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Abstract A numerical modeling framework is described
that is able to calculate the coupled processes of fluid
flow, geomechanics, and rock failure for application to gen-
eral engineering problems related to reservoir stimulation,
including hydraulic fracturing and shear stimulation. The
numerical formulation employs the use of an embedded
fracture modeling approach, which provides several advan-
tages over more traditional methods in terms of computa-
tional complexity and efficiency. Specifically, the embedded
fracture modeling strategy avoids the usual requirement that
the discretization of the fracture domain conforms to the dis-
cretization of the rock volume surrounding the fractures. As
fluid is exchanged between the two domains, conservation
of mass is guaranteed through a coupling term that appears
as a simple source term in the governing mass balance equa-
tions. In this manner, as new tensile fractures nucleate and
propagate subject to mechanical effects, numerical com-
plexities associated with the introduction of new fracture
control volumes are largely negated. In addition, the abil-
ity to discretize the fractures and surrounding rock volume
independently provides the freedom to choose an acceptable
level of discretization for each domain separately. Three
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numerical examples were performed to demonstrate the
utility of the embedded fracture model for application to
problems involving fluid flow, mechanical deformation, and
rock failure. The results of the numerical examples con-
firm that the embedded fracture model was able to capture
accurately the complex and nonlinear evolution of reser-
voir permeability as new fractures propagate through the
reservoir and as fractures fail in shear.
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1 Introduction

In many reservoir engineering applications, it is impera-
tive to incorporate a realistic description of the geologic
structure of the reservoir into conceptual models and numer-
ical models in order to establish appropriate interpretations
of reservoir behavior. Several examples include hydraulic
fracture treatment design, interpretation of microseismic
monitoring data, and development of reservoir management
strategies related to induced seismicity. In each of these
cases, the interaction between fluid flow and the geome-
chanical response of fractured and faulted rock will have a
direct influence on the reservoir behavior, and therefore also
on the engineering decisions that must be made.

In geologic settings where fractures and faults are
expected to have first-order impacts in terms of flow behav-
ior, it is important to recognize that the reservoir systems are
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mechanically active. During development and operation of
a resource, local-scale and reservoir-scale permeability and
storativity can evolve as fractures deform and fail in shear,
or as intact rock fails in tension. The local state of stress
throughout the reservoir controls the manner in which the
permeability and storativity changes manifest. It is neces-
sary to make use of numerical modeling to investigate these
types of reservoir processes for practical applications, but
many traditional reservoir models neglect geomechanical
processes or are based upon a set of limiting assump-
tions that obviate the influence of significant physical
mechanisms.

In this paper, we introduce an efficient numerical mod-
eling framework that is able to model the coupled physical
processes of fluid flow and mechanical deformation of frac-
tures, faults, and surrounding matrix rock. The framework is
able to incorporate an explicit representation of the geologic
structure of the reservoir by using an embedded fracture
modeling (EFM) strategy [21]. The EFM approach is an
extension of more traditional finite-volume-based discrete
fracture models (DFM), suggesting relatively straightfor-
ward integration with industry-standard reservoir simula-
tors. A fracture mechanics-based approach to mechanical
modeling allows for accurate calculation of the complex
stress distributions that arise near fracture tips, so fracture
propagation problems are approached in a rigorous man-
ner. Detailed models of friction evolution along fracture and
fault surfaces are included in order to model shear failure
and seismicity. To accommodate different types of rock, the
model is flexible enough to incorporate a range of consti-
tutive relationships necessary to describe permeability and
storativity evolution of fracture networks due to changes in
effective stress and shear failure.

The integration of the EFM approach into a geome-
chanical and fracture propagation model is the principal
achievement of the present work. The embedded fracture
approach is a numerical method that provides the critical
translation necessary to attack problems that would other-
wise be intractable from a computational standpoint. The
key element of the EFM formulation is the treatment of
the fracture system and the surrounding matrix rock vol-
ume as two separate computational domains [19, 21]. This
allows for the two domains to be discretized completely
independently, negating the cumbersome requirement of
a matrix discretization that must conform to the fracture
discretization associated with traditional discrete fracture
models.

In the EFM discretization, conservation of mass is
enforced as fluid is exchanged between the two domains
through the application of physics-derived coupling terms
that appear as source terms in the continuity equations.
In this manner, tensile fractures that nucleate and prop-
agate subject to geomechanical considerations can be

incorporated into the numerical model during a simulation
with negligible amount of computational overhead.

Previous authors have applied EFM to investigate geome-
chanical effects in fractured reservoirs, but this work has
been limited in scope to simplified models that embody
the geomechanics into empirical relationships [16, 26]. In
this work, the reservoir model introduced by McClure [23]
and McClure and Horne [24] was extended to incorpo-
rate the EFM strategy in order to combine the effects of
matrix-fracture mass exchange and a rigorous treatment of
geomechanics under a unified framework. The fluid flow
and geomechanical calculations are performed in a coupled
sequential-implicit manner. Fracture propagation is permit-
ted, and is based upon evaluating the mode-I stress intensity
factor near fracture tips. Shear failure of preexisting frac-
tures is permitted subject to a modified Mohr-Coulomb
criterion [13]. The mechanical interaction between fractures
as they deform is included in the model. Reservoir-scale
permeability evolution emerges as a result of deformation
of individual fracture and fault planes, shear failure on
preexisting fractures and faults, and propagation of tensile
fractures. Limitations of the model arise from the follow-
ing important assumptions: the mechanical properties of the
rock are homogeneous and constant, elastic deformation
is quasistatic, poroelastic and thermoelastic deformations
are neglected, and the domain is two-dimensional (2-D)
so all fractures in the model have the same out-of-plane
dimension.

The primary purpose of this workwas to verify the accuracy
of the EFM approach for applications in which geomechan-
ical effects have a first-order impact on reservoir behavior.
The embedded fracture-based model developed in this work
was compared to a traditional DFM for three different
numerical examples of practical interest. When appropriate,
the numerical results were also compared against analytical
or semianalytical solutions. In addition, the accuracy of two
extremely efficient approximate models, a one-dimensional
(1-D) leakoff model and a zero leakoff model, were also
compared in order to help quantify their range of practical
applicability for reservoir stimulation modeling.

The remainder of this paper is organized as follows.
In Section 2, the numerical formulation for the EFM
framework is presented. The traditional DFM, 1-D leakoff
approximation model, and zero leakoff approximation
model that were used for comparison are also discussed.
In Section 3, the major components in the geomechani-
cal module are described. In Section 4, we demonstrate
that the models achieved good agreement with an analytical
solution for a problem involving injection into an infinite-
conductivity fracture. Next, we modeled a shear stimulation
treatment of a relatively complex fracture network, and
the results are presented in Section 5. Significant nonlin-
ear effects due to shear slip-enhanced fracture permeability
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made this a challenging numerical problem. Finally, the util-
ity of the EFM framework was highlighted by modeling
mode-I fracture propagation of a vertical, two-wing fracture.
The results of the fracture propagation study are shown in
Section 6. In Section 7, several practical applications for the
present model are illustrated, and concluding remarks are
discussed.

2 Fluid flow module

The reservoir model introduced by McClure [23] and
McClure and Horne [24] was developed originally to model
reservoir stimulation treatments in low-permeability set-
tings, such as hydraulic fracturing in shale gas reservoirs
or shear stimulation in geothermal reservoirs. The model
assumed that intrinsic matrix permeability in these settings
is usually low enough to justify neglecting mass trans-
fer between the fracture systems and surrounding matrix
rock. In the present work, this model was extended to
include the effects of matrix-fracture mass transfer. An EFM
strategy was adopted in order to overcome several severe
numerical and practical limitations of more traditional DFM
approaches for application to reservoir stimulation prob-
lems.

In this section, the numerical formulation for the embed-
ded fracture model is described in detail. In the sections that
follow, we describe studies where we compared the EFM
approach with a DFM approach that had been implemented
previously in the McClure [23] model. Here, the details of
the DFM model are described for the reader’s reference.
In addition, the EFM and DFM models were compared
with two relatively computationally efficient approximate
models, namely the 1-D leakoff approximation model and
the zero leakoff approximation model. The details of these
models are described briefly.

2.1 Embedded fracture model description

In traditional reservoir simulation, fractured reservoirs are
commonly modeled using the double porosity model [17,
42]. This model is applicable if the fracture orientations and
lengths are relatively randomly distributed and the fracture
system is connected extensively. More importantly, appli-
cation of the double porosity model typically assumes that
the properties and geometry of the fracture network remain
relatively constant.

In order to honor more realistic representations of frac-
tured reservoir geology, discrete fracture approaches have
been developed. For example, Karimi-Fard et al. [14] pre-
sented a DFM in which the geometry of the fractures and
faults are captured by discretizing them explicitly in lower-
dimensional space, and creating a matrix discretization that

conforms to the fractures. In general, DFM approaches are
useful in settings where production is dominated by flow
through fractures (e.g., formations with low matrix perme-
ability) or if fractures tend to have preferred orientations.
However, traditional DFM techniques are subject to several
well-documented drawbacks. Most notable is that a matrix
discretization that conforms to the fractures inevitably
results in a large number of “small” matrix control vol-
umes in areas where there are many fractures or where
fractures intersect at low angles. In some cases, the geologic
structure of the reservoir must be sacrificed for numerical
convenience.

Moreover, DFM techniques are not well suited for frac-
ture propagation problems in which the fracture networks
are growing over time. Previous work has been done in the
area of developing models that apply adaptive grid refine-
ment as fractures propagate [12, 33]. This requires a sig-
nificant level of computational overhead, and the numerical
results have been observed to be grid-dependent. Alter-
natively, it is possible to define planes where hydraulic
fractures may potentially propagate in advance of a sim-
ulation, and then prediscretize the system around these
potentially forming planes. Naturally, this approach will
require an unnecessarily high number of additional degrees
of freedom, and, perhaps worse, involves making implicit
assumptions about the mechanics of fracture propagation.

2.1.1 Embedded fracture model overview

In the present work, the use of traditional DFM techniques
was avoided, and instead the EFM approach was adopted.
In the EFM approach, the fracture and matrix domains
are treated as separate computational domains. The two
systems are discretized completely independently (i.e., a
conforming mesh is not required; see Fig. 1), and mass
conservation is strictly enforced through physics-derived
coupling terms. In fact, EFM is conceptually very similar

Fig. 1 Schematic of the embedded fracture discretization strategy.
The solid blue lines are natural fractures, and the dashed red lines are
hydraulic fractures. The circles represent the centers of fracture con-
trol volumes, and the diamonds represent the centers of matrix control
volumes. The matrix control volumes that will pick up EFM coupling
terms are shaded gray
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to dual porosity or dual permeability models, but is able
to maintain a more realistic representation of complex geo-
logic features. As will be demonstrated in the numerical
examples that follow, the ability to define realistic represen-
tations of the geologic structure of a reservoir and the use of
a nonconforming grid are the critical features that make the
EFM approach an attractive modeling strategy to perform
rigorous geomechanical analyses.

The EFM approach was introduced originally by Lee
et al. [19], and later expanded upon by Li and Lee [21].
Karvounis [15] developed a heat and mass transfer geother-
mal model based on EFM, and demonstrated that EFM
can obtain a suitable degree of accuracy with improved
computational performance compared to traditional models.
Hajibeygi et al. [9] incorporated EFM into an iterative mul-
tiscale finite volume scheme. Several studies have compared
DFM to EFM for multiphase flow problems and demon-
strated that EFM was able to capture a high degree of
accuracy at a reduced computational expense [25, 32]. Ding
et al. [4] drew upon EFM fundamentals and calculated the
matrix-fracture transmissibility numerically to be able to
capture pressure transients in the near-fracture region more
accurately.

Recently, EFM has also been used in geomechanics
applications. Moinfar et al. [26] incorporated a treatment for
calculating fracture permeability evolution due to changes
in effective stress within an EFM framework, but did not
include a formal treatment for geomechanics. Karvounis et
al. [16] extended their model to include a proxy geomechan-
ical model based on changes in pore pressure to investigate
injection-induced seismicity. Norbeck et al. [27] and Nor-
beck and Horne [28] introduced an EFM-based model that
integrated a rigorous treatment of fluid flow, fractured reser-
voir mechanics, and fracture propagation. Norbeck and
Horne [29] performed a study of porothermoelastic effects
on injection-induced seismicity using a rate-and-state earth-
quake model.

It should be noted that in some of the works cited previ-
ously, the concept of EFM was applied in a context related
to upscaling techniques [9, 21]. In those applications, it was
assumed that fractures that existed at a relatively small scale
could be homogenized in order to obtain effective “damaged
matrix rock” properties, and the geometries of the larger
fracture systems expected to contribute to flow at a reser-
voir scale were maintained explicitly. For the purposes of
this paper, it is sufficient to recognize this distinction purely
at the conceptual level. In the remainder of this paper, it
is assumed that any reference to matrix permeability may
imply an effective upscaled permeability, and any fracture
domain is representative of a scale of practical engineering
interest.

2.1.2 Numerical formulation of the embedded fracture
model

The key insight introduced by Li and Lee [21], that the frac-
ture and matrix domains can be discretized independently,
is leveraged by expressing the mass conservation equations
for the matrix and fracture domains separately. For a porous
medium saturated with single-phase fluid, the continuity
equations can be written, for flow in the matrix domain, as:

∇ · (
ρλkm∇pm

) + m̃wm + �̃f m = ∂

∂t
(ρφ) , (1)

and, for flow in the fracture domain, as:

∇ ·
(
ρλekf ∇pf

)
+ m̃wf + �̃mf = ∂

∂t
(ρE) . (2)

Here, pm is fluid pressure in the matrix domain, pf is
fluid pressure in the fracture domain, ρ is fluid density, λ

is inverse of fluid viscosity, km is the diagonal matrix per-
meability tensor, kf is the diagonal fracture permeability
tensor, φ is matrix porosity, e is fracture hydraulic aper-
ture, E is fracture void aperture, m̃wm is a normalized mass
source term related to wells in the matrix domain, and m̃wf

is a normalized mass source term related to wells in the frac-
ture domain. In addition to the usual terms related to flux,
wells, and storage, the terms �̃f m and �̃mf are introduced
to account for mass transfer between the two domains. To
ensure continuity upon integration over the respective con-
trol volumes, these mass transfer terms take the following
form [9]:

Ψ̃ f m = Υ
(
pf − pm

)
/V, (3)

and

Ψ̃ mf = Υ
(
pm − pf

)
/A, (4)

where the parameter ϒ is a transmissibility called the frac-
ture index and is analogous to the Peaceman well index [31].
The normalization parameters in Eqs. 3 and 4 are V , the
bulk volume of the matrix control volume, and A, the sur-
face area of the fracture control volume. Comparing terms
in Eqs. 1–4, the units indicate that the fracture mass balance
equations are expressed on a lower-dimensional manifold.

Similar to the treatment of wells in traditional reser-
voir simulators, the fracture index serves to capture subgrid
behavior of the pressure gradient near fractures. In this
work, the derivation provided by Li and Lee [21] was fol-
lowed to calculate the fracture index. The assumptions in
the derivation are as follows: (a) flow in the vicinity of the
fractures is linear, (b) the fractures fully penetrate the matrix
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control volume in the out-of-plane direction, and (c) the
matrix and fracture pressures represent average pressures
over their respective control volumes.

The rate of mass transfer from a fracture control volume
into a matrix control volume is defined as:

Ψ f m = Υ
(
pf − pm

)
. (5)

This term has units of mass per time. Assuming that flow
is linear (i.e., 1-D) in the local region near the fracture, the
mass exchange rate can be described alternatively by inte-
grating the Darcy flux over the surface area of the fracture:

�f m = Af ρλk∗∇p · n, (6)

whereAf is the total fracture surface area (i.e., both faces of
the fracture), k∗ is an effective fracture-normal permeabil-
ity, n is the unit normal vector to the fracture face, and the
pressure gradient term is:

∇p = pf − pm

L
n. (7)

Here, L represents the average normal distance from the
fracture surface in the matrix control volume, which can
be calculated numerically for complex fracture and matrix
control volume geometries [9]. The effective permeability,
k∗, represents the ability for fluid to flow in the direction
perpendicular to the fracture. In reservoir settings with low
matrix permeability and highly conductive fractures, k∗ will
likely be dominated by the matrix rock permeability. In
geologic settings where relatively thick faults with sealing
properties exist, the fracture (fault) permeability can affect
k∗ significantly. In general, k∗ can be considered a harmonic
mean of the matrix and fracture permeabilities:

L

k∗ = L

km⊥
+ W

k
f
⊥

, (8)

where km⊥ and k
f
⊥ are the matrix and fracture permeabilities,

respectively, resolved in the direction normal to the fracture,
and W is the physical half-width of the fracture. In Eq. 8, it
was assumed that L � W .

Equating the right-hand side expressions in Eqs. 5 and 6
allows for the determination of the fracture index:

Υ = Iρλk∗, (9)

where I is a grid dependent property with units of length
that can be calculated as:

I = Af

L
. (10)

With the matrix-fracture mass flux terms that appear in
Eqs. 1 and 2 now fully defined, the utility of the EFM
approach for problems that involve fracture propagation is

revealed. The coupling between the fracture and matrix
domains has been reduced to a collection of simple source
terms. Numerical complexities associated with conforming
mesh approaches that would tend to make fracture prop-
agation problems become intractable for problems with
many fractures are now avoided with EFM. Standard finite
volume schemes can be used to discretize Eqs. 1 and 2
[1, 14].

2.2 Discrete fracture model description

The DFM was implemented using the finite volume method
and a conforming mesh of the rock volume around the frac-
tures. The volume around the fractures was discretized with
triangular control volumes, aided by the program Triangle
[35]. Triangle is an algorithm designed to create Delaunay
triangularizations of 2-D regions. The finite volume method
was implemented according to the method described by
Karimi-Fard et al. [14].

An important problem is that Delaunay triangulariza-
tion does not guarantee uniform or smoothly varying line-
segment length along domain edges, which in this case
are the fracture elements. This can create problems in
the boundary element mechanical calculations described
in Section 3, which are inaccurate unless fracture ele-
ment length is uniform or gradually varying. Therefore,
Triangle could not be used to generate a true Delaunay
triangularization.

To guarantee uniform fracture element size, the frac-
tures were discretized first by imposing a constant element
length (with some minor and unavoidable deviation from
constant length at fracture tips and intersections). Next, a
uniform grid of matrix nodes was superimposed over the
fracture network. Third, nodes were identified that were
in close proximity to fracture elements, and they were
removed. Finally, the list of fracture elements and matrix
nodes was provided to Triangle, which was used to produce
a constrained Delaunay triangularization. The triangulariza-
tion was “constrained” in the sense that the algorithm was
required to use only the fracture elements and matrix nodes
provided and was not permitted to subdivide the fracture
elements. Because of the constraint, the mesh was not guar-
anteed to be truly Delaunay, which degraded the quality of
the mesh and the accuracy of the calculations of flow in
the matrix. Despite this problem, the approach was used
because it was more important to avoid inaccuracy in the
mechanical calculations due to unevenly sized fracture ele-
ments than inaccuracy in matrix flow calculations due to
high aspect ratio triangles. It should be noted that this entire
issue is avoided with the EFM approach, which does not
require a conforming mesh between the matrix and fracture
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elements. Figure 2 is an example of the type of conforming
mesh used in the calculations.

2.3 One-dimensional leakoff approximation model
description

For a well connected to a highly conductive fracture within
an infinite reservoir, flow near the fracture has been shown
to be linear at early times [8]. This suggests that a useful
approximation to model the leakoff behavior near fractures
is to assume 1-D flow away from the fracture. In this work,
the semianalytical method of Vinsome and Westerveld [41]
was used to develop an approximate model that is relatively
efficient computationally compared to the EFM and DFM
approaches. The purpose of the simplified model is to avoid
numerical discretization of the volume of rock surround-
ing the fractures, while still accounting for fluid exchange
between the two domains.

The model treats fluid leakoff at each fracture control
volume using a sink term that is independent from all other
fracture control volumes. The key advantage of the Vinsome
and Westerveld [41] method is that it gives a highly accu-
rate and efficient solution to the diffusivity equation in 1-D,
even for arbitrarily varying pressure in the fracture. In con-
trast, the Carter leakoff model assumes constant pressure
in the fracture [11], a simplifying assumption that seriously
reduces model generality.

The Vinsome and Westerveld [41] method was created
originally as a model of heat loss due to conduction into
cap rock. However, the equation for heat conduction is
identical to the equation for single-phase fluid flow in a

porous media with constant pore and fluid compressibili-
ties, matrix permeability, and fluid viscosity. Therefore, the
method can be adapted easily by changing the variables in
the original equations of Vinsome and Westerveld [41] to
their equivalents for flow in porous media, assuming that the
aforementioned variables are considered as constants.

The assumptions of 1-D leakoff and no interference
between fractures are justified if the fracture spacing is suf-
ficiently large relative to the penetration distance of the
pressure signal and if the injection duration is short enough
to preclude a change in the flow regime (e.g., towards
late-time radial flow). The penetration distance, l, can be
estimated as [2]:

l = 4

√
km

μφ0c
, (11)

where the total compressibility, c, is the sum of the pore and
fluid compressibilities, μ is fluid viscosity, and φ0 is the ini-
tial porosity of the matrix rock. If fractures are in pressure
communication with other nearby fractures, then the 1-D
leakoff approximation tends to overestimate the amount of
leakoff. Relatively high leakoff suppresses pressure within
the fracture domain, which discourages shear failure and
fracture propagation.

2.4 Zero leakoff approximation model description

In geologic settings where the intrinsic permeability of the
matrix rock is extremely low, a useful approximation is that

Fig. 2 Example of a triangular
discretization used for the
conforming mesh discrete
fracture model. The red lines are
the natural fractures, and the
blue lines are the edges of the
triangular matrix control
volumes
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the matrix rock is impermeable. In this case, fluid flow can
occur only within a network of connected fractures, and no
fluid is able to leakoff into the surrounding rock. Under
this assumption, there is no flow in the matrix rock, and
the volume surrounding the fractures does not require dis-
cretization. The improvement in computational efficiency
that can be achieved by avoiding discretization of the matrix
rock volume can be tremendous.

This approximation represents a lower bound on the
amount of leakoff that would occur during a stimulation
treatment. Neglecting leakoff tends to promote elevated
pressure in the fracture domain, which encourages both
shear stimulation and fracture propagation. Even in scenar-
ios in which the implicit assumptions of this approximation
are not strictly valid, the model can be used to provide
informative constraints on reservoir behavior.

3 Geomechanics module

The present numerical model was built upon the framework
introduced by McClure [23] for coupling fluid flow in frac-
tures and fracture deformation. The reader is referred to
McClure [23] and McClure and Horne [24], where thorough
descriptions of the assumptions and the numerical formula-
tion for the geomechanics module are explained. Here, we
provide a brief overview of the major components of the
model.

3.1 Fracture deformation

We are interested principally in modeling systems that con-
tain a large number of fractures and faults, and therefore
the displacement fields that arise as a result of fracture
deformation are expected to be discontinuous. A boundary
element method called the displacement discontinuity (DD)
method is capable of calculating the complex displacement
fields due to the mechanical interaction between fractures
as they deform [3]. In addition, the DD method has been
demonstrated to calculate accurate stress distributions in the
vicinity of fracture tips, which is necessary to model fracture
propagation [30].

The DD model assumes a 2-D faulted and fractured
porous domain, saturated with a single-phase fluid. The
mechanical properties of the intact matrix rock are homoge-
neous. Deformations occur quasistatically, and linear elas-
ticity applies. Using the approach described by Shou and
Crouch [37], a linear system of equations can be developed
that relates the mode-I (opening) and mode-II (sliding) frac-
ture deformations to the traction boundary conditions along
the fractures. The primary variables that must be solved for
are the mode-I and mode-II displacement discontinuities,

e (or equivalently 
E) and 
δ, respectively.

The traction boundary conditions are functions of the
effective normal stress distributions along the fractures. The
effective normal stress, σ̄ , at a specific location along a
fracture surface is defined as:

σ̄ = σR + Φ − pf , (12)

where σR is the normal component of the remote tectonic
stress, and Φ is the normal component of the elastic stress
transfer that occurs as nearby fracture elements deform.
Compressive stress has been taken as positive in this sign
convention. The shear stress, τ , acting on a fracture surface
is:

τ = τR + Θ − ηv, (13)

where τR is the shear component of the remote tectonic
stress, Θ is the shear component of the elastic stress trans-
fer that occurs as nearby fracture elements deform, η is
a radiation damping coefficient, and v is sliding velocity.
The radiation damping term is used to approximate iner-
tial effects when sliding occurs very rapidly [34]. In the
model, Φ and Θ are calculated using the DD method. A
Mohr-Coulomb shear failure criterion is used for the frac-
ture sliding calculations, whereby the frictional strength of
a fracture, τs , is defined as [13]:

τs = f σ̄ + S. (14)

Here, f is the coefficient of friction, and S is the fracture
cohesion.

Fractures can be classified into several groups depending
on their local state of stress. A fracture element is classified
as closed if it is bearing compression such that its walls are
in physical contact. The walls of closed fractures are rough
surfaces, and so these fractures have the ability to transmit
and store fluid. Elastic stress transfer due to mode-I defor-
mations of closed fractures is assumed to be negligible. A
fracture element is open if the effective stress drops to zero
such that the fracture walls become out of contact. Open
fractures deform subject to fracture mechanics considera-
tions. If the shear stress acting on the fracture is less than its
frictional resistance to slip (i.e., τ < τs), then the fracture is
classified as stuck. Mode-II deformations and the associated
elastic stress transfer is assumed to be negligible for stuck
fractures. If the shear stress acting on the fracture becomes
equal to its frictional resistance to slip (i.e., τ = τs), the fail-
ure criterion has been met and the fracture is classified as
sliding.

The boundary conditions that must be enforced for the
mechanical deformation problem depend on these classifi-
cations. For closed fractures that are sliding, the following
boundary condition is enforced:
∣∣∣τR + Θ − ηv

∣∣∣ = f σ̄ + S. (15)
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For open fractures, the following boundary conditions are
enforced:

σ̄ = 0, (16)

and
∣∣∣τR + � − ηv

∣∣∣ = 0. (17)

Equations 1, 2, and 15–17 can be recast in residual form
to develop a coupled system of nonlinear equations. The
primary variables involved in these equations are pm, pf ,

e, and 
δ. In the model, a sequential implicit strategy is
used to solve the fully coupled system of equations [18].
The equations involving fluid pressure and opening dis-
placement are grouped together and solved simultaneously
(1, 2, and 16), and the residual equations involving shear dis-
placement are solved separately (15 and 17). The sequential
strategy iterates between these two groups until all residual
equations have converged to within a prescribed tolerance.

3.2 Fracture permeability evolution

An important component of the model used in this work
is the ability for the permeability of individual fractures
to evolve through time. Fracture permeability depends the
local state of stress throughout the reservoir and on fail-
ure processes [44]. In our model, the transmissivity of a
fracture is assumed to behave according to Poiseuille’s law
for flow between two parallel plates, which suggests that
the fracture-parallel transmissivity, T f, is related to the
hydraulic aperture of the fracture [38]:

T f = ek
f
‖ = e3

12
. (18)

Laboratory experiments have shown that for some types
of rock, shear slip can lead to a self-propping behavior that
can result in altered permeability [20]. An empirical model
can be applied to calculate the hydraulic aperture for closed
fractures [43]:

e = e0

1 + 9 σ̄
σ ∗

+ δ tan
ϕ

1 + 9 σ̄
σ ∗

, (19)

where e0 and σ ∗ are laboratory-derived constants that define
the stiffness of closed fractures, and ϕ is called the dila-
tion angle. For open fractures, the hydraulic aperture is
calculated as:

e = e0 + 
e + δ tanϕ. (20)

Equations 19 and 20 ensure that fracture aperture remains
continuous as fractures transition between closed and open
states. A distinction is made between the fracture hydraulic
aperture, related to fluid flux, and fracture void aperture,
related to fluid storativity, in order to account for complexi-
ties that exist in reality which cannot be captured at the scale
of the model. Equivalent relationships to Eqs. 19 and 20 are

used to calculate the void aperture, E, and the constants are
allowed to be different.

3.3 Fracture propagation

In this work, only purely mode-I fracture propagation was
considered. Hydraulic fractures were assumed to propagate
in the direction parallel to the maximum principal stress ori-
entation. Fracture propagation was assumed to occur subject
to the critical stress intensity factor criterion. The mode-I
stress intensity factor, KI , at fracture tips was calculated as
a function of the opening mode displacement discontinuity
[30]:

KI = 0.806

[
E

4
(
1 − ν2

)

] (π

a

)1/2

e (21)

where E is Young’s modulus, ν is Poisson’s ratio, a is the
length of the fracture tip element, and 
e in this case is the
mode-I displacement discontinuity of the fracture tip ele-
ment. In the model, when the value ofKI reaches the critical
stress intensity factor, KIC , the fracture is allowed to prop-
agate, and an additional fracture element is appended to the
fracture. Once a new fracture element nucleates, the appro-
priate matrix-fracture mass transfer term is activated in the
mass balance equations (see Eqs. 1 and 2).

4 Injection into an infinite-conductivity fracture

The EFM approach has been verified by previous authors
for a range of physical scenarios of practical interest, includ-
ing black oil [21], geothermal [15], unconventional gas [26],
and injection-induced seismicity [16, 29]. Here, a numerical
example is shown to demonstrate the validity of the present
model. Norbeck et al. [27] observed previously that the
EFM implementation achieved a suitable degree of accuracy
for a problem involving 1-D leakoff from a single frac-
ture that connected an injection and production well. This
was a relatively benign scenario because the EFM fracture
index (see Eq. 9) was derived assuming linear flow near the
fracture.

In this example, injection into a vertical infinite-
conductivity fracture in an infinite reservoir was considered.
The reservoir response for this problem is a linear flow
regime at early times, followed by a transition to radial flow
at later times. A closed-form solution exists for the transient
pressure response at the well [8]:

pw
D (tD) = 0.5

√
πtD

[
erf

(
0.134√

tD

)
+ erf

(
0.866√

tD

)]

+0.067Ei

(
0.018

tD

)
+ 0.433Ei

(
0.750

tD

)
. (22)
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Table 1 Model parameters for injection into an infinite-conductivity
fracture

Parameter Value Unit

xf 50 m

hf 10 m

e 0.01 m

km 20 × 10−15 m2

φ 0.2 –

c 8.8 × 10−10 Pa−1

μ 0.001 Pa · s
qw 0.01 m3· s−1

p0 40 MPa

Here, the dimensionless pressure variable, pw
D , is defined

as:

pw
D = 2πkmhf

qwμ

(
pw − p0

)
, (23)

and the dimensionless time variable, tD , is defined as:

tD = km

μφcx2
f

t, (24)

where hf is the fracture height (which is equal to the reser-
voir thickness), qw is the volumetric injection rate, pw is the
wellbore pressure, p0 is the initial reservoir pressure, xf is
the fracture half-length, and t is the time since the start of
injection.

4.1 Problem description

The model parameters used in the simulations are given
in Table 1. In the model, fluid was injected at a constant
rate for a period of 48 h. Wellbore storage effects were
neglected. Geomechanical effects were not considered, so
the properties of the fracture remained constant through-
out the simulations (i.e., the length and permeability of the
fracture were fixed).

The EFM, DFM, and 1-D leakoff approximation mod-
els were compared. In each case, the same fracture dis-
cretization was used. For the EFM nonconforming matrix
discretization, a structured Cartesian mesh comprised of
90,601 control volumes was used. For the DFM conforming
matrix discretization, a triangular mesh comprised of 80,876
control volumes was used.

4.2 Numerical results

The wellbore pressure response curves observed in the three
simulations are compared against Eq. 22 on a log-log plot
in Fig. 3. The time derivative of the EFM pressure response
was evaluated numerically, and is also plotted in the same
figure. The 1/2 slope of both the pressure and pressure
derivative curves at early times is indicative of the linear
flow regime that developed when flow was dominated by
the presence of the fracture [10]. Each of the three numerical
models captured this behavior accurately. There are slight

Fig. 3 Log-log plot of pressure and pressure derivative in dimensionless space for the infinite-conductivity fracture injection problem illustrated
in Section 4
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discrepancies observed for the EFM and DFM models at
very early time (tD < 4 × 10−3), but the magnitude of the
errors are small and appear exaggerated in the figure due
to the log scale. The 1-D leakoff approximation performed
extremely well in the linear flow regime.

At a time of tD ≈ 4 × 10−2, the pressure response cal-
culated using Eq. 22 begins to diverge from the linear flow
regime and transitions towards a radial flow regime. From
Fig. 3, it is observed that both the EFM and DFM models
were able to capture the transition from linear to radial flow
accurately. As expected, the 1-D leakoff approximation was
not valid for simulation times that extended well beyond the
linear flow regime.

In addition to demonstrating the accuracy of the three
numerical models, this example also revealed a very inter-
esting characteristic of the EFM approach. While the frac-
ture index embodies an implicit assumption that flow is
purely linear in the vicinity of the fracture, in this exam-
ple the global pressure response of late-time radial flow was
captured accurately. In this light, it is evident that the con-
cept of EFM may be applied in scenarios that involve more
complex flow regimes, for example, in naturally fractured
reservoirs in which nearby fractures may affect each other.

5 Shear stimulation

In geothermal settings, it is commonly assumed that
hydraulic stimulation occurs due to shear stimulation, a
process in which fluid injection triggers slip and perma-
bility enhancement on natural fractures. Shear stimulation
involves injecting fluid at a pressure less than the magnitude
of the minimum principal stress into a network of prexist-
ing natural fractures in order to reduce the effective normal
stress acting on the individual fracture planes and thereby
reducing their resistance to shear failure. The premise is that
some types of rock may be conducive to a self-propping
behavior upon shear failure that can lead to a permanent
enhancement of permeability [20]. In addition, shear failure
of natural fractures is responsible for causing microseis-
mic events that are observed commonly during hydraulic
fracture treatments, and so principles related to shear stim-
ulation can be applied to interpret the microseismic activity
generated during hydraulic fracturing [40].

During shear stimulation treatments, the emergent behav-
ior of an altered reservoir transmissivity is a very nonlin-
ear process involving a tight coupling between fluid flow,
mechanical deformation of fractures, shear failure of frac-
tures, and a constitutive relationship describing fracture
permeability evolution. As fractures deform, stresses are
transferred elastically throughout the domain, and it can be
extremely important to solve the full geomechanics prob-
lem in order to resolve these effects. McClure and Horne

[22] demonstrated that stress transfer effects can influence
the rate at which shear stimulation propagates along individ-
ual fractures significantly, giving rise to a mechanism they
called crack-like shear stimulation. Localized shear stress
concentrations develop ahead of the zone that has previ-
ously experienced slip and can cause slip to occur before
the pressure front reaches that location, further enhanc-
ing permeability and promoting flow. In this manner, shear
stimulation is able to propagate at a rate related to the
enhanced fracture transmissivity, rather than the initial frac-
ture transmissivity. Considering this mechanism, models
that employ simplified geomechanical models based purely
on pressure diffusion, such as those presented by Moinfar
et al. [26] or Karvounis et al. [16], may not be sufficient
to predict reservoir response realistically in many injection
and production scenarios of practical interest. The numeri-
cal simulation results presented in this section demonstrate
that the EFM approach can be applied to solve coupled fluid
flow and geomechanics problems with nonlinear fracture
permeability evolution.

5.1 Problem description

In this numerical example, shear stimulation of a relatively
complex network of preexisting fractures was considered.
The domain was essentially 2-D (i.e., all fractures were ver-
tical and had fixed heights equal to the reservoir thickness).
The stress regime was strike-slip. A 150 m section of a
horizontal well-penetrated several natural fractures. Fluid
was injected at a constant pressure such that the reservoir
fluid pressure never exceeded the minimum principal stress,
ensuring that tensile fractures would not propagate. There-
fore, changes in injectivity were purely due to permeability
changes caused by the shear stimulation effect. The fracture
network and well geometry are illustrated in Fig. 4, and the
model parameters are listed in Table 2.

Fluid was injected for a period of 7 days at a constant
pressure of 12.4 MPa. The magnitude of the minimum prin-
cipal stress was 14.5 MPa. The metrics for comparison are
injection rate as a function of time, cumulative mass trans-
fer between the matrix and fracture domains as a function
of time, and the spatial distribution of shear displacement
throughout the fracture network at the end of the stimula-
tion treatment. The DFM results should be considered the
“most true” solutions because they employed the standard
conforming discretization strategy that is commonly used in
reservoir simulation practice.

A series of four test cases were modeled. In cases 1–3,
the results of the EFM, DFM, 1-D leakoff approximation
model, and zero leakoff approximation model were com-
pared for a range of matrix permeabilities. In case 4, a
discretization refinement study for the EFM was performed.
The same fracture network discretization, with a total of
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Fig. 4 Plan view of the fracture
network geometry for the shear
stimulation example illustrated
in Section 5. The black line is the
horizontal wellbore and the blue
lines are the natural fractures

16,547 fracture control volumes, was used in each of the
simulations. In cases 1–3, the EFM employed a noncon-
forming structured Cartesian mesh with 251,001 control
volumes for the matrix discretization. The DFM employed a
conforming triangular mesh with 351,569 control volumes

Table 2 Model parameters for study on shear stimulation in a natu-
rally fractured reservoir

Parameter Value Unit

hf 100 m

e0 5 × 10−5 m

E0 5 × 10−3 m

σ ∗
e 90 MPa

σ ∗
E 90 MPa

ϕe 5 deg.

ϕE 0 deg.

f 0.6 –

η 3 MPa · m−1· s
km 10−19 to 10−17 m2

φ0 0.03 –

cφ 1.9 × 10−9 Pa−1

ρ0 1000 kg · m−3

cw 4.6 × 10−10 Pa−1

μ 0.001 Pa · s
p0 8.7 MPa

σR
xx 23.8 MPa

σR
yy 14.5 MPa

σR
xy 0 MPa

for the matrix discretization. The 1-D and zero leakoff
approximation models did not require discretization of the
matrix rock volume. In case 4, the number of EFM matrix
control volumes was varied from 121 to 251,001 to test for
the property of convergence upon refinement and to evalu-
ate the EFM’s ability to obtain suitable degrees of accuracy
with coarser grids.

5.2 Numerical results

The flow behavior in the reservoir was affected strongly by
the geometry, connectivity, and hydraulic properties of the
natural fracture network. The EFM pressure distribution in
the matrix rock at the end of the simulation, shown in Fig. 5,
shows that fluid leakoff was limited to regions close to the
fractures. Flow evidently occurred preferentially along a rel-
atively extensive natural fracture in the upper-right corner
of the domain.

The main comparison metric for these numerical exper-
iments is injection rate as a function of time. The injection
profiles for each case are shown in Fig. 6. Case 1 repre-
sents the base case simulation. The matrix permeability was
km = 1 × 10−18 m2. The injection rate during the stimu-
lation for case 1 is shown in Fig. 6a. Because the boundary
condition on the injection well was constrained at a con-
stant pressure, sudden increases in the slope of the injection
rate corresponded to shear stimulation events. As the crit-
ical pressure required to cause shear failure was reached
at one particular location, the resulting elastic stress trans-
fer tended to cause cascading failure in nearby fractures,
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which is the reason why several distinct stimulation events
are observed in Fig. 6a.

For case 1, the EFM and DFM results are indistinguish-
able, suggesting that EFM was able to obtain a high degree
of accuracy in the global flow behavior. To further verify the
accuracy of the EFM results, the total amount of fluid that
leaked off from the fractures into the matrix domain was
compared to the DFM simulation and is shown in Fig. 7. The
cumulative mass exchange for both models was normalized
by the total mass of fluid injected in the DFM simulation. It
is clear that by treating the mass exchange as source terms
via the EFM framework, the matrix-fracture mass exchange
behavior was captured accurately for a complex fracture
geometry. These results demonstrate that the EFM approach
can indeed perform well for problems involving coupled
flow, geomechanics, and nonlinear permeability evolution
in highly fractured reservoirs.

For case 1, the 1-D leakoff model performed well in
terms of capturing the timing and magnitude of the major
shear stimulation events and the late time injection rate.
The zero leakoff model predicted that shear stimulation
events occurred relatively early, which is physically intu-
itive because pressures everywhere in the fracture network
were higher without the leakoff effect. It is interesting to
note that each of the four models showed the same gen-
eral trends in reservoir response, and the effect of fluid
leakoff evidently impacted only the onset of each individual
stimulation event.

Figure 6b, c show the injection rate histories for cases 2
and 3, which correspond to matrix permeabilities of km =
0.1× 10−18 m2 and km = 10× 10−18 m2, respectively. For
each of these cases, the EFM and DFM injection profiles
were nearly identical. For case 2, which had a relatively low

matrix permeability, the range of predictions for the four
models narrowed significantly. The full matrix discretiza-
tion approaches provided only modest improvements over
the 1-D leakoff approximation. For case 3, which had a
relatively high matrix permeability, the results were again
consistent with intuition. The range in model predictions
was largest for this case because fluid leakoff effects were
more pronounced than in any of the previous cases. At
later times, the 1-D leakoff approximation predicted a sig-
nificantly higher injection rate than the EFM and DFM
simulations. This can be attributed to the fact that for nearby
fractures, the distance of investigation of the pressure tran-
sient was large enough that they began to affect each other.
The 1-D leakoff model is fundamentally unable to resolve
this behavior.

For the EFM discretization refinement study, seven lev-
els of matrix refinement were tested. Both the zero leakoff
and 1-D leakoff approximation results are also shown for
reference. In all cases, the same fracture discretization was
used. The matrix permeability was the same as case 1 (km =
1×10−18 m2). The injection rate history is shown in Fig. 6d,
and the error in the fracture shear displacement at the end
of the simulations is shown in Fig. 8. The results indicate
that the EFM approach was convergent upon grid refine-
ment. More interestingly, a high degree of accuracy was
still obtained even after a significant reduction in the total
number of degrees of freedom. In this example, reducing
the number of control volumes from roughly 250,000 down
to 90,000 resulted in a negligible loss of accuracy. Further
reducing the number of control volumes to about 40,000 still
gave acceptable results in terms of predicting a similar injec-
tion rate curve and maintaining shear displacement errors
less than 5 %. Note that for a given fracture discretization,

Fig. 5 Matrix pressure
distribution at the end of the
stimulation treatment (EFM case
1 of the shear stimulation
example in Section 5). The color
bar scale ranges from 8.7 to
12.4 MPa
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it is difficult to arbitrarily reduce the number of degrees of
freedom for conforming discretization techniques such as
DFM.

6 Hydraulic fracture propagation

Hydraulic fracturing and horizontal drilling are two of the
key technological advancements that have allowed for the
economic development of unconventional shale gas and
shale oil resources. Hydraulic fracturing may also prove to
be key for the future development of engineered geother-
mal systems [36]. In general, the goal of a hydraulic fracture
treatment is to expose the wellbore to a larger reservoir
surface area in order to enhance recovery rates and ultimate

recovery. The process involves injecting fluid at a pressure
greater than the magnitude of the minimum principal stress
so that new tensile fractures nucleate and propagate through
the reservoir. In many applications, the desired effect of a
hydraulic fracture treatment is to create a set of large, pla-
nar vertical fractures that extend laterally away from the
horizontal wellbore.

One technique that is commonly applied for the design
of hydraulic fracture treatments was due to Geertsma and de
Klerk [6], who introduced what is referred to as the KGD
fracture model. For vertical KGD fractures, plane strain
conditions are assumed in the vertical direction such that
each horizontal cross-section of the fracture has the same
geometry. Gidley et al. [7] provided a closed-form solution
that describes fracture half-length as a function of time for
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Fig. 6 Injection rate over the duration of the stimulation treatment for cases 1–4 of the shear stimulation example in Section 5
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Fig. 7 Cumulative mass transfer between matrix and fracture domains
normalized by the total mass of water injected over the entire stim-
ulation treatment for case 1 of the shear stimulation example in
Section 5

constant injection rate and assuming no leakoff of fluid into
the formation:

xf = 0.679

[
Gi3

(1 − ν)μh3f

]1/6

t2/3, (25)

where i is half of the total volumetric injection rate (i.e.,
the flow rate entering one of the fracture wings), and G is
shear modulus. For the case where leakoff is considered,
Valko and Economides [39] performed a material balance

Fig. 8 The error in cumulative shear displacement at the end of the
stimulation treatment for various levels of EFM grid refinement (shear
stimulation example in Section 5). The blue and red lines represent the
error for the zero leakoff and 1-D leakoff approximations, respectively

Table 3 Model parameters for mode-I hydraulic fracture propagation
problem

Parameter Value Unit

i 0.05 m3· s−1

hf 100 m

km 0.1 × 10−15 m2

φ0 0.2 –

c 8.8 × 10−10 Pa−1

μ 0.001 Pa · s
G 15 GPa

ν 0.25 –

KIC 1 MPa · m1/2

p0 40 MPa

σ3 45 MPa


p 5.2 MPa

CL 7.8 × 10−6 m · s−1/2

that yielded a nonlinear function for fracture length (given
here, neglecting spurt-loss):

xf = ēi

4πC2
Lhf

[
exp

(
β2

)
erfc (β) + 2β√

π
− 1

]
, (26)

where ē is the average aperture of the hydraulic fracture and
CL is the leakoff coefficient. The time variable is included
in the parameter, β:

β = 2CL

√
πt

ē
. (27)

The nonlinearity arises because the average fracture aper-
ture at any time depends on the length of the fracture.

Fig. 9 Hydraulic fracture half-length as a function of injection time
for the fracture propagation example illustrated in Section 6. Compar-
ison of the four different models to the semianalytical solutions (see
Eqs. 25 and 26)
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Table 4 Fracture half-length
at end of injection for the
model comparison study

Eq. 25 Zero Leakoff Model Eq. 26 1-D Leakoff Model DFM EFM

xf (m) 370.0 360.0 295.5 282.5 292.5 285.0

Difference (%) N/A −2.7 N/A -4.4 −1.0 −3.6

Gidley et al. [7] suggest that the fracture aperture at the
wellbore, ew, is:

ew = 2.27

[
μxf (1 − ν) i

Ghf

]1/4
. (28)

For the KGD fracture geometry, the average value of the
fracture aperture is:

ē = π

4
ew. (29)

If the leakoff coefficient is known, Eqs. 27–29 can be sub-
stituted into Eq. 26, so that Eq. 26 becomes only a function
of time and fracture length.

In this study, leakoff from the fracture was considered
to be slightly compressible flow driven purely by diffusion
into the matrix rock. Under this assumption, the leakoff
coefficient, CL, is [5]:

CL =
[
kmφ0c

πμ

]

p, (30)

where 
p = pf − p0 is the pressure drop driving leakoff.

6.1 Problem description

In this numerical example, the models’ ability to simulate
pure mode-I fracture propagation was examined. Propaga-
tion of a single two-wing vertical fracture was considered.
The domain was assumed to be homogeneous in terms of
fluid flow and mechanical properties, and no preexisting
natural fractures were present. Plane strain conditions in the
vertical direction were assumed, so the numerical solutions
are compared with KGD semianalytical solutions [7, 39].
Three sets of simulations were performed. In the first case,
the matrix rock was assumed to be completely imperme-
able, such that no leakoff occurred. The zero leakoff model
is compared to Eq. 25. In the second case, the matrix rock
was assigned a permeability value of km = 0.1 × 10−15 m2

in order to investigate the effects of leakoff. The 1-D leakoff

Table 5 Reduction in fracture half-length due to the leakoff effect for
the model comparison study

Model Reduction in xf (%)

Semianalytical KGD 20.1

1-D Leakoff Model 21.5

DFM 18.8

EFM 20.8

model, EFM, and DFM are compared to Eq. 26. In the third
case, a discretization refinement study for the EFMwas per-
formed under the permeable rock scenario. The metric used
for comparison is the hydraulic fracture length as a function
of time.

The model parameters for this problem are given in
Table 3. In the model, fluid was injected at a constant rate
of 0.05 m3 · s-1 for 30 min. The hydraulic fracture had a
fixed height of 100 m. The magnitude of the least princi-
pal stress was 5 MPa above the initial reservoir pressure,
so the relatively high pressure in the fracture necessary to
drive propagation encouraged leakoff to occur for the case
of permeable matrix rock. To determine the leakoff coef-
ficient used to calculate the semianalytical solution to the
problem (see Eq. 30), the pressure drop was assumed to
be 
p = 5.2 MPa. This value was based on the average
pressure in the fracture observed during the numerical sim-
ulations. The same fracture discretization was used for the
DFM and EFM simulations. The DFM and EFM matrix
discretizations had 102,012 and 160,801 control volumes,
respectively.

In general, the numerical models are not expected to
achieve an exact match with the semianalytical solutions
because there are some significant differences in the respec-
tive underlying assumptions. For example, the semianalyti-
cal solutions are based purely on volume balances, whereas
the numerical solutions allow fracture propagation to occur

Fig. 10 EFM grid refinement study for fracture propagation exam-
ple illustrated in Section 6. The solutions are convergent upon grid
refinement and appear to be converging towards the 1-D leakoff
approximation. The results from the simulation with 90,601 control
volumes are not shown here for the sake of clarity
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Table 6 Fracture half-length
at end of injection for the EFM
discretization refinement study

Eq. 26 1-D Leakoff Model 251001 90601 40401 2601

xf (m) 295.5 282.5 285.0 288.7 291.3 303.8

Difference (%) N/A −4.4 −3.6 −2.3 −1.4 2.8

subject to a criterion based on the mode-I stress intensity
factor.

6.2 Numerical results

The comparison between the numerical and semianalyti-
cal models of the temporal evolution of fracture length is
illustrated in Fig. 9. The numerical models captured the
fracture growth behavior very well over the duration of
injection. The numerical solutions matched the semianalyt-
ical solutions extremely accurately at early times during the
period of rapid growth of the fracture. The numerical mod-
els tended to underestimate the fracture length slighly at
later times. A summary of the fracture half-length at the
time fluid injection stopped is given in Table 4. For the case
of no leakoff, the zero leakoff approximation model under-
estimated the KGD solution by 2.7 %. For the cases where
leakoff occurred, the difference between the numerical and
semianalytical models ranged from −1.0 to −4.4 %.

The effect of fluid leakoff during the hydraulic fracture
simulations was that some of the fluid was lost into the
formation and was no longer useful for creating new frac-
ture volume. A summary of the reduction in fracture length
due to leakoff is provided in Table 5. In these calculations,
the KGD solutions were compared to each other, and the
DFM, EFM, and 1-D leakoff model were each compared to
the zero leakoff model. The numerical models predicted a
reduction in fracture length ranging from 18.8 to 21.5 %,
which compares favorably with the semianalytical solution
of 20.1 %.

The results of the EFM matrix grid refinement study are
illustrated in Fig. 10 and summarized in Tables 6 and 7.
For coarse levels of grid refinement, the amount of fluid
leakoff tended to be underestimated resulting in longer

Table 7 Reduction in fracture half-length due to the leakoff effect for
the EFM discretization refinement study

Model Reduction in xf (%)

Semianalytical KGD 20.1

1-D Leakoff Model 21.5

251001 20.8

90601 19.8

40401 19.1

2601 15.6

hydraulic fractures. The solutions were convergent upon
grid refinement, which is an attractive numerical property
of EFM. Interestingly, the solutions converged toward the
1-D leakoff approximation solution. Because the duration
of injection was very short and the matrix permeability was
relatively low, the assumption of 1-D flow away from the
newly forming fracture was quite reasonable. In this light,
the 1-D leakoff approximation model could be considered
the “most true” numerical solution, and it is encouraging
that the EFM solution approached the 1-D leakoff model.

Quantitatively, the models performed extremely well.
When compared to the semianalytical KGD solutions, the
magnitude of the mismatch of the numerical solutions were
within reason for practical purposes. It is worth noting that
the literature provides several alternatives to Eqs. 25 and 26
that predict differences in fracture half-length on the order
of 10 % [39], and the present numerical solutions fall within
that range. These results indicate that the EFM framework
can be applied successfully to scenarios in which fractures
are propagating and fracture systems are growing over time.

7 Discussion and concluding remarks

In this work, we developed a novel numerical model-
ing framework based on the embedded fracture modeling
(EFM) approach as an effective technique to model reser-
voir stimulation processes such as hydraulic fracturing and
shear stimulation. The EFM approach was implemented
in a reservoir model that couples fluid flow, mechanical
deformation, and rock failure processes. In order to verify
the accuracy of the embedded fracture model, the present
model was compared to a more traditional discrete frac-
ture model (DFM) in three separate numerical examples.
In each example, the EFM performed rermarkably well
and yielded results that matched the DFM to within an
acceptable margin of error.

In this paper, we demonstrated that the EFM is extremely
well-suited for fracture propagation problems. In the EFM
framework, newly formed fracture control volumes can be
integrated into the numerical model with relative ease. The
ability to discretize the fracture and matrix rock domains
separately ensures that fractures are able to propagate with-
out the numerical constraints associated with traditional
approaches that employ conforming meshes. We showed
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that it is possible to coarsen the matrix discretization and
still obtain a reasonable degree of accuracy using the EFM
approach. Once a fracture discretization has been defined
for a DFM, however, it is very difficult to arbitrarily coarsen
the matrix discretization in the same fashion that is possible
with EFM. This has important implications when moving
towards increased problem complexity, for instance, when
considering interaction between propagating fractures and
natural fractures, branching and curving fractures, or three
dimensions. Issues associated with numerical discretization
in these complex scenarios can set practical limitations on
the utility of reservoir modeling, and are largely overcome
in the EFM framework.

Two approximate models were also developed and com-
pared to both EFM and DFM. These models are referred to
as the one-dimensional leakoff and zero leakoff approxima-
tion models, and were observed to provide useful constraints
on reservoir stimulation behavior at significantly reduced
computational effort. For very low matrix permeabilities,
all models were observed to provide similar results. As
matrix permeability increased, the two approximate models
diverged from the EFM and DFMmodels. Further investiga-
tion must be performed in order to better classify the range
of geologic and operational parameters over which each of
the models retain a high level of accuracy.

It has become clear that geomechanics can play an
important role in many different facets of reservoir engi-
neering practice. For example, mechanisms that enable
permeability creation during hydraulic fracturing are con-
trolled largely by mechanical effects. Shear slip events
commonly observed during microseismic monitoring oper-
ations of fluid injection treatments help reservoir engineers
define the stimulated region. The reservoir model described
in this paper can be applied in practical settings to help
design and optimize reservoir management strategies or in
research settings to better understand fundamental reservoir
processes.
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