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A mathematical model is presented concerning wave propagation in a domain that arises in 
geophysical well-logging problems. The domain consists of a borehole Cl, surrounded by a porous 
medium C l p .  Clf is filled with a compressible inviscid fluid, and Clp  is saturated by a two-phase 
immiscible fluid. Absorbing boundary conditions for artificial boundaries and boundary conditions 
on the interface between Clzi and C l p  are used. The existence and uniqueness theorems are stated 
for the resulting initial-boundary value problem. Stability and convergence estimates for a finite 
element method are also studied. 0 1993 John Wiley & Sons, Inc. 

1. INTRODUCTION 

In this work we analyze the problem of numerical simulation of the wave field generated by 
a point source in an axisymmetric fluid-filled borehole R, through a porous formation R, 
saturated by two immiscible fluids. Wave propagation in the porous solid is described by 
the equations in [ 11, which allows us to include capillary effects and dissipation of energy 
due to the relative motion of the fluids with respect to the porous frame. For the artificial 
boundaries of R, and R,, absorbing boundary conditions are derived which allow the 
absorption of energy of waves arriving normally to the surfaces. On the contact surface 
between R, and R,, a boundary condition is used to take into account the mud-cake 
effects on the wave field. This boundary condition is a generalization of that suggested 
in [2] for the single-phase case. The special cases of open, sealed, and partially sealed 
interfaces are also treated in our work. 

This article is related to numerous works on the subject. The propagation of waves in 
a porous solid saturated by a single-phase fluid was studied by Biot in several papers 
[3-51. Generation of synthetic full-waveform acoustic logs has been attained via several 
techniques. In [6] the problem was tested under the assumption that the whole system 
Rf U R, is homogeneous. The solution was obtained using the so-called discrete wave 
number approach. The same approach was used in [7] using Biot’s equations modified 
according to homogenization [8,9]. In [lo] the same problem is solved, but it was assumed 
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that the formation is an elastic solid, and the solution was computed using a finite difference 
method. In [ 1 I ]  the solution was computed using finite element techniques. In all previous 
works the solution is computed assuming that the formation is either an elastic solid 
or a porous solid saturated by a single-phase fluid. A finite element method for the 
approximation solution of the equations describing the propagation of waves in R, was 
presented in [12]. 

The organization of the article is as follows. In Sec. I1 we present our model with 
the corresponding partial differential equations and the initial and boundary conditions. In 
Sec. 111 we derive the weak form of the problem and give results on existence, uniqueness, 
and regularity of the solution. In Sec. IV an explicit finite element procedure is presented 
and results on stability and convergence are stated. Finally, in Sec. V we give a derivation 
of the absorbing boundary condition for the artificial boundary of a,. 

II. MODELING OF THE PROBLEM 

We shall consider the propagation of waves in a fluid-filled borehole Rf surrounded by 
a porous medium R, which is saturated by two immiscible, viscous, compressible fluids. 
These two immiscible fluids may be considered as a nonwetting fluid (oil) and a wetting 
fluid (water). R, is filled with a third kind of fluid (liquid mud). A compressional point 
source is excited at a point on the centerline of the borehole, and we will investigate the 
wave propagations of the fluid in R, and of oil and water together with solid in R,. The 
whole system is assumed isotropic and radially symmetric around the z axis, located at the 
center of the borehole. Naturally, cylindrical coordinates ( r ,  8, z )  are chosen to describe 
the model: 

R = { ( r ,O , z ) :  0 5 r 5 R,, 0 5 8 I 27r, 0 5 z 5 Z B } ,  

R, = { ( r , 8 , z ) :  0 5 r I R,, 0 5 8 5 27r, 0 5 z 5 Z B } ,  

R, = { ( r , 8 , z ) :  R, 5 r 5 R,, 0 I 8 5 27r, 0 I z I Z,}. 

Let the artificial top and bottom boundaries of R, be denoted by rl, those of Rp by r 2 T  

and r2B, the artificial outer lateral boundary of R, by rZL, and the common boundary 
between R, and R, by r3. See Fig. 1 for a vertical cross section of R for any fixed angle. 

Let ul = ( u l r , O , u l z )  denote the fluid displacement in R,. Also, let us = (uir ,O,u;,)  
be the solid displacement in R,, iis = ( i isr ,O, i i ;z )  the average oil displacement in R,, 
and li? = ($r,0,ii2wz) the average water displacement in R,. Denote by q5 = q5(x) the 
effective porosity in R, The relative oil and water displacements with respect to the solid 
frame in R, are then written as 

u; = +(x ) ( i i ;  - u;) = ( u i r ,  0, u;,), L = 0, w . 

Here, the subsequently, “ L ”  stands for scripts ‘‘0’’ for oil, “w” for water, and even 
sometimes “s” for solid. By the assumption of radial symmetry, the strain tensor E ( u ; )  in 
R, is given in cylindrical coordinates 1131 by 

&,&) = ’(% + -) 
2 a z  ar ’ 
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Also, 

In the following, ‘‘-” and “A” shall be used to denote the reference quantities associated 
with the initial equilibrium state and the change in the corresponding quantity with 
respect to the initial reference quantity, respectively. Let So = S,(x)  = so + A S ,  and 
S ,  = S,(x)  = 3, + AS, denote the oil and water saturations in a,,, respectively. Here, 
- A S ,  represents change in the corresponding saturation with respect to reference saturation 
S, associated with the initial equilibrium, for L = o , w .  Since we are assuming that R,, 
is saturated completely by a mixture of oil and water, 

so + s, = 1 

Similarly, denote by 7ij = 7ij(u;,u;,u2W) = Y i j  + A 7 i j  the total stress tensor in the bulk 
material, and by aij = a i j ( u ; ,  &,MY) = Ti,  + A a i j  the stress tensor in the solid part 
of a,,. Also, let p ,  = Po + A p o  and p w  = p, + A p ,  be the oil and water pressures. 
Assume that 7, = 0. The capillary relation then takes the form [ 141: 

p C  = p c ( S 0 )  = (Po + A p , )  - (7, + A p w )  

= PC(S0) + APO - APW 2 0 ,  



a

where the capillary pressure p ,  depends only on the (oil) saturation. For practical reasons, 
we shall always assume that so satisfies 

- 
0 < s, I so 5 s, < 1 ,  

where 3, and s~ denote the residual saturations of oil and water, respectively. Then set 

Since p:. > 0, /I is non-negative. Let 

Then. 

Following [ 11, the stress-strain relations in aP can be obtained in the form: 

Arrr (u; ,  u;, u , W )  = 2Ner,(u;) + A,V U; + B2V - u , W ,  
A T ~ ~ ( u ; ,  u;, u , W )  = 2N&e,(u;) + A,V * U; + BIV . U; + B2V . u , W ,  
ArZz(u; ,  u;, u , W )  = 2N&,,(u;) + A,V . U; + BIV - U; + B2V * u , W ,  

U; + BLV 

ATrz( u;) = 2~ & r z ( U ; )  (2.1) 
Arr8  = Aroz = 0 ,  

((3, + p ) A p o  - p A p , ) ( u ; ,  u;, u , W )  = -BIV * U; - MIV * U; - M3V * u , W ,  
S ,Ap, (u; ,  u;, p,W) = -B2V . U; - M3V * U S  - M2V . U; . 
- 

In the above expressions, the coefficients N ,  A,, B,, B2, MI, M2, and M3 are assumed 
to be functions of r and z alone. A method was shown in [IS] to determine the above 
elastic coefficients in terms of the properties of the solid and individual fluid phases and 
the capillary pressure function. 

Since the characteristic time needed for a change in saturations for the present case is at 
least three orders of magnitude greater than the time needed for a change in pressures, the 
saturations may be assumed to be independent of time for the analysis of dynamic behavior. 

The strain energy density W p ( c r r ,  E B B ,  cZz,  erZ, -V . uz, -V - u;)  in KIP is given [1] by 

1 
2 Wp(&rr,&88,&zz,Erz,V . U;,v * u y )  = -[ATrr&rr + A70tm0  A7zzEzz 

+ 2ATrzErz + ( ( s o  + P ) A P ~  - PAPW) 

* (-V * u;) + ( s w A p w ) ( - V  * u , W ) ] .  ( 2 .2)  

Recall that W ,  is a positive-definite quadratic form in & , r , & & 3 , & 2 2 , & r z ,  -V * us, and 
-V . u;. Set 

I' = (ATrr, A7887 ATzz, ATrz, ( s o  + /I)APo - PAPwy S w  APw) 7 

2 = (&rr ,&@@,&zz ,&r~ , -V  * u;,-v . u; ) .  
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Then, due to (2.1) and (2.2), the following relation holds 

for a symmetric,positive-definite matrix ,!?,(r, z )  E R6x6 associated with W,, where [ a ,  a], 

denotes the usual scalar product in R".  
For any self-adjoint matrix D ( r ,  z )  E R"'", let Am,,,(D(r, z ) )  and Amax(D(r,  2 ) )  denote 

the minimum and maximum eigenvalues of D ( r , z )  and set 

A m i n ( D )  = inf { A m i n ( D ( r ,  z))), A m a x ( D )  = SUP {Amax(D(r ,  z))). 
r.z r.z 

We are interested in the case such that 

0 < A m i n ( E p )  5 A m a x ( E p )  < m 9 

and consequently, 

+2(&rz)2 + (v . u;)2 + (v - u; ) ' ] .  (2.4) 

Let p s ,  po,  and pW represent the mass densities of solid, oil, and water in flp, respectively. 
In fl, the mass density p of the bulk material is defined by 

p = (1 - 4)P.T + 4(POSO + P W S W ) .  

Because we are interested in investigating wave propagations in the low-frequency range, 
the relative flow oil inside the pores can be assumed to be of laminar type so that the 
relative microvelocities v: and v: satisfy 

au;j a u i j  w -  a u i j  au; 
vzi = a i j -  at + b i , - ,  at V 2 ;  - c;j- at + d;j- at , 

and then the components of the matrices g, = g,, Q = 1,2,3, are defined by 

The microgeometric coefficient matrices a,  b ,  and c depend on tortuosity matrices of the 
pores. Since the porous medium is assumed isotropic, tortuosity matrices reduce to scalar 
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multiples of the identity matrix [5,16] so that g,,, can be given by 

ga,, = g a a i j ,  a = 1,293,  

where 6 ,  is the Kronecker symbol. Assume that 

Denote by pLL, L = o, w, the viscosities of oil and water, and by k,,, L = 0, w, the relative 
permeability of oil and water, respectively, and by k the absolute permeability of the 
porous medium. 

Finally, in the borehole flf, let p = pf ( I ,  z )  and Af = A f ( r ,  z )  denote the mass density 
and the incompressibility modulus of the fluid in f l f ,  which are assumed to be bounded 
above and below by positive constants: 

0 < pf' 5 p f ( r . 2 )  5 p; < m ,  

0 < A,. 5 A f ( r , z )  5 A; < m .  

In order to formulate a differential system, we shall adopt standard equations of motion 
for a compressible, inviscid, inhomogeneous fluid in the borehole R,, and the generalized 
Biot's dynamic equations [ I ]  for wave propagation in the porous medium 0, saturated 
by two immiscible, viscous, compressible fluids. Set J = (0, T )  and let 

0 
uy = ( r ,  Z)  = ( u y , , ~ ,  ulz)' v p ( r , z )  = ( vyr+o ,  vpZ),  fl(r, 2, t )  = C f l r , O , f l z )  7 

for ( T , ~ , z )  E flf, ( r , 8 , z , r )  E Rf X J, and 
LO 

u;O(r, z )  = (u?, 0, u;.;"), v i  ( r ,  z )  = (v;;O, 0, v;:), 

for ( r ,  8 ,  z )  E fl,, ( r ,  O , z ,  r )  E R, X J ,  L = s, 0, w, be given initial and inhomogeneous 
data which are radially symmetric around the z axis. 

We are then interested in  solving the following initial-boundary value problem: Find 

fi(r, z ,  t )  = v;,, 0 . f ; ~ ~  

u(r,  z ,  t )  = (U*, us, u;, u;), E J ,  

such that 

and 
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-2 
- a2& a2& a2u?r S o p o  Jug, + - -  

+ Z I T  + g 3 7  k k ,  a t  a t 2  P O S O  - 

-2 
- a2& aZu;, a2u?r S W p w  au?, +--  

kk,, a t  P W S W  - a t 2  + g 3 7  + z 2 7  

-2 
- a 2 U %  a2& a2UYz swpw auYZ +- -  

kk,,  a t  p w s w -  a t 2  + g 3 7  + g 2 7  

with boundary conditions 

A j V .  u1 = d- p j A j x  v j ,  on rl x J ,  

( i i i )  A r u ,  + AjV . u l v j  = 0, on  r3 X J ,  

(iv) (u; + sou; + SWu; )  vp  + u1 v j  = 0, on  r3 X J ,  

(v) AfV . u1  = - A p L  + m L -  vp ,  L = o , w ,  on r3 X J ,  
a u; 
a t  

In the above, vi = ( v i r ,  vie, viz) = (vi,,O, viz),  i = f , p ,  denotes the unit outward 
normal along a i l i  and x,”, m = 1,2, orthogonal unit tangent vectors along aR, chosen 
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in a canonical fashion as follows: 

on r2L, vp = (1,0,0), x; = (0,1,0), x; = ( O , O , l ) ,  

on r2T, v p  = (090, -0, x; = (1,0,0>, x; = ( O , l , O ) ,  

on r289 up = (0,0,1), x; = (1,0,0), x; = (0, L O ) ,  

on r3, vp = ( - l ,O,O),  x; = (O,O,l) ,  x; = ( O , l , O ) .  

Also, rvp denotes the surface traction on aRp, and rvp  * v p  and r v p  - x,", rn = 1,2, 

Explanations of the above boundary conditions are as follows: 
Condition (2.7.i), which is an absorbing boundary condition, is the equation of momen- 

tum on rl and, consequently, waves arriving normally at I'l pass through completely. 
Condition (2.7.ii) is another absorbing boundary condition on the artificial boundary r2 

whose effect is to absorb the energy of waves arriving normally to the boundary r2. The 
definition of the positive definite, symmetric matrix B and the derivation of the boundary 
condition are given in Sec. V. 

Condition (2.7.iii) corresponds to the continuity of the normal total stress and the 
vanishing of tangential stresses along r3. 

Condition (2 .7 . i~ )  comes from the continuity of the normal displacement on r3; 

are the normal and two tangent components of rv,, on aRp. 

UI . v, + [(l - @)u; + qh(s,iiq + Swa;)] * v p  = 0,  

which in turn implies that 

u1 * v, + [u; + @(So(i i ;  - ii;) + Sw(ii; - ii;))] * v p  = 0. 

Condition (2.7.v) states that the acoustic fluid-flow velocities across the borehole wall 
are related to the acoustic pressure differences between the borehole fluid in R, and oil and 
water in Rp by simple surface impedance functions rn, = rn,(z), L = 0, w. The surface 
impedances on r3 represents the effect of the mud-cake on the wave field. (See [2] for more 
physical explanations.) The boundary conditions given by (2.7.v) implies that the capillary 
pressure on the interface r3 is the difference between the two acoustic fluid velocity 
components in the normal direction multiplied by their corresponding impedances: 

A P ,  ( m,- a: - 

The well-posedness of the differential system is guaranteed under the following condition 
on the oil and water impedances: 

4S,(p + So)rno - p2mW 2 0. (2.9) 

Only the case 0 < rnL. I rn,(z) I rn: < 03 is described for our model in this section. The 
special cases in which rn, = 0 or m will be analyzed at the end of Sec. 111. 

111. THE EXISTENCE AND UNIQUENESS RESULTS 

For i = f , p  let ( 0 ,  

r C aRi let 
and Il.llo.n, denote the inner product and norm in L2(Ri).  For any 

denote the inner product in L 2 ( r ) .  The inner product and norm in 
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[L2(S2;)I3 are denoted as follows: for q = (q,, Po, qz )  and I) = (I),, I)@, I)z), 

( 4 ~ 9 I ) ) i  = ( q r , I ) r ) ;  + (qe,I)e); + ( ~ z y I ) z ) ;  

which is a closed subspace of H(div, ni). Considering the cylindrical symmetry, we set 

Now let us  introduce a separable Hilbert space 

3 = fi(div,R,) X [fi'(n,)]' X f i (div,n,)  X f i (d iv ,Rp)  

under the natural norm 
In 

llvllp = [ ~ ~ v ~ ~ ~ ~ ( d i v , ~ , )  + Ilv211:,np + ~ ~ v 3 ~ ~ f i ( d i ~ , ~ p )  2 + Ilv411i(div,np)] * 

Then the space V of admissible test function can be chosen as follows: 

v = {V = (v1 ,v2 ,v3 ,v4 )  E V :  (v2 + S0v3 + S W v 4  - v I )  vP = o on r3}, 
where so and s, are initially given saturations. Here, the boundary condition (2.7.i~) is 
strongly imposed. Notice that V is a closed subspace of V (with the same norm). 

The weak formulation of problem (2.6)-(2.8) is given as follows: 
Find u = (u l ,u ; ,u; ,uT)  E V such that 

(3.1) 



164 SHEEN 

where A(v, w )  is the symmetric, bilinear form on defined by 

and the symmetric, positive-definite [due to (2.5)J mass matrix A ( r ,  z )  and the non-negative 
dissipation matrix C ( r , z )  are given by 

I being the 3 X 3 identity matrix. 

the following estimate: 
Recalling Korn’s second inequality [17-191 and owing to (2.2) and (2.4), one can get 
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The well-posedness of problem (2.6)-(2.8) follows from Theorem 3.1. 
0 s,o 0,o THEOREM 3.1. Let f = cfl,fi,f;,fT), uo = (uy, u;', u;", u:") and vo = (v,, v2 , v2 , 

v:") be given data satisfying Go < 00, Q i  < op i = 0,l. Assume that r3 is of class Cm for 
some integer m 2 2. Also, assume that 

support(uy) n Rf cc a,, 
support(vy) n Rf cc Rf, 

support(u;O, u;*O, u;*') cc ap,  
support(v;", v;", v;") cc a,. 

Then there exists a unique solution u(r ,  z ,  t )  of problem (2.5)-(2.7) such that u, au/at E 

The proof will be omitted since it is quite similar to the corresponding one given in [20]. 
In the case in which the contact surface r3 between Rf and Rp is known to be Lipschitz 

continuous, the following existence and uniqueness theorem holds; the proof is similar to 
that of Theorem 4.1 in [20]. 

THEOREM 3.2. Let f = c f l  , fi, f;, f T )  be given and such that Q; < a, i = 0,l. Assume that 
uo = vo = 0 and that r3 is Lipschitz continuous. Then there exists a unique solution u(r ,  z ,  t )  
of problem (2.5)-(2.7) such that u, au/ar E L"(J, V ) ;  a2ul /at2 E L"(J,[L2(Rf)]3); and 
a2(u;, u;, & ) / a t 2  E L " ( J , [ L ~ ( R , ) ] ~ ) .  

Finally, let us indicate the modifications needed to treat the cases of open, sealed, and 

L"(J, v);  a2ul/at2 E L"(J,[L~(R~)]~); and a2(& US, u:)/at2 E L " ( J , [ L * ( ~ , ) ] ~ ) .  

partially sealed interface r3. 

Case 1. m, = m, = 0 

Condition (2.7.v) changes into 

AfV * U I  = - A p w  = -Ape, r3 x J ,  

which is the continuity of fluid pressures along the interface r3. Such a condition is 
analyzed in [21], and for the single-phase case it is shown to be energy-flux preserving. 
Moreover, the capillary pressure on the interface vanishes. The boundary integral terms on 
r3 in the weak formulation (3.1) should disappear and the trial function space V remains 
unchanged. 

Case 2. 

Condition (2.7.v) change into 

m, = 0 , O  < m, < 00 

all; 
at A f V -  UI = - A p ,  = - A p ,  + m o - .  v P ,  r3 x J ,  

which states the continuity of fluid pressures between borehole fluid and water along r3. 

The boundary integral terms on r3 becomes 
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with the same trial function space V .  In this case, the capillary pressure on the interface 
affects only the oil velocity. 

Case 3. m ,  = 0, m, = m 

Condition (2.7.v) is modified as follows: 

A j V  . u1 = - ~ p , ,  u; v p  = 0, r3 x J ,  

and (2 .7 . i~ )  as follows: 

(u; + s W u ; )  v p  + uI - vJ = 0, r3 x J .  

In addition, the test function space should be 

v = { v = (v1, v2, v3, v 4 )  E 3 : v 3  * v p  = 0 ,  

(v2 + S,v4) vP + v1 . vr = o on r3}. 
In this case, boundary integral terms on r3 in (3.1) shall vanish. 

Case 4. 0 < m, < m, m, = 

Condition (2.7.v) should be altered into 
a u; 
at 'p9 

A j V  ul = - A p w  + m,- * .; . v p  = 0, r3 x J ,  

while (2 .7 . i~)  changes to 

(u; + swu,W) * v p  + u1 vJ = 0, r3 X J .  

Then, the space V should be 

v = { v  = ( V 1 , V 2 , V 3 , V 4 )  E Q :  v3 * v p  = 0 ,  

(v2 + S,v4) . vP + v 1  . vr = o on r3}. 
The boundary integral terms on r3 in (3.1) should become 

Case 5. m ,  = m, = 

Condition (2.7.v) becomes 

u; . = u; . v p  = 0, r3 x J ,  

and (2 .7 . i~ )  converts to 

u;. vp + u1 - vJ = 0, r3 x J .  

The trial function space is given by 

v = { v  = ( V I , V 2 , V 3 , V 4 )  E Q :  v3 . vp = v4 * vp = 0 ,  
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v2 - v, + v I  . vf = 0 on r3}. 
In the weak formulation (3.1), boundary integral terms on r3 should disappear. 

In the above five cases, the conclusions of Theorems 3.1 and 3.2 remain valid. 

IV. AN EXPLICIT FINITE ELEMENT PROCEDURE 

For 0 < h < 1 ,  let TL = .;(Of) and ~ h p  = ~hp(R,) be quasiregular partitions of R f  
and R, with elements generated by the rotation around the z axis of rectangles in 
the ( r , z )  variables of diameter bounded by h.  Set T h  = TL U 7;. Since the boundary 
condition (2 .7 . i~ )  is strongly imposed on the finite element spaces to be used for the 
spatial discretization, the partitions Th and ~ h p  will be assumed to be compatible along the 
contact surface r3 in the following sense. For any vertical cross section Th n (6  = 60} 
of T h ,  if R f  is a rectangle in Th n (6 = 6,) such that one edge e of R f  is contained in 
r3, then e is also an edge of some rectangle R ,  in ~ h p  n (6  = 60}. Let Pl , l ( r , z )  denote 
the bilinear polynomials in the ( r , z )  variables and set 

f 

f 

M h ( R p )  = {P = ( P r v O v P z )  E con,): Pr E rPl,l(r,Z) and Pz E p l , ~ ( r , d } .  

Then Mh(RZp) C [17l(R,)]~. The r component of cp is multiplied by r in order to insure 
that all components of the strain tensor of 40 remain polynomials in r and z .  Morley [22] 
showed the following approximation property 

inf [Ilv - Pllo,n, + hllv - Pll,,n,] 5 ChSIIVlls.np, s = 192. (4.1) 
V E M h  (a,) 

Let Wh(R;) ,  i = f ,  p ,  be the vector part of the lowest-order mixed finite element space 
associated with TL defined by Morley [22]. Away from r = 0, the elements in wh(R;) 
are locally of the form (ur-' + br,O,c + dz), while the innermost elements near r = 0 
have the local form (br ,  0, c + dz) .  Globally the elements must lie in H(div, a;), i = f 
or p ,  as appropriate. Note that the divergence of each element is piecewise constant. It 
is also shown in [22] that 
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for 

and that 

inf Ilv 
9EVh 

for 

with 

and 

Let L be a positive integer, A t  = T / L ,  and U" = U(nAt) .  Set 

d,U" = (Un i '  - U n ) / A t ,  
aun = (unil - u n - ' ) / 2 ~ t ,  

a2un = (un+' - 2un + un-1)/(At)2. 
Because we want to use an explicit procedure, we will compute all integrals involving 

time derivative terms using the quadrature rule 

7 (4.5) f l r l  + f2r2 + f3r3 + f4r4 

4 
IQ f ( r ,  z ) r  dr  d 8  dz = 27rh,h, 

with f i  denoting the value o f f  at the node a;  in the rectangle Q' (see Fig. 2). Here Q' 
denotes a cross section of Q for any fixed angle 8 .  Note that the rule (4.5) is exact if 
rf(r, z )  is bilinear. 

For the elements in M h ,  the rule (4.5) is the natural choice since the local degrees of 
freedom for any element v(vr,O,vz) E Mh are the values of v, and v, at the nodes a i ,  
1 I i I 4. On the other hand, since the local degrees of freedom of a mixed Morley 
element v = (v,,O, v,) are the values of v * VQ at the midpoints of each side of Q' (i.e., 
the values of v, at the nodes a5 and a7 and of vz at the nodes 0 6  and as), such values 
being constant along the sides of Q', the mass-lumping quadrature rule (4.5) can be used 
for those elements as well. 

Let [v ,wIi  and ~ ~ ~ v ~ ~ ~ ~ , ~ , ,  i = f , p ,  denote the inner product ( v , w ) ;  and the norm 
Ilvllo,n, computed approximately using the quadrature rule (4.5). Also, let ((v, w)),- denote 
the inner product (v ,  w),- computed using the corresponding analogue of (4.5) along r. 

The discrete-time explicit Galerkin procedure is defined as follows: Find U" E v h ,  
n = 0,. . . , L, such that 

[ p f a 2 u ; ,  v l l f  + L4a2(u2, u3, u4)",  (v2, v3, v4)lP 
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a5 

a2 

A' 
hr 

> 
FIG. 2.  

.. 
+((B(au;  - vpr au; . x;, au; x;, au; - vpr au: . vp>,, 

1 2 
( v 2  . v p ' V 2  . X P ?  V2 - xp, v 3  * vp9 v 4  * vp y))r* 
+( (mo(p + So)au; * v p ,  v 3  * vp)),-, - ((mwpau: * up, v 3  . vp) ) r ,  

+((mwSwau: . v p ,  v 4  * vp))r ,  

= u;,V l ) f  + <(f~'",f~'",f~'"), (v2,v3,v4))p,  v E vh, 1 5 n 5 L - 1. (4.6) 

Note that the quadrature rule (4.5) is O(h2)  correct. The stability and optimal order error 
estimates are guaranteed for the scheme (4.6) as stated in the following theorems. The 
proofs are omitted because the arguments are very similar to those in [ll]. 

THEOREM 4.1. Assume f~ E Lm(J,[L2(fi2f)I3) and c f ~ , f ~ , f ~ )  E Lm(J,[L2(fiP)l9), and let 
A t  E (0, 11 satisfi, the stability condition 
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V. DERIVATION OF THE ABSORBING BOUNDARY CONDITIONS 

In this section, we will derive the absorbing boundary condition (2.7.ii) for the artificial 
boundary r2 of R,. We will mainly follow the ideas given in [ l l ] .  

Fix the wave velocity c > 0. Denote by MY = (u;;,O,&:), L = s , o , w ,  the displace- 
ments in solid, oil, and water in R, whose wave fronts arrive normally to r2 with velocity 
c. Next recall that I231 

1 
c at 

L.C 1 a&; 1.c 
E,,(U2 ) = -- - at  v p r ,  E o d U ; . C )  = 0, E z z ( M 2  ) = -- - VPZ 3 

( r , 8 , z ) E r 2 ,  t E J ,  for L = S , O , W .  

Moreover, 

( 5 4  
1 au;' 
c at 

v . u;c = -- - . v,, on r2 x J ,  for L = s , o , w .  

Next, let us introduce the variables 

and set 

f f c  = ( f f f ,  ff;, ff;, f f f ,  a,),. 
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Combining the stress-strain relations (2.1) and (2.2) with (5.1) and (5.2) shows that the 
strain energy density W,  on r2 can be written as a quadratic function 

rI(ffC) = Wp(&(f fC) ,  -v * u y ,  -v * U y )  

in the form 

1 
2 

rI(ffC) = - ( f f C ) ' E p f f C ,  

where EP E R S X S  is the symmetric, positive-definite matrix given by 

2N + A, 0 0 B I  B2 
0 

0 0 M I  M3 
0 0 M3 M2 

Now the momentum equations on r2 can be written as 

(5.3) 

( r ,  ot z) E r2, t E J . 
Equations (5.4) can be rewritten in terms of the new variables a:, 1 5 i 5 5 ,  in the 
following manner. First, we get one relation on taking the inner product of (5.44 with 
u p .  We then take the inner product of ( 5 . 4 4  and (5.4.iii) with x,", m = 1,2, in order 
to get the relationships 

Using the above identities, we get two relations from the inner product of (5.44 with 
x,", m = 1,2, while the other two relations can be obtained from the inner product of 
(5.4.ii) and (5.4.iii) with u p .  Thus 

C 2 A f f C  = -F, (5-5) 

where 
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and A' E R5x5  is the symmetric, positive-definite matrix defined by 

P 0 0 P o s ,  PWXW 

P O S O  0 0 zl g3 
PWSW 0 0 z3 g2 

Furthermore, a combination of (2.1), (2.2), (5.1), and (5.2) gives 

nd ( Y c  = A112ac. From (5.5) and (5.6) it follows that Let s = A-llzg A-IR a 
P 

The strain energy density 

Let c;, 1 5 i 5 5 ,  be the 

szc = c 2 ( Y c *  

on r2 is then written in the form 
1 
2 

_ _  
n(aC) = 7r(aC) = - ( ( Y C ) ' S ( Y C .  

five positive wave velocities satisfying (5.7) such that 

det(S - c2Z) = 0 .  

Two velocities are given by 
1R 

c , = c 3 = ( ; )  . 

c I ,  c4, and c5 have more complicated forms in terms of the mass and stiffness coefficients 
of LIP. Here c2 and c3 correspond to the shear modes of propagation, while cl, c4, and c5 
correspond to the compressional modes of propagation (see [l] also). Let M i ,  1 5 i 5 5 ,  
be the set of orthonormal eigenvectors corresponding to ci, 1 I i 5 5 ,  and let M be the 
matrix whose ith row is M i .  Let D = diag{c:, c;, c:, cj ,  cz}. Then, 

S = M ' D M .  (5.9) 

Let 

denote a general velocity on the surface r2 due to the simultaneous normal arrival of 
waves of velocities ci, 1 I i 5 5.  Then, 

4 

Let (Yci be the component of 
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along Mi, i.e., 

1 
Ci 

(5.10) - a c t  = - [ M ~ , A I / ~ ~ ] ~ M ~ ,  1 I i 5 5 .  

Analogously to (5.7) and (5.8), 

and 
1 
2 

- _  T ( f f  el) = - ( (CY'l) 'SCyCI.  

From (5.5), (5.6), (5.10), and (5.12) it follows that 

(5.12) 

(5.13) 

where y, denotes the force on r2 corresponding to ZCi. 
We will neglect the interaction energy among the different types of waves arriving 

normally to r2. The total strain energy density and the total force can then be regarded 
as the sum of their partial strain energies and of partial forces corresponding to each Eci .  
Thus 

5 
- T = *(Ly) = x-- 

T(ff c t )  9 

i = l  

i = l  i = l  

Now, 

since 

i = l  

A combination of (5.10), (5.1 l), and (5.14) therefore leads to 

c ; [ M ; , A ~ ~ ~ ~ ] , M ;  = - [ M ; , A - I ' ~ ~ ] ~ M ; ,  1 I i I 5 .  

From the above equation and (5.9), we see that 

-y = A112S112A1n(y = [ ( A - I E p ) ]  I 112 Aa - = B f f ,  

where B is the symmetric, positive-definite matrix given by 

B = [(A-1,!?p)f]'/2A. 

(5.14) 

Therefore we arrive at the absorbing condition (2.7.ii). 
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