.

13



Dynamic permeability. Fractional derivatives

Lu and Hanyga (2004) and Hanyga and Lu (2005) designed a numerical method

to solve the time-domain particle velocity-stress poroelastic equations, including the

JKD dynamic permeability as in equations 1. The system is evolved with a predictor-

corrector scheme and the spatial derivatives are computed with the PS method. The

shifted Caputo fractional derivative is calculated by solving first-order differential

equations for quadrature variables, similar to the memory variables used in Zener

viscoelasticity. This approach avoids to store the entire particle velocity history as it

is done when computing the derivative with the Grünwald-Letnikov approximation.

In order to test the method to ensure visibility of the slow wave the authors used a

very high permeability.

Physical stability condition

The first complete calculation of the stability condition for the low-frequency

poroelastic equations (no viscous boundary layers in the pores) has been performed

by Masson and Pride (2006) . The algorithm is explicit and has accuracy o(2,4)

using staggered spatial grids. A necessary condition for stability is that an inertial

acceleration term should be present in Darcy’s law. This condition is

(1 + Φ)F − ρf

ρ
> 0, Φ =

ωJ

2a
, F =

T

φ
, (5)

using the notation of that paper, where F is the electrical formation factor. A com-

parison of this algorithm with the time-splitting method is performed, showing that

for comparable time steps the latter is less accurate at low frequencies. Note that

in the case solved by Carcione and Quiroga-Goode (1995) and Wenzlau and Müller

(2009) (see below), the condition 5 is T/φ−ρf/ρ > 0, i.e., ignoring Φ in that equation,

which is equivalent to ρm − ρ2

f > 0 (see equation 4; λ > 0 implies an exponentially

growing solution). Using the values given in Table 1, the condition is 7.2 > 0, and
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generally, stability is satisfied for any realistic rock. For a fluid, T = 1, φ = 1, ρ = ρf ,

and ρm − ρ2

f = 0, that constitutes a limit value. Recently, Masson and Pride’s low-

frequency code has been used to simulate quasi-static poroelastic propagation due to

fluid-volume injection source (a Heaviside function in time), compared to an asymp-

totic semi-analytical approach (Vasco, 2008).

The generalization proposed by Masson and Pride (2010) of Biot’s equations to

describe all the frequency range (as in Lu and Hanyga, 2004) is based on an analytical

inverse Fourier transform of the dynamic permeability. The following equation is

equivalent to the second equation 1:

ρf v̇ +mq̇ = −∂xpf −
(

η

κ

)

ψ ∗ (q̇ + aq), ψ(t) =
H(t) exp(−at)√

πat
, (6)

where “∗” denotes time convolution, and H is the Heaviside function. This convo-

lution is solved by a time discretization requiring the storage of less than 20 past

values. The presence of the convolution makes the scheme more physically stable

since it adds to the inertia term T/φ − ρf/ρ a positive quantity. If T/φ ≫ 1, the

Courant condition in 1-D space is dt < 0.86(dx/vP ), where vP is the fast P-wave

velocity. Spatial discretization is based on a 4th-order FD staggered operator.

Simulation of the seismoelectric effect

Biot’s poroelastic equations are the basis of the seismoelectric theory together

with Maxwell’s electromagnetic equations (Haines and Pride, 2006; Carcione, 2007).

Seismic waves generate a force F = −(∂xpf + ρf v̇) (1-D) that transports the diffusive

charges in the fluid relative to the bound charges in the grains, creating a streaming

electric current LF , where L is the coupling coefficient. The bound and diffusive

charges are called the “electric double layer”. This phenomenon is known as electro-

filtration. On the other hand, an electric field induces a conduction current – according

to Ohm’s law – and a body force on the excess charge of the diffuse double layer,
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resulting in fluid filtration. This phenomenon is known as electro-osmosis. Haines and

Pride (2006) solved the low-frequency Biot’s and Maxwell’s equations, neglecting the

electro-osmotic effect. The Maxwell equation to solve is then ∇×H = σE+L(η/κ)q,

where H is the magnetic field, E is the electric field, σ is the conductivity, and q is

the grain/fluid relative velocity. The effects of induction can be neglected. This

implies ∇×E = 0, and thus E = −∇ϕ, where ϕ is the electric potential. Taking the

divergence of Maxwell’s equations gives the Poisson equation

∇ · (σ∇ϕ) = ∇ ·
(

Lη

κ
q
)

. (7)

First, the poroelastic equations are solved by using the algorithm described in

Özdenvar and McMechan (1997). Finally, equation 7 is discretized with a 2nd-order

FD approximation, leading to a linear system, which is solved by conjugate-gradient

iterations, improving the conditioning with the helix-derivate concept.

Mesoscopic loss mechanism. Quasi-static tests

Masson and Pride (2007) simulated mesoscopic attenuation and dispersion at seis-

mic frequencies using their FD code. Applying stress steps to numerical samples of

rocks, the complex moduli can be computed by measuring the strains. The samples

are much smaller than the pulse wavelength. Consider a 2-D sample in the (x, z)-

plane under plane strain conditions ǫyy = 0 with the fluid particle velocity variation

set to zero (vf = v) at the edges of the mesh (undrained conditions). The scheme is

o(2,2) at the edges of the mesh to better describe these boundary conditions. From

Hooke’s law for poroelastic media

λ+ µ =
1

2

(

σxx + σzz

ǫxx + ǫzz

)

, and µ =
1

2

(

σxx − σzz

ǫxx − ǫzz

)

, (8)

where σ denotes stress, and λ and µ are the (undrained) Lamé constants. The complex

bulk modulus is then
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K = λ+
2

3
µ. (9)

The phase velocity and quality factor are then obtained from

vp =
[

Re
(

1

v

)]−1

and Q =
Re(v2)

Im(v2)
, (10)

where v is the complex velocity and Re and Im denote real and imaginary parts,

respectively (e.g., Carcione, 2007; Chapter 8). For P and S waves ρv2 = λ + 2µ =

K + 4µ/3 and ρv2 = µ, respectively. The method requires four 4th-order spatial

differencing points in the smaller patch to avoid numerical artifacts. The numerical

experiments show that attenuation is proportional to the square of the incompress-

ibility contrasts, and that pure-shear attenuation can be caused by fluid exchanges

between anisotropically shaped inclusions and the background matrix.

The last significant work using the FD method, where loss due to mesoscopic het-

erogeneities is investigated, has been performed by Wenzlau and Müller (2009), who

solved the 2-D low-frequency particle velocity-stress formulation of Biot’s equations

using staggering in time and the standard 4th-order staggered mesh or the rotated

staggered grid to compute the spatial derivatives. These authors test the numerical

solution in the wave regime of the Biot slow mode, and verify the physics of the meso-

scopic loss mechanism by means of the above described long-wavelength experiments.

Moreover, they compute the normal-incidence reflection coefficient at a gas-water con-

tact and find that the error is maximum at intermediate frequencies where the slow

wave is not properly sampled. At the low frequencies, the estimate is acceptable even

if the diffusion scale is not properly resolved. The importance of modeling the slow

mode at interfaces is shown by Chiavassa et al. (2009), who use the time-splitting

method and a 1-D FD o(4,4) solver with grid refinement at the material contrasts.

They explicitly satisfy the interface conditions and refinements up to 64 times the

standard grid size are necessary.
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Digital rock physics

A promising field of research is digital rock physics, which combines microscopic

imaging with numerical simulations at the microscale using direct methods, explicitly

discretizing the pore network. Digital rock samples are generated by the so-called

open-cell Gaussian random field, where the pore space is defined by the intersection of

two two-cutted Gaussian random fields. Permeability can be determined through the

Lattice-Boltzmann flow simulations on these synthetic digital rocks (Keehm, 2003).

Saenger et al. (2007) provide an outline of the work in progress. Particularly, these

authors use the rotated staggered grid FD method to solve the viscoelastic dynamical

equations. A viscous fluid based on the generalized Maxwell body describes the

loss effects. Insufficient sampling of the viscous boundary layers at the pore walls

generate incorrect solutions at low viscosities. At least three grid points are necessary

to discretize the skin depth δ = (2η/ωρf)
1/2. Propagation through a fluid/porous

medium interface shows that the slow wave is only generated if there is hydraulic

contact at the interface (open-pore conditions) (e.g., Carcione, 2007; Section 7.9.1).

An approach to explicitly model cracks and fractures is proposed by Zhang and

Gao (2009). The scheme treats the fractures as non-welded interfaces that satisfy the

linear-slip displacement-discontinuity conditions, instead of using equivalent medium

theories. The discretization is based on tetrahedrons, and arbitrary 2-D non-planar

fractures can be accurately incorporated into the numerical mesh. The modeling

allows the background media to differ on both sides of the fracture. Hence, the

algorithm can be used to characterize the seismic response of fractured media and to

test equivalent medium theories.

18



The double-porosity equations

A recent Biot-type poroelastic theory treats the mesoscopic loss created by litho-

logical patches having, for example, different degrees of consolidation. It is called the

“double porosity” model (e.g., Pride et al., 2004). There are two phases and the the-

ory explicitly considers the field variables of these phases. Ba et al. (2008) have solved

the governing equations (homogeneous case) using the splitting method introduced

by Carcione and Quiroga-Goode (1995). A dimensionless quantity ζ̇ = γ ∗ (pf1 − pf2)

couples the two phases and represents the “mesoscopic flow”, i.e., the average rate at

which fluid volume is being transferred from phase 1 into phase 2, where γ has the

frequency dependency (1− iω/ωm)1/2 and ωm is a resonance frequency. The approach

used by Ba et al. (2008) to solve the convolution is to use 1st-order FD in time

and an explicit discrete time Fourier transform. Liu et al. (2009) solved equivalent

poro-viscoacoustic equations by approximating the mesoscopic complex moduli in the

frequency domain by using Zener mechanical models, in the same way as Carcione

(1998) represented the Biot loss mechanism. The equations are then solved in the

time domain using memory variables and the splitting method.

Modeling of the diffusive Biot mode

Recently, Carcione and Gei (2009) solved the equation describing the diffusion

of the slow static mode in anisotropic media, using a time-domain spectral solver,

which has high temporal accuracy and allows the use of coarse numerical meshes.

A correction to the stiffness of the rock under conditions of transverse isotropy and

uniaxial strain is assumed to model borehole conditions. The algorithm has been

tested with the Green’s function and applied to pressure diffusion in fractal perme-

ability media, simulating realistic reservoir conditions. The simulations show that the

energy velocity has to be used to track the diffusion front.
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FINITE-ELEMENT METHODS

The finite-element (FE) method is based on a variational formulation of the equa-

tions of motion 1. Among its advantages there is the ability to fit discontinuities

employing irregular meshes and polynomials of arbitrary degree. Also, it allows an

easy implementation of natural and mixed-type boundary conditions. Furthermore,

since the FE approximate solutions are sought in an space of functions which are

piecewise polynomials of a chosen degree k, the functional analysis tools are available

to derive a priori error estimates for the algorithms. This gives asymptotic bounds

for the distance between the solutions of the differential model and the computed

solution – measured in the L2- norm or more generally in a Sobolev norm (Adams,

1975) – in terms of the mesh size and the polynomial degree.

Space-time domain solution of Biot’s equations

Let us denote by H1(Ω) the Sobolev space of functions in L2(Ω) having first

derivatives in L2(Ω), while H(div,Ω) is the space of vector functions in [L2(Ω)]d with

divergence in L2(Ω) (d is the Euclidean dimension). The existence, uniqueness and

regularity of the solution of Biot’s equations of motion in a bounded domain Ω under

Neumann-type boundary conditions are first analyzed by Santos (1986), while con-

tinuous and discrete time FE Galerkin procedures are presented in Santos and Oreña

(1986). These works show that for each time t, the solid and fluid displacement vectors

belong to the spaces [H1(Ω)]d and H(div,Ω), respectively, what in turn yield appro-

priate choices for the FE spaces to compute approximate solutions. More specifically,

conforming approximations to the solid displacement must be sought in FE spaces

having global continuity, while conforming spaces to compute the fluid displacement

are only required to satisfy continuity of the normal component at the interior faces

of the computational mesh. For a mesh-size h and a time step dt, optimal a priori
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error estimates in the energy norm of the form O(dt2 + hk) are derived.

The results given in Santos (1986) were later extended in Santos et al. (1988a) and

Lovera and Santos (1988), where FEMs to simulate wave propagation in an elastic

solid containing a Biot medium are developed and analyzed. The coupled motion of

a compressible inviscid fluid with a Biot medium in a cylindrically symmetric domain

– to compute full waveform acoustic logs – is simulated in Santos et al. (1988b).

A quadrature rule has been used to define an explicit FE procedure. A first-order

absorbing boundary condition for Biot’s media is also derived. Douglas et al. (1991b)

model synthetic logs using this technique. This method was also used to simulate the

slow P-wave in Biot media at ultrasonic frequencies and the scattering of this wave

in real rocks due to the presence of mesoscopic heterogeneities (Hensley et al., 1991;

Douglas et al., 1991a).

Teng (1990) used the Galerkin weighted residual process with regular cells to

obtain the nodal equations of motion. Moreover, the use of an explicit FD time

solver makes the technique efficient in terms of computer time, since one may avoid

matrix inversions. Teng’s simulation at fluid/poroelastic interfaces satisfying open

and sealed boundary conditions are in agreement with experimental data.

Generalized Biot’s models for immiscible fluids and composite porous solids

Santos et al. (1990a,b) extend Biot’s theory to the case in which the

porous medium is saturated by two immiscible compressible viscous fluids (wetting-

nonwetting system). The model takes into account capillary pressure effects using

a Lagrange multiplier in the complementary virtual work principle. It is assumed

that the relative flow of the fluid phases is laminar and causes energy losses due to a

dissipation potential implemented in the Lagrangian formulation of the equations of

motion. Gedanken experiments to determine the seven elastic coefficients in the con-

stitutive relations are presented. A plane-wave analysis predicts one shear (S-wave)
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and three compressional waves: a fast P-wave corresponding to the motion in phase

of the solid and fluid phases, and two slow P waves associated with motions out of

phase of the two fluids. An extension of this model to include in situ conditions of

the single phases and viscoelasticity is given in Ravazzoli et al. (2003) and Ravazzoli

and Santos (2005), with a parametric analysis of the influence of effective pressure,

abnormal pore pressure and saturation on the phase velocities and quality factors of

the different waves.

The first numerical evidence of the presence of a second slow wave in porous solids

saturated by immiscible fluids is presented in Santos et al. (2002) and later in Santos

et al. (2004b). It is shown that the second slow wave can be detected at ultrasonic

frequencies, while at low frequencies is a source of attenuation of the fast waves (the

mesoscopic loss).

Partially frozen porous media and shaley sandstones are particular cases of fluid

saturated porous media when the solid matrix is composed of two weakly-coupled

solids. Leclaire et al. (1994) have developed a Biot-type model valid only for uniform

porosity. A generalized model valid for the variable porosity case is presented in

Santos et al. (2004a), thus allowing to perform numerical simulations in realistic

situations. Three compressional waves (one fast and two slow) and two shear waves

(one fast and one slow) propagate in these type of media.

Using an alternative approach based on first principles at the microscale, the two-

space homogenization technique (Sanchez Palencia, 1980) was employed in Santos

et al. (2005) and Santos and Sheen (2008) to obtain the equations of motion and

a generalized Darcy’s law in fluid-saturated composite porous solids. The resulting

macroscale equations are similar to those derived by Carcione et al. (2003) and Santos

et al. (2004a).

The analysis of the reflection and transmission coefficients at interfaces within

composite porous media is analyzed in Rubino et al. (2006a), concluding the impor-

tance of slow-wave conversions at interfaces defined by a contrast in ice content in
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partially frozen sandstones.

Space-frequency domain solution of Biot’s and Biot-type equations

The space-frequency formulation of Biot’s equations of motion and its general-

ization is a convenient way to include intrinsic losses and frequency-dependent mass

and viscous coupling coefficients, avoiding the need of performing time convolutions.

The foundations of this approach are presented in Douglas et al. (1993), where a

priori error estimates in terms of the mesh size h and the angular frequency ω are

first derived. The idea is to solve the Helmholtz-like equations for a finite number

of angular frequencies and then obtain the space-time solution using an inverse time

Fourier transform.

Numerical dispersion is one important aspect to be analyzed when solving wave

propagation problems. It is shown by Zyserman et al. (2003) that the non-conforming

elements presented in Douglas et al. (1999) need about half the number of points per

wavelength to achieve a desired tolerance in numerical dispersion as compared with

the standard conforming bilinear elements. Based on this conclusions, Zyserman and

Santos (2007) perform a numerical dispersion analysis of a FE procedure to solve

Biot’s equations. They use the non-conforming elements of Douglas et al. (1999)

to represent each component of the solid displacement, and the vector part of the

Raviart-Thomas-Nedelec space of zero order (Raviart and Thomas, 1977; Nedelec,

1980) to represent the fluid displacement vector. The local degrees of freedom for the

solid and fluid displacements in either rectangular or triangular elements are located

at the centers of the faces of the elements, thus defining a staggered mesh. The

analysis gives lower bounds for the number of points per wavelength of the slow wave

in order to have a negligible error in the group velocities of the fast waves.

Santos and Sheen (2007) use the FE spaces described by Zyserman and Santos

(2007) to solve the equations of motion given in Santos et al. (2004a) with a col-
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lection of global and iterative domain-decomposed FEMs. The algorithm includes

an implementation of absorbing boundary conditions. The analysis yields optimal

a priori error estimates and convergence results for the domain-decomposition itera-

tion. Numerical experiments showing the propagation of the five types of waves in

a partially frozen sandstone are presented. The domain-decomposition iteration of

Santos and Sheen (2007) is also used by Rubino et al. (2008) to simulate the acoustic

response of gas-hydrate (GH) bearing sediments in a research exploration well. The

simulations are performed assuming the presence of multi-scale spatial heterogeneities

associated with zones of low and high GH saturations. The levels of attenuation in the

synthetic traces are in excellent agreement with those measured at the well, showing

that multi-scale distributions of GH may explain the observed attenuation.

P-wave attenuation by slow-wave diffusion caused by mesocopic-scale hetero-

geneities is a significant loss mechanism at low frequencies. Rubino et al. (2006b) and

Picotti et al. (2007) implement an iterative FE domain-decomposition iteration in a

parallel computer, similar to that of Santos and Sheen (2007), to model wave propa-

gation at seismic frequencies in a periodically stratified medium. The quality factors

obtained from the synthetic traces, estimated with spectral-ratio and frequency-shift

methods, are in very good agreement with those predicted by White’s theory.

Using a reduced Biot model that ignores both the shear and the slow P waves,

Bermudez et al. (2006) present a displacement/pressure poroelastic finite element

method to compute the response to a harmonic excitation of a 3-D enclosure contain-

ing a fluid and a poroelastic material. For a tetrahedral mesh, they use the lowest

order Raviart-Thomas Nedelec space (Raviart and Thomas, 1977; Nedelec, 1980) for

the fluid and the sum of a bubble and a polynomial of degree one for the solid.
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Oscillatory tests in the space-frequency domain

Numerical simulations using Biot-type equations of motion in the presence of

mesoscopic-scale heterogeneities require extremely fine meshes to properly represent

these heterogeneities and their attenuation effects on the fast waves. An alternative

approach to wave propagation is to use a numerical upscaling procedure to determine

an equivalent viscoelastic solid to the original Biot medium (Santos et al., 2009; Ru-

bino et al., 2009), using the computer as a virtual laboratory. The procedure consists

in simulating oscillatory compressibility and shear tests in the space-frequency do-

main to determine the equivalent (complex) undrained P- and S-wave moduli on a

representative sample at a finite number of frequencies. The sample is assumed to

obey Biot’s equations of motion and the FEM is used to solve the associated boundary

value problems. Since in general the distribution of the mesoscopic multiscale hetero-

geneities has an stochastic nature, the oscillatory tests are applied in a Monte Carlo

fashion on a large number of realizations of the stochastic heterogeneities. Computing

the moments of the equivalent phase velocities and inverse quality factors yield the

desired equivalent viscoelastic medium. The procedure allows us to determine the

complex moduli for arbitrary spatial distributions of the heterogeneities, where no

analytical solutions are available.

Figure 3 displays an oscillatory compressibility test applied to a representative

sample of partially saturated poroelastic material. Shale stringers may seal off lo-

cal pockets of gas creating a multitude of gas-liquid contacts. During production

of a field, gas may come out of solution and create distributed pockets of free gas

(White, 1975). The boundary conditions are a normal stress applied to the top

boundary [∆P exp(iωt)], and no tangential external forces applied on the top and

lateral boundaries. The fluid is not allowed to flow into or out the sample and the

solid is neither allowed to move at the bottom boundary nor to have horizontal dis-

placements at the lateral boundaries of the sample. The domain is a square of side

25



length 50 cm. Overall gas saturation is 10 %. Black zones correspond to pure gas

saturation and white zones to pure brine saturation (Figure 3a). The number of cells

is 75 × 75. Figures 3b shows the normalized fluid pressure at a frequency of 50 Hz.

The fluid pressure gradients are maximum at the boundaries of the gas patches, pro-

ducing fluid flow and Biot slow waves that diffuse away from the gas-water interfaces

generating energy losses and velocity dispersion (mesoscopic losses). The value of the

P-quality factor is approximately 6 at 50 Hz, so there are significant attenuation and

dispersion effects because of the diffusive Biot waves generated at the boundaries of

the gas patches. This strong attenuation may occur in reservoir sandstones subject

to overpressure or in unconsolidated ocean sediments.

Simulation of coupled seismic and electromagnetic waves

As already explained above, seismic waves propagating through near-surface layers

of the Earth may induce electromagnetic disturbances that can be measured at the

surface (seismoelectric effect, electro-filtration) (Pride and Haartsen, 1996; Mikhailov

et al., 1997). Recent tests suggest that the reciprocal process, i.e. surface mea-

surable acoustic disturbances induced by electromagnetic fields (electroseismic effect,

electro-osmosis), is also possible (Thompson, 2005; Hornbostel and Thompson, 2007).

In order to explain these phenomena, Thompson and Gist (1993) and Pride (1994)

suggest that they are generated by an electrokinetic coupling mechanism. Using a

volume averaging approach, Pride (1994) derived a set of equations describing both

electroseismic and seismoelectric effects in electrolyte-saturated porous media. In

these equations the coupling mechanism acts through the (generally frequency de-

pendent) electrokinetic coupling coefficient L (see equation 7). When this coefficient

is set to zero, Pride’s set of equations turns to the uncoupled Maxwell’s and Biot’s

equations.

Santos (2009) first presents a collection of 2-D FEMs for the space-frequency
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domain solution of the fully coupled Pride’s equations in a bounded domain, includ-

ing absorbing boundary conditions. If only seismic sources are present, the electro-

osmosis effects can be neglected and we have a seismoelectric finite element model. On

the other hand, when only electromagnetic sources are considered, electro-filtration

can be ignored yielding an electroseismic numerical model.

The approach is based on a mixed formulation for Maxwell’s equations and a

standard Galerkin formulation for Biot’s equations, both in global and domain de-

composed forms. The analysis include existence and uniqueness of the approximate

solution, a priori error estimates for the global procedure and convergence for the do-

main decomposition iteration. The electric-field vector and the scalar magnetic field,

corresponding to the case of compressional and vertically polarized seismic waves cou-

pled with the transverse magnetic polarization (PSVTM-mode), are computed with

the rotated Raviart-Thomas-Nedelec FE spaces of zero order (Raviart and Thomas,

1977; Nedelec, 1980). Each component of the solid-phase displacement vector is ap-

proximated by using the nonconforming space defined in Douglas et al. (1999), while

the displacement in the fluid phase is approximated using the vector part of the

Raviart-Thomas-Nedelec mixed FE space of zero order.

The 2-D FE spaces for the case of horizontally polarized shear waves coupled

with the transverse electric polarization (SHTE-mode) are identical to those of the

PSVTM-mode, except that in this mode the solid and fluid displacements are scalar

functions in H1 and L2, respectively. Consequently, the solid displacement is ap-

proximated using the nonconforming spaces defined in Douglas et al. (1999) and the

fluid displacement employing piecewise constants. Recently, numerical experiments

employing the algorithms presented in Santos (2009) were used in Zyserman et al.

(2009) to model PSVTM and SHTE electroseismics.
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Discontinuous Galerkin method

Recently, several forms of the Discontinuous Galerkin Method (DGM) have been

applied to acoustic and elastic wave equations. Early formulations of the DGM for

elliptic problems can be found in Wheeler (1978). A locally implicit space-time DGM

(ADER-DG(ST)) employing numerical fluxes on unstructured tetrahedral meshes was

presented by de la Puente et al. (2008) to solve Biot’s equations on 3-D bounded

domains. The formulation is valid for the low frequency and inviscid case, and the

algorithm is validated by comparison with known analytical and numerical solutions.

De Basabe et al. (2008) give a numerical dispersion analysis for an interior penalty

DGM for elastic wave propagation, suggesting that Lagrange basis functions combined

with Gauss quadratures is a good choice for wave propagation simulations (see De

Basabe and Sen (2007) and references therein for grid dispersion analysis of FEM).

SPECTRAL FINITE-ELEMENT METHODS

The spectral-element method (SEM) was pioneered in the late 1980’s by Patera

(1984) and Maday and Rønquist (1990), and successfully used in computational fluid

dynamics, before raising the interest for seismic wave propagation problems. In the

time-domain, SEM has shown a high accuracy for 2-D and 3-D elastic wave modeling

(e.g., Seriani et al., 1992; Komatitsch and Vilotte, 1998), as well as for anisotropic

and anelastic effects (Komatitsch et al., 2000a). Fluid-solid boundaries have also been

treated based upon domain decomposition (Komatitsch et al., 2000b; Chaljub et al.,

2007). In the frequency-domain SEM has appeared to be of high interest for wave

propagation in layered structures (Rizzi and Doyle, 1992; Doyle, 1997; Igawa et al.,

2004; Baskaran et al., 2006).

Spectral-element methods have also been used for wave propagation in porous

media in the frequency-domain (e.g., Degrande and Roeck, 1992a, 1992b) and only
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recently in the time domain (Morency and Tromp, 2008).

Space-frequency domain solution of Biot’s equations

The governing equations of motion, such as those given by equations 1, are first

transformed from the time domain, where coupled partial differential equations need

to be solved, to the frequency-domain using a Fourier transform, where these equa-

tions simplify to a set of coupled ordinary differential equations. The solution is then

found by solving a frequency-dependent eigenvalue problem. Degrande and De Roeck

(1992a) solve the 1-D Biot equations in terms of solid and relative fluid displacements.

They apply their implementation to the resolution of a transient pulse propagating

through a saturated porous column. For this exercise, they use a high permeability.

Doing so, they are able to observe the propagation of the two compressional waves

as well as their attenuation. The same authors expand this implementation to 2-D

wave propagation in layered saturated media (Degrande and De Roeck, 1992b).

In another paper, Degrande et al. (1998) tackle the problem of wave propagation

in a coupled dry, saturated, and unsaturated porous medium, here again in a layered

structure. Subsequently, the authors present a series of applications mimicking the

effect of a moving water table on the propagation of transient waves in an isotropic

axisymmetric half-space, and also the influence of air bubbles in the pores of an

unsaturated medium. Due to their formulation the mass distribution and the stiffness

matrix are calculated exactly. The number of elements in this case coincides with the

number of discontinuities (layers) in the model.

Space-time domain solution of Biot’s equations

To our knowledge, Morency and Tromp (2008) are the first to solve the Biot

equations with SEM for the solid and relative fluid displacements in the time domain.

They present a general 3-D implementation accounting for porosity discontinuity.
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Discretization, assembly and time marching.—Similar to finite-element meth-

ods, a mesh is designed representing a subdivision of the model volume, Ω, into nel

non-overlapping finite elements (quadrilateral in 2-D space and hexahedral in 3-D

space), Ωe, e = 1, ..., nel, at which level the partial differential problem is approxi-

mated. Each of these elements is mapped to a reference domain [−1, 1]nd (a square

in 2-D, nd = 2, and a cube in 3-D, nd = 3). Therefore, there is a unique relationship

between a point x within Ωe and a Gauss-Lobatto-Legendre (GLL) integration point

ξ in the reference domain. These GLL points are the roots of (1 − ξ2)P ′

nl
, where Pnl

is a Legendre polynomial of degree nl. The Lagrange polynomials, lnl

α of degree nl,

associated with nl + 1 GLL control points ξα within [−1, 1], with α = 0, ..., nl, are

such that at any control point ξβ, the Lagrange polynomials return 0 or 1, that is,

lnl

α (ξβ) = δαβ . This property leads to an important result on the mass matrices as we

will see in the following.

Contrary to the finite-element method, the spectral-element method relies upon

the use of higher-degree Lagrange polynomials to interpolate functions on the ele-

ments. In spectral-element wave propagation, one typically uses a polynomial degree

nl between 5 and 10 (Komatitsch and Vilotte, 1998). On each volume element Ωe,

any function f is interpolated by triple products (in 3-D problems) of Lagrange poly-

nomials as

f(x(ξ, η, ζ) ∼
nl
∑

α,β,γ

fαβγlnl

α (ξ)lnl

β (η)lnl

γ (ζ), (11)

where fαβγ refers to the value of f at the interpolation point x(ξα, ηβ, ζγ). In conse-

quence, the spectral-element method retains the ability of the finite-element method

to handle complex geometries, while keeping the strength of exponential convergence

and accuracy resulting from the use of high-degree polynomials. One crucial advan-

tage of the method is that, for acoustic, elastic and poroelastic equations, the mass

matrices are diagonal, which naturally unfolds from the use of high-degree Lagrange

interpolants and Gauss-Lobatto-Legendre integration rule. This makes the spectral-

30



element solver very well suited for parallel computation as shown by Fischer and

Rønquist (1994) and Komatitsch et al. (2002).

Finally, because the mass matrices are diagonal, the system can be solved based

upon a simple explicit time marching scheme, like for example the Newmark scheme

using a predictor/multi-correction technique.

The key element in poroelastic wave propagation modeling is to accurately resolve

the slow P-wave, which can be diffusive (at low frequency) or propagate at a much

slower speed than the fast P or S waves (at high frequency). Accuracy and stability for

spectral-element calculations are determined by assuring a minimum of 5 grid points

per shortest wavelength and a Courant number lower than 0.3, as experimentally

estimated for elastic waves using a regular mesh (see Komatitsch, 1997).

Boundary conditions and material discontinuities.—A surface integral ac-

counting for boundary conditions, first-order material discontinuities and absorbing

conditions naturally arise in the weak form equations, obtained by dotting each gov-

erning equations with arbitrary test vectors, and integrating over the model volume,

which is standard in finite-element methods.

Free surface, corresponding to zero tractions, is simply accommodated when the

integral of the tractions along this boundary vanish. In order to simulate unbounded

media, outgoing waves need to be absorbed. Morency and Tromp (2008) use a classical

first-order absorbing boundary conditions based upon a paraxial approximation (see,

e.g., Clayton and Engquist, 1977, for details).

Material discontinuities in a porous medium in terms of moduli, densities, per-

meability, viscosity is naturally taken into account by the method. Spectral-element

methods imply continuity of displacements between common edges of elements by

construction. However, the relative fluid displacement with respect to the solid skele-

ton is weighted by the porosity, which breaks the displacement continuity for sharp

discontinuity in porosity. As shown by Morency and Tromp (2008), sharp disconti-
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nuity in porosity can be treated by domain decomposition. The authors show that

smooth gradients in porosity are in turn naturally taken into account by the method.

One needs also to realize that discontinuity within an element, from one GLL point

to an other, is fully acceptable.

Coupled wave propagation within an acoustic and poroelastic or elastic and poro-

elastic medium is also treated by Morency and Tromp (2008), using domain decom-

position. Each domain is treated separately, and coupling is achieved by ensuring

continuity of displacement and traction at the boundary. A comparison between an-

alytical solutions derived by a Cagniard de Hoop method (Diaz and Ezziani, 2008)

and SEM solutions shows a good agreement for the acoustic/poroelastic coupling, as

can be seen in Figure 4. This simulation is an idealized example since friction

is neglected. The experiment is improbable in the “real” world but it is

useful for testing the code. An explosive source was used with a Ricker

wavelet source time function, situated in the upper acoustic half-space

(cross), and we consider a receiver in each layer (triangles). The snap-

shot of the vertical-component of the displacement in Figure 4a displays

the direct P-wave (1) and the reflected P-wave (2) in the acoustic layer,

while the transmitted fast P-wave (3), the P-to-S wave (4), and the fast

P to slow P wave (5) are visible in the poroelastic layer. We also notice a

head wave in the acoustic layer, as the refracted S-to-P wave (6). Figures

4b and 4c show the comparison between analytical solutions (solid line)

and SEM vertical-component velocity seismograms (circles) at receivers

R1 in the acoustic layer and R2 in the poroelastic layer, respectively. The

corresponding RMS misfit values on each plot show the good agreement

between numerical and analytical solutions.

Attenuation effects.—Morency and Tromp (2008) treat effects associated with

physical dispersion and attenuation and frequency-dependent viscous resistance based
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upon a memory variable approach. The second equation 1 is then replaced by

mẅ + ρf ü+ b(t) ∗ ẇ = −∂xpf , (12)

where w = φ(uf − u) is the relative fluid displacement. The function b(t) takes

into account the frequency dependence of the fluid flow regime. Namely, at low

frequency, the flow regime is of Poiseuille (laminar) and the slow P-wave is diffusive,

with b = η/κ. At high frequency, inertial forces dominate the flow regime and the

slow-P wave propagates. In that case, the relaxation function b(t) may be described

in terms of viscous relaxation mechanisms (see, Carcione, 2007, and Morency and

Tromp, 2008, for more details).

A similar approach is used to account for the anelastic response of the frame. In

that case, a viscoelastic rheology is introduced (e.g, Carcione, 2007).

Hierarchical finite-element techniques.—Hierarchical finite-element techniques

have been developed using also high-order polynomials, referred to as hierarchical

functions, to describe the displacement fields (Houmat, 1997). One characteristic

of these hierarchical techniques is the possible use of different polynomial orders

for the different displacement components. These techniques have been successfully

used to model wave propagation in air saturated foam material used in aircraft and

ground transportation vehicles for thermal insulation and sound absorbing material.

In their paper, Hörlin et al. (2001) present a convergence analysis in the case of a

homogeneous porous layer. The general trend is that for higher frequencies a higher

polynomial degree is required. Notice that the flow resistivity of a foam is of the order

of 103 kg/(m3 s), almost seven orders of magnitude smaller than the resistivity of oil

in a reservoir.

In a later paper, Hörlin (2005) introduces a 3-D hierarchical hp-FEM implemen-

tation of Biot’s equations adopting a combination of higher order polynomials for the

element base functions and mesh refinement. The author finds that fourth or fifth

order polynomial for mesh refinement are the most computationally efficient in an
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interval of accuracy interesting from an engineering application point of view charac-

terized by a low frequency regime. However, the case of a two porous layers problem

shows some slow convergence of the fluid displacement at the interface, which is solved

by increasing the coupling between the solid and fluid phases, namely by increasing

the flow resistivity. Looking at a multilayer geometry, Göransson (2006) manages to

reach an accuracy better than 10 % in the displacements and fluid pressures using

higher order polynomials.

INVERSE PROBLEMS

As described in this review paper, the poroelastic forward problem has been solved

using different numerical techniques. The inverse problem, on the other hand, is

rarely addressed. Inverse procedures are based upon characterizing the sensitivity of

the seismic wavefield to perturbations in the model parameters through sensitivity

kernels, or Fréchet derivatives (Tarantola, 1984, 1987). They are of high interest to

derive material properties from a measured signal.

To our knowledge the first work done in this area is by De Barros and Dietrich

(2008). The authors derive Fréchet derivatives in terms of the Green’s functions

of a 1-D reference medium based upon a perturbation analysis of the poroelastic

wave equations in the plane-wave domain using the Born approximation. In this

study, two series of Fréchet derivatives are defined in terms of the fluid and bulk

densities, and the Biot coefficients, as well as in terms of the solid and fluid phase

densities, permeability, porosity, solid and fluid bulk moduli, solid shear modulus

and a consolidation coefficient. De Barros and Dietrich present a detailed sensitivity

study to investigate the influence of small perturbation of each model parameters on

the seismic wave. They conclude that inversion for the porosity and the consolidation

coefficient is more manageable than for the permeability, with their formulation.

A recent paper by Morency et al. (2009) present a general 3-D derivation of finite-
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sensitivity kernels based upon spectral-element and adjoint methods. The authors

extend work done in (an)elastic wave propagation (e.g., Tarantola, 1987; Tromp et

al., 2005; Liu and Tromp, 2008) to porous media. In this study, the authors present

three series of Fréchet derivatives. The first series is defined in terms of the eight

parameters appearing in the Biot equations. A second series offers a parameterization

in terms of density-normalized moduli corresponding to squared wave speeds, whereas

the last series involves the poroelastic shear and compressional wavespeeds, as well as

the porosity and permeability. A gallery of 2-D finite-frequency sensitivity kernels is

presented, which illustrates the sensitivity of the fast and slow compressional waves

and the shear wave to the poroelastic parameters. As De Barros and Dietrich (2008),

Morency et al. (2009) observe the weak sensitivity to the permeability for their choice

of misfit function. A possible use of electrokinetic effects to improve permeability

characterization is succinctly mentioned at the end of their paper.

Connections have recently been drawn between imaging in exploration seismology,

adjoint methods, and finite-frequency tomography upon on-shore and off-shore elastic

modeling by Luo et al. (2009) and Zhu et al. (2009). The authors demonstrate that

the density sensitivity kernel in adjoint tomography is closely related to the imaging

principle in exploration seismology introduced by Claerbout (1971). They also show

that in elastic modeling, reflectors are better characterized by the impedance kernel.

It is thus natural to expect that in poroelastic modeling an equivalent to the elastic

impedance kernel will arise. Notice though, that in an isotropic poroelastic medium,

there are three types of densities and three wavespeeds, contrary to an isotropic elastic

medium presenting one density and two wavespeeds. Several potential impedance

kernels can thus possibly be defined in a poroelastic medium.
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CONCLUSIONS

We have provided a review of the main direct methods used in dynamical poro-

elasticity. The algorithms discussed – finite differences, pseudospectral methods and

finite-element methods (low-order FEM and SEM) – do not have restrictions on the

type of constitutive equation, boundary conditions and source-type, and allow general

material variability.

Many of the complex constitutive equations handled by direct methods cannot

be solved, without simplified assumptions, with ray and analytical methods. Finite

differences are simple to program and, under not very strict accuracy requirements,

are very efficient. In this sense, a good choice can be a 2th-order in time, 4th-order in

space FD algorithm. Pseudospectral methods can, in some cases, be more expensive,

but guarantee high accuracy when staggered differential operators are used. In 3-D

space, pseudospectral methods require a minimum of grid points, compared to finite

differences, and can be the best choice when limited computer storage is available.

The best algorithm to model surface topography and curved interfaces is with-

out doubt the finite-element method, which with the use of high-order interpolators

can also compete in terms of accuracy and stability with the previous techniques.

FEM and SEM are also best suited for engineering problems, where interfaces have

well defined geometrical features, in contrast with geological interfaces. Use of non-

structured grids, mainly in 3-D space, can be challenging and time consuming, and

may require complex mesh builders (e.g., Cubit, http://cubit.sandia.gov/). How-

ever, FEM & SEM are still preferred techniques for seismic problems involving the

propagation of surface waves in situations of complex topography.

The co-existence of waves and diffusion modes is challenging, mainly because the

velocity of the slow modes vary from zero at low frequencies to a finite value at high

frequencies and the attenuation level can be very high. The mesoscopic loss mech-

anism, which involves small heterogeneities compared to the pulse wavelength can
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be described by an effective complex modulus and simulated by means of viscoelastic

models. The effective compressional and shear moduli can be obtained with harmonic

simulations in the frequency domain or quasi-static experiments in the time domain,

made on a large number of realizations of stochastic heterogeneities.

Progress has been made in many other aspects: the poroelastic equations have

been solved by describing several attenuation mechanisms using viscoelastic models,

general material symmetry (anisotropy), partial saturation, and multiphase media,

such as permafrost. Digital rock physics considers explicitly the micro-structure and

can be used to perform virtual experiments and verify effective theories such as Biot’s

and other macroscopic poroelastic theories. Poroelasticity combined with electromag-

netism provides an explanation for the electrokinetic phenomenon, which in turn yield

models to analyze electroseismic and seismoelectric effects, that have recently been

simulated by finite difference and finite-element methods.

The numerical methods have been tested in unbounded media and recently in

the presence of a material interface, which allows the simulation and analysis of sur-

face and interface waves in poroelastic media. Finally, inverse problem in poroelastic

media is essential to derive material properties, particularly micro-structural infor-

mation, from a measured signal. Recent studies bring promising insights.
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Özdenvar, T., and G. McMechan, 1997, Algorithms for staggered-grid computa-

46



tions for poroelastic, elastic, acoustic, and scalar wave equations: Geophysical

Prospecting, 45, 403-420.

Patera, A., T., 1984, A Spectral element method for fluid dynamics: Laminar flow in

a channel expansion: Journal of Computational Physics, 54, 468-488.

Picotti, S., J. M. Carcione, J. G. Rubino, and J. E. Santos, 2007, P-wave seismic at-

tenuation by slow-wave diffusion: Numerical experiments in partially saturated

rocks: Geophysics, 72, N11-N21.

Pride, S. R., 1994, Governing equations for the coupled electromagnetics and acoustics

of porous media: Physics Review B, 50, 15678-15696.

Pride, S. R., J. G. Berryman, J. M. Harris, 2004, Seismic attenuation due to wave-

induced flow: Journal of Geophysical Research, 109, B01201.1-B01201.19.

Pride, S. R., and M. W. Haartsen, 1996, Electroseismic wave properties: Journal of

the Acoustical Society of America, 100, 1301-1315.
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Table 1. Water saturated sandstone

Grain Bulk modulus, Ks 40. GPa

Density, ρs 2500 kg/m3

Matrix Porosity, φ 0.3

Bulk modulus, Km 10 GPa

Permeability, κ 200 mD

Tortuosity, T 2.3

Fluid Bulk modulus, Kf 2.5 GPa

Density, ρf 1040 kg/m3

Viscosity, η 1. cp

1 cp = 10−3 Pa s; 1 mD ≈ 10−15 m2



FIGURES

FIG. 1. (a) Snapshot of the pressure field p due to a fluid source applied to a poro-

acoustic medium, and (b) particle velocity vy in an anisotropic poroelastic homoge-

neous medium, where the fluid has zero viscosity.

FIG. 2. (a) Real microseismogram compared to (b) a numerical simulation obtained

from Biot’s poro-viscoelastic theory.

FIG. 3. (a) Sample of porous rock with patchy gas-water saturation; (b) Normal-

ized fluid-pressure after an oscillatory compressibility test.

FIG. 4. Wave propagation in a coupled acoustic/inviscid poroelastic medium: (a)

snapshot of the solid displacement vertical-component, and SEM seismograms and

analytical solutions comparison at (b) receiver R1 in the acoustic domain and (c)

receiver R2 in the poroelastic domain. See text for details (modified after Morency

and Tromp, 2008).
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FIG. 1. (a) Snapshot of the pressure field p due to a fluid source applied to a poroacoustic

medium, and (b) particle velocity vy in an anisotropic poroelastic homogeneous medium,

where the fluid has zero viscosity.
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FIG. 2. (a) Real microseismogram compared to (b) a numerical simulation obtained

from Biot’s poro-viscoelastic theory.
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FIG. 3. (a) Sample of porous rock with patchy gas-water saturation; (b) Normalized

fluid-pressure after an oscillatory compressibility test.
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FIG. 4. Wave propagation in a coupled acoustic/inviscid poroelastic medium: (a) snap-

shot of the solid displacement vertical-component, and SEM seismograms and analytical

solutions comparison at (b) receiver R1 in the acoustic domain and (c) receiver R2 in the

poroelastic domain. See text for details (modified after Morency and Tromp, 2008).


