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Abstract

The numerical fracking modeling combines a multiphase flow simulator for fluid
injection with a fracking generation criteria. The procedure consists of injecting
water into a gas shale reservoir to increase pore preasure until reaching a threshold
defined in terms of a spatial distribution of weakness zones. A given computational
cell is fractured by changing its porosity and permeability when the the threshold
is attained.

The multiphase flow simulator uses the Black Oil formulation for two-phase fluid
flow, which equations are solved using the IMPES algorithm. The weakness zones
are defined in terms of the local vertical, horizontal and tectonic stresses.

Once a given stage of the fracking procedure is completed, the well is opened to
flow to start production, taking into account the initial water backflow. The nu-
merical examples illustrate both the fracking and production stages of the modeling
procedure.

Keywords: Hydraulic fracturing, multiphase flow, numerical modeling, hy-
drocarbon production.

1 Introduction

Hydraulic fracturing is a standard procedure used to allow hydrocarbon pro-
duction in tight gas and shale oil and gas reservoirs. It consist on injecting
water mixed with sand or ceramic materia in the formation at high pressures
in order to generate paths where hydrocarbons can flow to production wells.
In this fashion new fractures are added to pre-existing natural ones enhancing
the absolute permeability of the reservoir. Generally, this procedure generates
bi-wing and planar fractures, normal to the minimum principal stresses.

To simulate one stage of the fracking procedure, the numerical model com-
bines a two-phase flow simulator, based in the Black-Oil formulation [?,7], to
represent fluid injection with a breakdown criterion that follows the forma-
tion weakness zones. The flow simulator is run until the pressure reaches a
threshold breakdown value at a given computational cell. Then such cell and
its neighbours are fractured, i. e. their permeability and porosity are increased
with prescribed values. This, in turn, induces an inmediate pressure decay in
the formation.

Once the planar fracture is completed, the two-phase simulator is applied to
predict hydrocarbon production. At early times part of the injected water
flows back before the hydrocarbon starts to be produced.
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Among other approaches to numerical simulate hydraulic fracturing we men-
tion [?], presenting a fully coupled thermal hydro-mechanical model and [?]
analyzing a shale gas reservoir with large amounts of natural fractures. Fur-
thermore, Lee et al [?] present a genetic algorithm to optimize the design of
hydraulic fracturing scenarios.

2 The numerical hydraulic fracture procedure

The injection and production flow numerical model uses the Black-Oil formu-
lation to two-phase, two component fluid flow allows the gas component to
dissolve in the water phase. These equations are obtained by combining the
mass conservation equation for each component with the two-phase Darcy’s
law [?]. To discretize the Black-Oil equations we use the public domain BOAST
simulator (Fanchi, 1997), that solves the system using IMPES finite difference
technique. Thus, a CFL time step needs to be imposed [?].

The fracture criterium to increase porosity and permeability at a given com-
putational cell is defined in terms of a threshold pressure value P,y defined as

7]
Pbd = 3UHmin — OHmaz T TO — PH, (1)
where T} is the tensile stress of the rock, py the hydrostatic pressure and

O Hmaz = OHmin T OTects (2>

with o7e being the tectonic stress contribution, ogme: and ogme, the maxi-
mum and minimum horizontal stresses, respectively, obtained as

v

OHmin =

H
= dH
=,V v 9/0 pydH, (3)

where H is the formation depth, v the Poisson ratio, p; the formation density
and ¢ the gravity constant.

3 Numerical Results

<< Figure 1 >>



<< Figure 2 >>

<< Figure 3 >>
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4 Conclusions
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Fig. 1. Threshold pressure map (MPa)-PASAR A MPA!l!
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Fig. 2. Normalized injected fluid pressure after after 40 minutes of injection-
CHEQUEAR TIEMPO!!
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Fig. 3. Injected fluid saturation after 40 minutes of injection- CHEQUEAR
TIEMPO!
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Fig. 4. Breakdown times map after 40 minutes of injection- CHEQUEAR TIEMPO!!
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Fig. 5. Normalized injected fluid pressure after after 60 minutes of injection-
CHEQUEAR TIEMPO!!
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Fig. 6. Injected fluid saturation after 60 minutes of injection- CHEQUEAR
TIEMPO!
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Fig. 7. Breakdown times map after 60 minutes of injection- CHEQUEAR TIEMPO!!
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Fig. 9. Average produced fluids pressure, psi- CHEQUEAR TIEMPO y ELEGIR
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