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ABSTRACT

Finely-layered media behaves as a transversely isotropic medium at long wave-

lengths. If the constituent media are anelastic, Q-anisotropy is described by Postma

averaging for two periodic layers and by Backus averaging for an stationary sequence

of many layers. In order to test the theory, we perform numerical simulations of

wave propagation in a periodic sequence of sandstone and limestone and compute the

Q-factor of qP waves as a function of the propagation direction.

INTRODUCTION

Most geological systems can be modeled as fine layering, which refers to the case

where the dominant wavelength of the pulse is much larger than the thicknesses

of the individual layers. When this occurs, the medium is effectively transversely

isotropic. The first to obtain a solution for this problem was Bruggeman (1937). Other

investigators studied the problem using different approaches, e.g., Riznichenko (1949)

and Postma (1955), who considered a two-constituent periodically layered medium.

Later, Backus (1962) obtained the average elasticity constants in the case where
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the single layers are transversely isotropic with the symmetry axis perpendicular to

the layering plane. Moreover, he assumed stationarity; that is, in a given length of

composite medium much smaller than the wavelength, the proportion of each material

is constant (periodicity is not required). The equations were further generalized by

Schoenberg and Muir (1989) for anisotropic single constituents.

Backus averaging for the lossless case has been verified numerically by Carcione et

al. (1991). They found that the minimum ratio between the P-wave dominant-pulse

wavelength and the layer thickness depends on the contrast between the constituents.

For instance, for a periodic sequence of epoxy-glass it is around 8, and for sandstone-

limestone (which has a lower reflection coefficient) it is between 5 and 6. In any case,

an optimal ratio can be found for which the equivalence between a finely layered

medium and a homogeneous transversely isotropic medium is valid. Carcione (1992)

generalized Backus averaging to the anelastic case, obtaining the first model for Q-

anisotropy (see Carcione, 2007). Analyses on sequences of sandstone-limestone and

shale-limestone with different degrees of anisotropy indicate that the quality factors of

the shear modes are more anisotropic than the corresponding phase velocities, cusps

of the qSV mode are more pronounced for low frequencies and midrange proportions,

and in general, attenuation is higher in the direction perpendicular to layering or close

to it, provided that the material with lower velocity is the more dissipative. Other

alternative models of Q-anisotropy were proposed by Carcione and Cavallini (1994;

1995) and Carcione et al. (1998). A brief description of all these models can be found

in Carcione (2007).

In order to test Backus averaging for Q-anisotropy of qP waves, we perform numer-

ical simulations and obtain the quality factor using the spectral-ratio and frequency-

shift methods (e.g., Picotti and Carcione, 2006). The attenuation model is the Zener

viscoelastic stress-strain relation, and the synthetic seismograms are obtained by a

full-wave solver based on the Fourier pseudospectral method to compute the spatial

derivatives (Carcione et al., 1988; Carcione, 2007).
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BACKUS AVERAGING

Fine layering on a scale much finer than the dominant wavelength of the signal

yields effective anisotropy, whose elasticity constants are given by Backus averaging

(Backus, 1962). Carcione (1992) uses this approach and the correspondence principle

(e.g., Carcione, 2007) to study the anisotropic characteristics of attenuation in vis-

coelastic finely layered media. Here, we consider that each medium be isotropic and

anelastic with complex Lamé constants given by

λ(ω) = ρ
(
c2P −

4

3
c2S

)
M1(ω)− 2

3
ρc2SM2(ω) and µ(ω) = ρc2SM2(ω), (1)

where ω is the angular frequency, M1 and M2 are the dilatational and shear complex

moduli, respectively, cP and cS are the elastic high-frequency limit compressional- and

shear-wave velocities, and ρ is the density. (In Carcione (1992), the relaxed moduli

correspond to the elastic limit.)

The dilatational modulus is

k = λ+
2

3
µ = ρ

(
c2P −

4

3
c2S

)
M1(ω) (2)

and the P-wave modulus is given by

E = k +
4

3
µ. (3)

According to Carcione (1992), the equivalent viscoelastic transversely isotropic

medium is defined by the following complex stiffnesses:

p11 = 〈E − λ2E−1〉+ 〈E−1〉−1〈E−1λ〉2

p33 = 〈E−1〉−1

p13 = 〈E−1〉−1〈E−1λ〉

p55 = 〈µ−1〉−1

p66 = 〈µ〉,

(4)

where 〈 · 〉 denotes the thickness weighted average. In the case of a periodic sequence

of two alternating layers, equations (4) are similar to those of Postma (1955), who

considered lossless layers.
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We can use any complex moduli to describe the anelastic properties of the medium.

For numerical-modeling purposes, the simplest realistic model is a single Zener ele-

ment describing each anelastic deformation mode (identified by the index ν), whose

(dimensionless) complex moduli can be expressed as

Mν(ω) =

√
Q2

0ν + 1− 1 + iωQ0ντ0√
Q2

0ν + 1 + 1 + iωQ0ντ0
, (5)

where 1/τ0 is the central frequency of the relaxation peak, and 1/Q0ν is the maximum

dissipation factor. The dilatational, S-wave and P-wave quality factors of each single

isotropic layer are respectively given by

Q1 =
Re(k)

Im(k)
, QS = Q2 =

Re(µ)

Im(µ)
, and QP =

Re(E)

Im(E)
. (6)

We consider homogeneous viscoelastic waves (Carcione, 2007). The qP-wave com-

plex velocity is the key quantity to obtain the phase velocity and quality factor of the

equivalent anisotropic medium. It is given by

v = (2ρ)−1/2
√
p11l21 + p33l23 + p55 + A

A =
√

[(p11 − p55)l21 + (p55 − p33)l23]2 + 4[(p13 + p55)l1l3]2.
(7)

(Auld, 1990; e.g., Carcione, 2007), where l1 = sin θ and l3 = cos θ are the directions

cosines, and θ is the propagation angle between the wavenumber vector and the

symmetry axis.

The phase velocity is simply

vp =

[
1

Re(v)

]−1

. (8)

The energy-velocity vector is given by

ve
vp

= (l1 + l3 cotψ)−1ê1 + (l1 tanψ + l3)
−1ê3. (9)

where

tanψ =
Re(β∗X + ξ∗W )

Re(β∗W + ξ∗Z)
, (10)
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defines the angle between the energy-velocity vector and the z-axis,

β = pv
√
−B − A,

ξ = pv
√
B − A,

B = p11l
2
1 − p33l

2
3 + p55 cos 2θ

(11)

and

W = p55(ξl1 + βl3),

X = βp11l1 + ξp13l3,

Z = βp13l1 + ξp33l3

(12)

(Carcione, 2007). We have the property

vp = ve cos(ψ − θ), (13)

where ve = |ve|. The quality factor is given by

Q =
Re(v2)

Im(v2)
. (14)

The following anisotropy coefficient can be defined

εQ =
Q11 −Q33

2Q33

, (15)

where

Q11 =
Re(p11)

Im(p11)
and Q33 =

Re(p33)

Im(p33)
(16)

are the quality factors along layering and perpendicular to layering, respectively.

The polar curve given by (sinψ, cosψ)Q is compared to the results of the numerical

simulations.

EQUATIONS OF MOTION

The time-domain equations for propagation in a 2-D heterogeneous isotropic and

viscoelastic medium can be found in Carcione (2007). The two-dimensional velocity-

stress equations for anelastic propagation in the (x, z)-plane, assigning one relaxation
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mechanism to dilatational anelastic deformations (ν = 1) and one relaxation mecha-

nism to shear anelastic deformations (ν = 2), can be expressed by

i) Euler-Newton’s equations:

v̇x =
1

ρ
(σxx,x + σxz,z) + fx, (17)

v̇z =
1

ρ
(σxz,x + σzz,z) + fz, (18)

where vx and vz are the particle velocities, σxx, σzz and σxz are the stress components,

ρ is the density and fx and fz are the body forces. A dot above a variable denotes

time differentiation, and the subindices , x and , z indicate spatial derivatives with

respect to the Cartesian coordinates.

ii) Constitutive equations:

σ̇xx = k∞(vx,x + vz,z + e1) + µ∞(vx,x − vz,z + e2), (19)

σ̇zz = k∞(vx,x + vz,z + e1)− µ∞(vx,x − vz,z + e2), (20)

σ̇xz = µ∞(vx,z + vz,x + e3), (21)

where e1, e2 and e3 are memory variables, and k∞ = ρ(c2P − 4c2S/3) and µ∞ = ρc2S are

the unrelaxed (high-frequency) bulk and shear moduli, respectively.

iii) Memory-variable equations:

ė1 =

(
1

τ
(1)
ε

− 1

τ
(1)
σ

)
(vx,x + vz,z)−

e1

τ
(1)
σ

, (22)

ė2 =

(
1

τ
(2)
ε

− 1

τ
(2)
σ

)
(vx,x − vz,z)−

e2

τ
(2)
σ

, (23)

ė3 =

(
1

τ
(2)
ε

− 1

τ
(2)
σ

)
(vx,z + vz,x)−

e3

τ
(2)
σ

, (24)

where τ (ν)
σ and τ (ν)

ε are material relaxation times, corresponding to dilatational (ν = 1)

and shear (ν = 2) deformations. The relaxation times can be expressed as

τ (ν)
ε =

τ0

Q
(ν)
0

(√
Q

(ν)
0

2
+ 1 + 1

)
, τ (ν)

σ = τ (ν)
ε −

2τ0

Q
(ν)
0

. (25)
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ESTIMATION OF THE QUALITY FACTOR

To estimate the quality factor from the synthetic time histories we use two meth-

ods (e.g., Picotti and Carcione, 2006): the classical spectral-ratio method and the

frequency-shift method. Let S(ω) and R(ω) be the amplitude spectra at the source

and at the receiver, respectively, which are separated by a distance d. The spectral-

ratio method is based on the fact that, if the medium is homogeneous and the geomet-

rical spreading factor G is frequency independent, the relation between the logarithm

of the spectral ratio and the frequency is linear,

ln

[
S(f)

R(f)

]
=

(
πd

vpQ

)
f + ln G, (26)

where f = ω/(2π), and vp is the phase velocity at the frequency f . Since in this

case the wavelength is large compared to the layer thickness, the medium can be

considered homogeneous, and the velocity can be estimated by dividing the source-

receiver distance by the traveltime. Then, the quality factor Q can be determined

from the slope of the line fitting ln [S(f)/R(f)].

On the other hand, the frequency-shift method (Quan and Harris, 1997) is based

on the fact that the high frequencies attenuate more rapidly than the low frequencies.

This effect may be quantified by measuring the resulting downshift ∆f = fS − fR,

where fS and fR are the centroid frequencies of S(f) and R(f), respectively. Then,

if we approximate the spectrum S(f) by a Gaussian with variance σ2
s , we have

Q =
πdσ2

s

vp∆f
. (27)

EXAMPLE

The 2-D stratified medium is composed of alternating plane layers of sandstone

and limestone of equal thickness. The material properties are given in Table 1, where

the relaxation frequency is f0 = 1/(2πτ0). Figure 1 shows the phase velocity (a),
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energy velocity (b) and quality factor (c) of the equivalent anisotropic medium at 25

Hz. The anisotropy coefficient is Qε = 0.66.

The simulation uses 405 × 405 grid points and a vertical source. The grid spacing

is 10 m and the source dominant frequency is 25 Hz. The dots in Figures 1b and 1c

represents the results of the simulation.

CONCLUSIONS

cccc
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Table 1. Material properties

Medium cP cS Q01 Q02 f0 ρ

(m/s) (m/s) (Hz) (kg/m3)

Sandstone 2950 1615 30 20 25 2300

Limestone 5440 3040 180 140 25 2700

τ0 = 1/(2πf0)
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FIGURES

FIG. 1. qP-wave phase velocity (a), energy velocity (b) and quality factor (c) of the

equivalent anisotropic medium at 25 Hz. The dotted curve corresponds to the qS

wave. The symbols in (b) and (c) represent the results of the numerical simulation.
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FIG. 1. qP-wave phase velocity (a), energy velocity (b) and quality factor (c) of the

equivalent anisotropic medium at 25 Hz. The dotted curve corresponds to the qS wave.

The symbols in (b) and (c) represent the results of the numerical simulation.
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