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A model for an imperfectly bonded interface between two elastic media is proposed. Displacement across this 
surface is not required to be continuous. The displacement discontinuity, or slip, is taken to be linearly related 
to the stress traction which Is conbnuous across the interface. For isotropic interface behavior, there are two 
complex frequency dependent interface compliances, %, and •/r, where the component of the slip normal to 
the interface is given by •/n times the normal stress and the component tangential to the interface is given by 
•/r times the shear stress and is in the same direction. Reflection and transmission coefficients for harmonic 
plane waves incident at arbitrary angles upon a plane linear slip interface are computed in terms of the 
interface compliance• These coefficients are frequency dependent even when the compliances are real and 
frequency independent Examples of the effects of buried slip interfaces on reflection coefficient spectra and 
on Love-wave dispersion relations are presented. 

PACS numbers: 43.20.Bi, 43.20.Fn, 68.25. + j 

INTRODUCTION 

A perfectly bonded interface is a surface across 
which both traction and displacement are continuous. 
Thus when solving harmonic wave problems in the 
neighborhood of a perfectly bonded interface between 
two different elastic media, wave solutions in one medi- 
um must be matched with those in the second medium 

through interface conditions. In general, there are six 
scalar equations relating the traction vector and the 
displacement vector on one side to the corresponding 
components on the other side. These conditions pro- 
vide the values of the arbitrary constants in the general 
wave solutions for each medium. 

A generalization of this concept is that of an imper- 
fectly bonded interface for which the displacement 
across a surface need not be continuous. Some applica- 
tions of such a generalization to elastodynamic prob.- 
lems are the study of composite media, crack detec- 
tion, and seismic wave propagation. 

Imperfect bonding is taken here to mean that the trac- 
tion is continuous across the interface but that the 

small disphtcement field is not. The small vector dif- 
ference in the displacement, is assumed to depend lin- 
early on the traction vector. The dependence may be 
real and frequency independent corresponding to an 
elastic spring condition or it may be complex and fre- 
quency dependent corresponding to a viscoelastic spring 
condition. This interface condition, called a "linear 
slip condition," replaces the condition of continuous 
displacement. 

The next section shows how linear slip conditions can 
be put on a firm footing within the theory of elasticity 
and how the notion of isotropy simplifies the general 
slip condition. 

Subsequent sections consider plans wave reflection 
and transmission coefficients at plane linear slip inter- 
faces for SH waves and for P end SV waves and propa- 
gation through stratified media containing slip inter- 
faces. Also included in these sections is an analysis 
for the case of SH waves showing that a thin low imped- 
ance layer perfectly bonded bebveen two half spaces 
gives rise to plane wave reflection and transmission 
coefficients that approach those derived for a linear 

slip boundary as the thickness to wavelength ratio ap- 
proaches zero. 

In the last section, two cases of elastic wave propa- 
gation in the presence of slip interfaces are presented. 
The first explores the effect of a buried slip interface 
on the reflection coefficient at normal incidence. In the 

second case dispersion curves for Love waves are de- 
rived and the effect of the buried slip interface is dis- 
cussed. 

I. LINEAR SLIP CONDITIONS 

Consider a smooth, in general, curved surface be- 
tween two elastic regions, across which the small dis- 
placement need not be continuous. The stress traction 
which is continuous across the interface, is assumed 
to be related to the discontinuity of displacement at each 
point. 

Let the origin of a rectangular coordinate system be 
at a point on that surface so that x, and xa are directions 
tangential to the interface and x2 is normal to the sur- 
face. With u denoting displacement, let au= u(O, 0', O) 
- u(O, 0', O) be the displacement discontinuity vector at 
the point with possible time dependence suppressed. 
The traction vector, t, at that point on the interface, 
has components •'ax, r2=, •'•s, and is the force per unit 
area that the material on the +xa side of the interface 
exerts on the -x• side. Assume that t is an analytic 
function of au at each point subject to the requirements 
that au vanishes at a point if and only if t vanishes at 
that point. This relation may be expressed as a power 
series in Au which is shown symbolically as 

t= F(au) = k au+ O(au•%), (1) 
and neglecting quadratic and higher order terms in 
components of Au gives a linear relation between t and' 
,xu through the "boundary stiffness matrix" k which has 
dimensions stress/length. 

If a positive definite displacement discontinuity ener- 
gy density function, Ut, of dimension energy/area 
= force/length is to be associated with a slip interface, 
then, under the constraint that U t vanish when Au van- 
ish, Ut is of the form 

Ut= L/Xu•+ «Ki•u•u • + 3rd order terms. (2) 
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An energy equation relating the rate of work done at a 
slip interface S.,, to the rate of increase of U.,, neglect- 
Lug third order terms, gives 

= fs + (3) 1 

and as this must hold for any part of the slip interface, 
the integrantis may be equated giving 

t = L+ AUK (4) 

which, to conform with P..q. (1), implies L=0 and k=K, 
a positive definite, symmetric matrix. 

Ii the boundary stiffness matrix is to be invariant 
with respect to inversion of the x2 axis, it may be 
shown' that the off diagonal terms k2, and k•, between 
normal and tangential directions must vanish. A plane ß 
boundary with such a stiffness matrix will in general 
scatter a nonnormal incident plane wave in a homogen- 
eous medium to three transmitted and three reflected 

waves, the P, SV, and SH waves. Only if the incident 
wave displacement is totally normal (a normally inci- 
dent P wave) or totally tangential (a normally incident 
shear wave) will some of these waves not appear. In 
this case a normally incident shear wave will be scat- 
tered to shear waves that are out of polarity with the 
incident wave. 

If there is rotational symmetry about the x2 axis, then 
it may be shown that kx• = 0 and k,x = k•. This leaves but 
two independent stiffnesses, the normal stiffness, k2• 

= k s and the tange•ntial stiffness, k,x = k{• = k r. Some ef- 
fects on •ave behavior of such a "transverse isotropic" 
linear slip interface will be considered in subsequent 
sections. 

It will be more convenient to characterize slip in 
terms of compliances instead of stiffnesses, where the 
compliance matrix is the inverse of the stiffness ma- 
trix. For the transverse isotropic slip interface to be 
considered, we may write 

0 •u= Us 0 t, (5) 

0 Ur-{ 

where the compliances Us= k• and U•. = k•.' have dimen- 
sion length/stress. The vanishing of either or both of 
these compliances now leads to the usual perfectly 
bonded interface conditions. 

In addition, as real elastic parameters may be gen- 
eralized to complex frequency dependent viscoelastic 
parameters via the harmonic elastic-viscoelastic anal- 
ogy, 2 so may the slip boundary compliances be general- 
ized allowing the modeling of a linear viscoelastic slip 
interface. 

II. PLANE INTERFACES, PLANE WAVE REFLECTION 
AND REFRACTION 

Consider two homogeneous, isotropic, linear elastic 
half spaces in contact along a plane interface, denoted 

by x,= 0. Elasticmedium 1, with density fh, compres- 
sional wave speed •,,= (X,+ 2{•,/p,) •12, and shear wave 
speed •t = (Pl/Pi) •/•, occupies the region x2 < 0 and medi- 
um 2, with density p•, compressional wave speed •, and 
shear wave speed {•, occupies the region x•> 0. As- 
sume an incident harmonic plane wave of frequency co 
and unit amplitude, whose propagation vector lies in the 
x,,x• plane, impinges on the interface in medium 1. We 
may consider separately the two uncoupled cases, one 
of an incident SH wave, giving rise to antiplane strain 
solutions and the other of either an incident P or SV 

wave giving rise to plane wave solutions. 

A. Incident SH waves 

This is the simplest case to discuss. It exhibits the 
effects of a slip condition most clearly as there i• but 
one slip condition for this problem which influences the 
value of the one reflection and one transmission coeffi- 

cient present in the general wave solutions. All dis- 
placements in both media have but one nonzero compo- 
nent, •{(x,,xz), which assumes the form 

u a = exp/co[(x, sinq• + x• cosq5•)//3• - i] 

+ R exp/co[(x, sinq• -x2cosq•)/• - t] , x•> 0 

us=Texpico[(x, sinq•+x=cosdp•)/fi•-t], x•>0 (6) 

co sin•,///• = • sin•/•z= k,. 

R is known as the reflection coefficient and T, the 
transmission coefficient. In all subsequent equations 
the exp/(k,x, - cot) dependence of the wave fields will be 
suppressed. 

The values of R, T are then found from the two non- 
trivial interface conditions in this problem that relate 
the values of • and • = p•8•/ax•, the only nonvanish- 
ing component of the traction across the interface. The 
conditions that r•3 is continuous across x•= 0 and that 
A• = Ur?z• give the following two equations: 

icoZ,(1-R)=icoZaT , T-(l+R)=uricoZ•(1-R), (7) 

Z/= p/•/cos•/, i= 1,2, 

which give values for i and T 

R = Z, - Z• - i•urZ•Z= T= 2Z, (8) 
Z, + Z• - icourZ,Z• ' Z, + Z• - icoUrZiZ2 ' 

Clearly as the compliance {Ur { - 0, the case of per- 
fect bonding is approached and R, T approach their con- 
venttonal values. s As {Ur {"- 0, the case of a free sur- 
face is approached and R- 1, T-0 as expected. For • 
> •,, when •b, is greater than the critical angie, Z• is 
positive imaginary. At critical incidence, cosq• and 
hence Z• vanish giving R = 1 and T= •- the usual result. 
This is because •'•s and hence •u• vanish. 

For U•. complex, both the real and imagL, mry parts of 
U•- must be positive which guarantees that {R { • 1. For 
a pure viscous slip interface, A•J• is proportional to t•s. 
Letting the viscous compliance be •r, gives, in the 
frequency domain 

-ico•us= •r•, (9) 

which says that the boundary compliance, Uz, may be 
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written 

nr: i•r/w. (10) 
Substituting this value into Eq. (8) gives for R, T 

R= Z• -Z•+ •rZ•Z• T= 2Z, (11) 
Z•+Z•+ •rZ,Z•' Z•+Z•+ •Z• ' 

show• t•t for •is case R a• T are •ain re• • 
fr•uency indepe•ent. 

Two special cases • interest are when; (1) • •- 
s•ces •ve identic• properties, •d (2) when •- 
s•ce 2 is rig•. 

The first case, which implies Z•=Z•=Z, yields 

R= -{•rZ T= 2 (12) 

•iv•g a measure as to how well bond• a crack or an 
inte•ce is in • o•e•ise homogene.s body. 

When ha•-space 2 is rigid, the disphcement in m•- 
i• 2 is assumed to vanish and the second of Eq. (•) 
gives 

1 + i•rZ, (13) 

It is easy to vis•l•e •e type of physical mec•nism 
a• •e •sociat• assumptions giving rise to linear 
slip be•vior for this simple •se of SH waves. Con- 
s•er •e sit•tion of a sidle hom•eneo•, isotropic 
hyer of thickess h, densi• p', •d sh•r wave speed 
y, •d •us of shear m•us, •'= p'y•, locat• be- 
•een •e •o •-spaces, a• assume perIect bo•i• 
on •h of •e interfaces at x= = 0 a• • = &. The gen- 
e•l solution for all x•,xs is 

%=•p({•xz)+R'•-{•.•), •0, 

.s = A' cos(&•=) + B' s in(•), 0 < x• < h, (14) 

.s = T' exp[{&•z(x • - •)], x•> •, 

Satisfyi• disp•cement a• traction b•n• condi- 
tions at x•= 0 and x•= h gives 

R' = (g, - Z•) cos(•lh) - i(g,Z• - Z •) [s i•&•&)/Z' ] 
(Z• + Z•) cos(g•h) - i(g,Z• + g '•) [s in(g•t)/Z' ]' 

T' = 2Zl 
(Z, + Z:) cos(k;•) - i(Z,Z: + Z':) [sin(k_'h)/Z']' 
Z' = p'y cos•' = k• W/o•. 

Allowing the layer to be thin compared to a wavelength 
and of low impedance, p/•, relative to medium 1, so 
that 

cos(k;h)- 1 + o [(k;h)•], 

(i/Z') sin(k•'h) = (cob/•'){1 + O [(klh): ] }, (16) 

I z'/z, I = ß << 1, 
enables W.q. (14) to have the form 

n' = R + o(•:) + o 

T'= T+ 0(ß% O[(k;A):], (17) 
where R, T are given by Eq. (8) with qa' replaced by •/ 
•'. Thus, physically, some knowledge of two of three 
unknowns, qr, h, and •' gives an indication of the 
third. Information about qr, tangential compliance, 
may be inferred by measuremen• of reflection and/or 
transmission coefficients. Information about interface 

thickness may be inferred from knowledge of the pol- 
ishing procedure used in preparing surfaces to be 
bonded, and information about •' may be inferred from 
knowledge of the interstitial material between the two 
partially bonded elastic regions. 

B. Incident P or SV waves 

This is the plane strain problem for which all dis-' 
placements lie in the x I,x 2 plane, with components 
ui(xi,x2) , i= 1,2. The incident wave field in medium 
is of the form 

if the incident wave is a P wave, or 

= e •'"• •'•/'• , (19) 

u• L sin•, J 

if the incident wave is an SV wave. In either cas% the 
reflected field in medium 1 is of the form 

+ R• e-i•z •,*t/•t, (20) 

and the transmitted field in medium 2 is of the form 

LcosO•J 

gitdx 2 co$02/O• 2 

F-cøs• 1 + T s /•i•x2 cø8•2/$2 , 

L sin•2 J 

(21) 

where 

O) SinOl . sin•b, co sin0: sin•b2 = = CO'--'--•-- =/•t ß Otl = •o • Or2 (22) 
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There are four interface conditions to determine the 

four cons•ts Rt, , Rs, Tt, , T s. The two non•ivial stress 
conditions are that 7-22 •l_rld 7-21. are continuous across the, 
interface where the stress components are given by 

(23) 

Note tha• Oux/Ox • + 0//•/0x•= 0 for any shear wave and 
= ioJ/a for any compressional wave on the interface x2 
=0. 

The most general slip conditions consistent with a 
transverse isotropic bomudary are 

A 

//2 //2 x 2 O* 

= •h' 0 1 0 •N 7-22 x2-O 

(24) 

and Eqs. (23) and (24), making use of Eqs. (18)-(22) 
give a set of equations on the coefficients 

A T• =B, (25) 

with B=B• for an incident P wave and B=B s for an in- 
cident SV wave. A, B•, and Bs are given by 

sine• 

(26) 

• = 2p•,8• sine •= 2p•k•/oJ, 
2 2 2 p• = p•ct• -7f sin8• = pf ot•(1 - 2•fk•/• ), 

2 2 2 qi = P• cøs2• f - •Yf sin• f = Plfif(1 - 2•ik•/• ), 
1 - 2p•fl& • cos2• • 

A• -Az• 
B•= , B•= -Az• As• ' 

A• J -A4• 

• Irom these •tio•, the coefficients R•,R•, T•, T• 
may • ob•. 

• •e case of •rmal •cid•ce, k• v•shes, and for 
• •cident P wave, Rs • T s v•ish • for an inci- 
de• S wave, Ro • T• vanish. • bo• cases •e non- 
v•ishi• R • T are given • 

R= -Z• -Z•-i•Z•Zz T= 2Z• (•) 
Z• + Z•-•Z•Z•' Z• + Z•-i•Z•Z•' 

where Z•= p•, •d •= •r for a normally •cident shear 
wave • Z•= p•a• • •= •s for a norm•y •cide• 
compress•l wave. No•e t•t •e sign of R in Eq. (27) 
is •e opposite • •e sign R for SH waves. This is be- 
ca•e for SH waves •e posiUve disp•cement vector 
was • the +xs direction re•less of whether •e wave 
was upgo• or d•oi•. This is no• •e c•e here • 
seen from Eqs. (18)•21). 

As in •e pr•ious secU•, it •s been ass•ed • 
•ere is a thin •yer •een •e •o •-s•ces • or- 
der to e•m•e •e •ysic• mecaism •volv• in the 

assumption of linear slip. It may be shown that the re- 
flection coefficients approach those from the linear slip 
boundary theory with •/r and • replaced by h/p' and h/ 
(K'+ 4/•'/3), respectively, where K' is the layer bulk 
modulus. This occurs under the assumptions that the 
layer impedances are much less than the half-space 
impedances and the layer thickness is much less than a 
wavelength. 

The case of a fluid filled crack may be approxi- 
mated by letting •/•=0 and •r*0, which is equiva- 
lent to requiring the normal displacement to be contin- 
uous. The limiting case of •/s= 0, •-• is equivalent to 
requiring that the shear stress across the interface 
vanish (two conditions), the normal stress be continu- 
ous, and normal component oI the displacement discon- 
tinuity vanish. For such a crack between half-spaces of 
identical properties, Eqs. (25) and (26) reduce to 

• cos• q 0 • I R• 0 .0 y cos8 T• 

cos8 - sin• cos8 sin• T s 

y c0os8 - = or . (28) 

eos j L sing j 

For pure viscous slip in shear i.e., •=ii/o•, and • 
= 0, Eqs. (25) and (26) for the reflection coefficients 
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become frequency independent and give real values for 
R•,,Rs, T•,, T• as long as all angles, 0i,q• { are real. 

II1• SLIP INTERFACES WITHIN STRATIFIED 
REGIONS 

The matrix method of Thomson and Haskell 4,• for the 

analysis of wave propagation in stratified elastic media 
is very easily adapted to include the case of linear 
transverse isotropic slip between any two elastic 
homogeneous layers. In this method, for plane strain 
propagation through isotropic layers, a transfer ma- 
trix, Q(a, b) is found which relates stresses and dis- 
placements at xt = a to corresponding stresses and dis- 
placements at b, where a and b are values of xt within 
the same homogeneous layer. Letting Y(xt) be the 
"vector" [r22(xt), •'t 2(xt), ut(xt), u2(xt) ] T, this relation- 
ship may be denoted 

Y(a) = Q(a, b)Y(b), (29) 

and if there are a set of n horizontal layers with bound- 
aries ao, at, a2, ß ß., a,, then the relationship may be ex- 
tended to many or all of the layers by matrix multipli- 
cation by noticing that perfect bonding at an interface 
a{ means that Y(a•)= Y(a•.) giving 

Y(a.) = Q.(a.,a,,_,) ..... Or(at, ao)Y(ao) ß (30) 
For the case of a transverse isotropic linear slip 
boundary at ai,Y(a•.)•Y(a•) but are related as 

0 1 0 

Y(a•)= 0 •. 1 Y(a•')=(l+Sl)Y(a•)' (31) 
qN 0 0 

and this matrix, I+ $i, then, is included in the product 
of Eq. (30) between Oi,t, and Cl i giving the transfer 
function across the n elastic layers with slip between 
the ith and (i+ 1)th layers. Clearly, (• + s{)'t= • - S i as 
it must according to the sign convention of Eq. (24). 

IV. EXAMPLES 

A. Sounding a slip interface 

Consider an acoustic half-space separated by an 
elastic layer from another elastic half-space and as- 
sume the layer is imperfectly bonded to the elastic 
half-space. It is of interest to relate the reflection co- 
efficient for an acoustic plane wave launched at the 
elastic system with the compliances associated with the 
imperfectly bonded interface. To simplify this ex- 
ample, consider only the case of normal incidence, see 
Fig. 1, which involves only P waves speeds, densities 
and the normal compliance, U# at x2= 0. Note that for 
an elastic incident medium the exact same analysis 
could be carried out with an incident shear wave. Let 

the elastic layer, medium 1 occupy the region -H<x2 
< 0 and let it be imperfectly bonded to the elastic half- 
space, medium 2, at xe= 0, occupying the region x2> 0. 
The acoustic half-space, medium 0, occupies the re- 
gion x2<-H and the usual interface conditions apply at 
X 2 = -H, 

FLUID 

X2: -H 

] A l • R'A SOLID 
AT' • SOLID 

X 2 

FIG. 1. Reflection of a normally incident plane wave by an 
elastic l•yer over an elastic h•lf-space. The layer is assumed 
to be imperfectlybonded to the underlaying half-space. 

Satisfying the two conditions at xz= -H gives two 
equations on the reflection coefficient R and an addi- 

tional parameter A. The coefficients depend on R', the 
plane wave reflection coefficient for the imperfect 
interface between elastic medium I and elastic medium 

2, and thus we can solve for R as a function of R', giv- 
ing• 

r + exp( 2i•)R • 
/•= 1+ exp(2i•)rR' ' (32) 
a= wn/at, r= + Zo). 

R' and T' can be found by applying the 2 imperfect 
interface conditions for normal incidence, and then R' 
is given by Eq. (27). Fig. 2 shows {R [ as a function of 
the nondimensional frequency • for Z• = Z• = 3Z o for 
various values of the nondimensional complance, E 
= •Pt a•/H. 

For E= 0, the layer and underlying half space would 
be one medium and R would equal •. However, for E 
real and nonzero, R(0) = z, dR(0)/•[3 = 0, and as • - •o, 
IRI approaches uniby. It is the layer thickness that 

gives the reflection coefficient spectra the additional 
oscillatory structure. If the layer were pure viscous, 

1.0 

IRI 

0 6 12 

FIG. 2. Plane wave reflection coefficient amplitude spectra 
of the configuration of Fig. 1 for various values of E, the non- 
dimensional normal compliance. Media 1 and 2 are taken to 
be the same with an impedance three times that of medium 0.' 
The nondimensional frequency, •, is given in Eq. (32). The 
nondimensional normal complance, E = qpic•/H, is set equal 
to 0.2(--), 1.0(---), 5.0( .... ). 
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\ '-- '•. '•--'•--•=..7..: - -• 

2 4 6 

FIG. 3. Love-wave dispersion curves for the first three 
modes. The normalized phase speed, e/fii , is given as a 
function of the nondimensional frequency, a, as given in Eq. 
(35). The shear speed ratio, /3z//31, is taken to be 2 and the 
shear modulus ratio, P•/Pt, is taken to be 6. The handlinen-. 
.•ional tangential compliance, E, also given in Eq. (35), in 
set equal to 0.0(•), 0.1(---), 1.0( .... ), 10.0( ...... ). 

q=ii/o•, R' in Eq. (32) would be a r•al frequency inde- 
pendent number and the amplitude spectra would be 
periodic in/'t with period s. This is similar to the case 
when layer I and haH-space 2 have different elastic 
properties but are perfectly bonded. 

In general, Eq. (29) can be easily inverted, and mea- 
suring R(co) enables R'(0•) to be constructed. This can 
be used as data for trying to invert Eq. (28) to give es- 
timates of •IN and Z•/Z,. 

B. Love-wava dispersion 

Horizontally polarized shear waves may propagate 
with a real phase velocity in an elastic layer with shear 
speed • bonded to an elastic hah space with shear 
speed/•2 provided • < •2. Letting the' layer occupy the 
region -H<x•< 0 and the half-space occupy x•> 0, then 
displacements in the layer and half-space may be writ- 
ten 

u s = A cos [w(l/• - 1/c•) • / Z(xz + H) ], -H < x z < O, 
(33) 

u3= B exp[-•l/c • - 1/•'/•x•], x•> O, 

where c is the phase speed in the x• direction. This 
automatically satisfies the stress free condition at x2 
= -H. At x•= 0, the continuity of •23 and the slip condi- 
tion on the displacement u3 yields two equations on A 
and./{, 

-A p• •(111;• - 11½•)• / • sin•(1/1;• - 11c•)' / •H 
= i/pl)'/2, (34) 

/{ - A cos(1/ - 1/ / = ]./ c - 1/ / , 

which, to allow a nontrivial solution, must have a van- 
ishing determinant. After some manipulation, this dis- 

persian relation may be put in the form 

cosX- [ •/• E) 

E = rl r {•/H. 

The terms /2 and E are the nondimensional frequency 
and tangential compliance, respectively. Setting E= 0 
gives the usual Love-wave dispersion relation and let- 
ting E-- •o implies that siriX= 0 or X is an integer 
multiple of •r, which is the dispersion relation for SH 
waves in a free plate. 

In general, ff •=N•r+ 5, 5<•, then N+ 1 propagating 
modes at that frequency exist, with speeds specified 
by X•=n•+en(ll, E), n=0,1,2,...,N, where •,.<5 as 
X-<fl. In addition •r/2> ea > e•>...> •. All values of 
½, decrease monotonically with increasing E. As for 
conventional Love waves, mode n cutoff occurs at/1 
= n• with X=/1, i.e., c= fi• and with group velocity equal 
to .8•. 

Figure 3 shows the dispersion curves for •z/•, = 2, 
pz/• = 6 for various values of E. The general shape, 
the h/gh-frequency value for c, and the low-frequency 
cutoff value c = 1• remain independent of E but as E in- 
creases the phase speed decreases makin• the drop in 
speed from low-frequency cutoff to high frequency 
sharper for higher values of E. The group velocity, c•, 
given by c/[l -(w/c)ac/sw] is always positive but less 
than c. With increasing E, each mode has a sharper 
and slower group velocity minimum. 

(35) 

CONCLUSION 

The theory of a linear slip condition between two 
elastic media has been presented and the plane wave 
reflection coefficients for plane slip interfaces have 
been derived. The effects on wave behavior of such 

interfaces have been exhibited in several cases. Such 

a slip condition can exhibit characteristic signatures in 
the spectra of reflected waves and on the dispersion re- 
lations of various elastic wave modes. 
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