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Seismic anisotropy of fractured rock

Michael Schoenberg* and Colin M. Sayers*

ABSTRACT
A simple method for including the effects of geolog-

ically realistic fractures on the seismic propagation
through fractured rocks can be obtained by writing the
effective compliance tensor of the fractured rock as
the sum of the compliance tensor of the unfractured
background rock and the compliance tensors for each
set of parallel fractures or aligned fractures. The
compliance tensor of each fracture set is derivable
from a second rank fracture compliance tensor. For a
rotationally symmetric set of fractures, the fracture
compliance tensor depends on only two fracture com-
pliances, one controlling fracture compliance normal,
the other, tangential, to the plane of the fractures. The

stiffness tensor, which is more useful in the consider-
ation of elastic wave propagation through rocks, can
then be obtained by inversion. The components of the
excess fracture compliance tensor represent the max-
imum amount of information that can be obtained from
seismic data. If the background rock is isotropic and
the normal and shear compliance of each fracture are
equal, although different from those of other fractures,
the effective elastic behavior of the fractured rock is
orthorhombic for any orientation distribution of frac-
tures. A comparison of the theory with recent ultra-
sonic experiments on a simulated fractured medium
shows near equality of the normal and shear compli-
ance for the case of air-filled fractures.

INTRODUCTION

Hydrocarbon reservoirs are often layered, with high po-
rosity zones interleaved with horizontal, relatively imperme-
able shale beds. Vertical fracturing in reservoirs, and in the
caprock overlying the reservoir, significantly affects the flow
characteristics of the reservoir, and hence the density and
orientation of sets of fractures is of great interest. For
example, significant permeability anisotropy can originate
from the presence of oriented sets of fractures, and the use
of seismic anisotropy to determine the orientation of fracture
sets is of considerable interest.

many of these studies (O’Connell and Budiansky, 1976;
Budiansky and O’Connell, 1976; Hoenig, 1979; Bruner,
1976; Henyey and Pomphrey, 1982; Hudson, 1980, 1981,
1986) the fractures are modeled as ellipsoidal cavities of low
aspect ratio. Real fractures, however, do not resemble
isolated low-aspect ratio voids in a solid matrix. Borehole
pictures, examination of outcrops, and rock fractured in the
laboratory all indicate that fractures have many points of
contact along their length (Reiss, 1980). Furthermore, min-
erals such as quartz and calcite may be deposited within the
fracture and can appreciably stiffen its mechanical response.

In sedimentary rocks, the fracture orientations are deter-
mined by the stress history of the rock. However, any
fractures open at depth will tend to be oriented normal to the
direction of the minimum in-situ stress. For such rocks,
observations of the seismic anisotropy have the potential of
providing the orientation of the in-situ stress field. Because
of the importance of fracture-induced anisotropy for seismic
wave propagation, several theoretical studies of crack-in-

In this paper, a flexible yet simple way to include the
qualitative effects of geologically realistic fracturing on the
long wavelength (compared to fracture spacing) elastic be-
havior of such systems is described. Subject to the simpli-
fying assumption of linear, loss-free, elastic behavior, it is
the elastic moduli and the density that determine the behav-
ior of seismic waves that propagate through, and are re-
fleeted from, the reservoir. Thus the issue to be discussed
here is how the presence of the fracture systems affect the

duced anisotropy have been reported in the literature. Inelastic moduli of the fractured rock. Density is unchanged
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from that of the unfractured background rock as a result of
the assumption of fractures of infinitesimal total volume.

MULTIPLE FRACTURE SYSTEMS IN AN ANISOTROPIC
BACKGROUND

The effective elastic compliance tensor  of a rock con-
taining fractures relates the average strain  over a represen-
tative volume  to the average stress components 

   l

For fractures,  may be written in the form,

   +   

where  is the compliance tensor of the unfractured
background rock which may be of arbitrary anisotropy,  is
the surface of the qth fracture lying within V (see Figure 

 are the components of the local unit normal to the fracture
surface which may in general be curved, and brackets [ 
denote jump discontinuities in the displacement; see, for
example, Sayers and Kachanov (1991). Note that equation
(2) is applicable to finite, nonplanar fractures in the long
wavelength limit, i.e., the applied stress is assumed to be
constant over the representative volume  In the following,
it will be assumed that fracture interactions may be ne-
glected SO that  is determined by  This assumption is
exact for a set of infinite flat parallel fractures subject to a
uniform stress field, as will be discussed below. Note that
this assumption of noninteraction does not imply that the
excess compliance as a result of the fractures is small
relative to the unfractured background compliance.

Naturally occurring fractures can often be divided into
sets based on their orientation. An example is given in
Figure 2, which shows joint traces exposed on a horizontal
l-m-thick limestone unit of the Pennsylvanian-Permian Rico
Formation (Olson and Pollard, 1989). When the fractures are
approximately planar and parallel, and their unit normal is
denoted by  (see Figure  a linearity assumption is

conveniently introduced through a “fracture system compli-
ance tensor”  with components  such that,

   (3)

where  is symmetric and nonnegative definite.  is
similar to the crack compliance tensor recently used by
Kachanov (1992). Let the extra strain as a result of the

 be   SO that  may be thought Of  
excess compliance tensor as a result of the presence of the
parallel fractures. Substitution of equation (3) into equation
(2) yields,

1
     

   
   

FIG. 1. A diagramatic view of a vertically fractured medium.
The linearity assumption of equation (3) says that the aver-
age of the displacement discontinuity across the parallel
fractures in volume V is linearly related to the stress traction
acting on the fracture planes.

FIG. 2. Maps of joint traces on bedding surface of Rico
Formation, Monument upwarp, southeastern Utah. (a) Both
joint sets. (b) East-west set.(c North-south set (Reproduced
with permission from Olson and Pollard, 1989).
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so one obtains,

1
   +  +  + 

For multiple sets of fractures, each set with its own normal
 and its own fracture system compliance tensor 

contributes an excess compliance tensor  additively
according to equation  so that, for several different sets of
aligned fractures,

    

It is for this reason that the insertion of fractures is carried
out so easily in terms of compliances. Afterwards, the elastic
stiffness tensor, from which the seismic velocities may be
calculated, is obtained by inverting the compliance tensor.

This formulation for fractures is exactly equivalent to the
introduction of linear slip deformation (LSD) in an elastic
background medium. The LSD assumption is that the addi-
tional deformation consists of the sum of the displacement
discontinuity, or slip, across “planes of weakness” taken
to be parallel to the plane of the aligned fractures or
microfractures. Further, the total slip discontinuity across
all the parallel planes of weakness, per unit length in the
direction denoted by unit normal  is assumed to be
linearly dependent, through the same symmetric, nonnega-
tive definite  on the traction acting on the plane perpen-
dicular to This condition on the excess displacement
gradient as a result of the presence of the planes of weakness
may be written as,

 
   

which is the indicial notation form of the theory presented by
Schoenberg (1983) and Schoenberg and Douma (1988). Note
that, in general, inclusion of several fracture sets, each with
arbitrary orientation, will result in a triclinic medium, even
when the background is isotropic.

ROTATIONALLY INVARIANT FRACTURE SETS

The simplest assumption concerning the behavior as a
result of fracturing is to let the normal compliance of the
fractures be given by and the tangential compliance by

 This causes the fracture behavior to be invariant with
respect to rotation about an axis normal to the fractures
Under this condition,

  +     

    

so that the excess compliance tensor of a single rotationally
invariant fracture set becomes,

  +  +  + 

   

Note that effective elastic behavior of an isotropic medium
containing several fracture sets may be triclinic even if the
fracture sets are assumed to be rotationally invariant.

As an example, consider a single set of rotationally
invariant vertical fractures whose normal is parallel to the

 -axis, i.e., = (1, 0,  In this case,

 = =  =  =  = 

= =  = 

with all other compliance components equal to zero. In
conventional (2-subscript) condensed 6 x 6 matrix notation,
11            6, while factors
2 and 4 are introduced as follows (Nye, 1985):

          

          

         6.

These factors of 2 or 4 are absent in the condensation of the
stiffness tensor components. Thus the excess compliance
[equation  may be written in the following 6 x 6 matrix
form:

in agreement with Nichols et al. (1989).
For a single set of rotationally invariant fractures in an

isotropic background, the medium is transversely isotropic
(TI) with its symmetry axis perpendicular to the fractures.
This is, however, a restricted subset of all possible TI media
since it depends only on the two background moduli, say
Lame parameters  and  and two nonnegative fracture
compliances and Z  Such a TI medium may be called
TI(LSD). From equation  the 6 x 6 compliance matrix
of a TI(LSD) medium whose symmetry axis is parallel to the
l-direction is given by
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Note that Poisson’s ratio  and Young’s modulus  for the The constraints on the stiffness matrix components, analo-
isotropic background medium are given by, gous to equation (13), for the medium to be TI(LSD) are,

 =  +   

respectively. From equation (12) and the fact that  and 
are positive, the compliances of a TI(LSD) medium satisfy
the following constraints:

         

   
2

where the second constraint becomes 0      
 f o r   0. Note that any TI medium satisfying

constraints [equation (13)] is equivalent to a TI(LSD) me-
dium, and further, the background parameters and the
presumed fracture compliances and background moduli are
recoverable from a full knowledge of the TI(LSD) compli-
ances (Hsu and Schoenberg, 1993).

Inverting equation (12) yields the elastic stiffness matrix,

    

  =  + 

where, as above, the second constraint becomes 0   
   for   

Shear waves propagating in a direction parallel to the
fractures, taken here to be the  -direction (which is usually
vertical when the normal to the fractures,  -direction, is
horizontal), can propagate at two different velocities depend-
ing on their polarization. The higher velocity is for polariza-
tion parallel to the fractures, the x2-direction, and is con-
trolled by C44. The lower velocity is for polarization
perpendicular to the fractures and is controlled by C55. For
this choice of reference axes, the difference of the two
shear-wave velocities from equation (14) is,

It is interesting to note that the form of equation (14) is
identical to that of the stiffness matrix shown by Crampin
(1984) for an isotropic medium with a vertical array of
parallel, penny-shaped fractures, even though his expres-
sions include second-order terms in the fracture density.
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However, an expansion of the elastic stiffness tensor to
second-order in the crack density may be unnecessarily
precise for geophysical purposes since real fractures do not
resemble ellipsoids. For example, the assumption of dry
ellipsoidal cracks of a given aspect ratio will fix the ratio of

 to  but this, in a real rock is a rough approximation,
even to first order in crack density. Roughness, asperities,
and infilling debris will affect those results. That the form of
the result agrees with the form given here suggests that the
general behavior of a solid with any kind of fractures will be
the same, independent of the details of the actual fracture-
like voids. Further, this means that shape and texture details
are not recoverable from long wavelength or quasi-static
data. But no matter where estimates of fracture parameters
are obtained, the assumption of rotationally invariant frac-
tures and pure elastic behavior implies their contribution to
the elastic compliance can be modeled with two nonnegative
real compliances  and  which will, in general, be
stress-dependent.

The two non-negative dimensionless fracture parameters,
    have simple physical interpretations. They

relate the fracture compliance to the total compliance of the
fractured medium, i.e.,  is the part of the strain  that is
a result of the normal fracture compliance divided by the
total  Similarly,  corresponds to the part of total shear
compliance (on a vertical plane) that is a result of the vertical
tangential fracture compliance. This allows the seismic re-
sponse of a fractured reservoir to be modeled by varying the
two parameters and   independently.

The relative magnitudes of  and  control the anel-
lipticity of this medium. The anellipticity for a TI medium
whose symmetry axis is in the l-direction is given by
(Gassmann, 1964):

      + 

From equation (14), the anellipticity in terms of  
 and  can be calculated. It is given by

 +  + 
T 

If    the medium has positive anellipticity, the usual
geological situation. If =  the anellipticity vanishes
and the medium is elliptical. If    the medium has
negative anellipticity. An elliptical medium is a special case
of a TI medium in that the quasi-P sheet of the slowness
surface, and hence the wave surface also, is ellipsoidal,
while the quasi-S sheet for shear waves with polarizations
lying in the plane of propagation, and hence the correspond-
ing wave surface also, is spherical.

SCALAR FRACTURE SETS

In a medium with many sets of aligned fractures, a
particular set, say the mth set, is called “scalar” when in
addition to being rotationally invariant, the normal and
tangential compliances satisfy  =    i.e.,
from equation     so that the displacement
discontinuity vector is parallel  traction. The behavior
of such a fracture set is prescribed by a single positive scalar.
When the background medium is isotropic and each of the
fracture sets is scalar, the lowest possible symmetry of the

fractured medium is orthorhombic (Sayers and Kachanov,
1991) for arbitrary values of scalar compliances, the 
and arbitrary orientations, the   This may be proved as
follows:
Define  for multiple scalar fracture sets, each with scalar
compliance and normal unit vector  to be the
following symmetric second rank tensor,

Since all the   0  is nonnegative definite. It follows
from (6) and (8) that, 

     

     

In the coordinate system in which  is diagonal, with
diagonal components   from equation (18) it is seen
that the components of vanish whenever any one index
is different from the other three. This is the defining condi-
tion of orthorhombic symmetry. To see this, assume our
coordinate system is the one in which  is diagonal, so that,

    

    

  
     

 
     

      
 

 

When this fourth rank compliance tensor is added to any
isotropic compliance tensor, the result is a positive definite
tensor with orthorhombic symmetry, completing the proof.

In conventional 2-subscript condensed 6 x 6 matrix nota-
tion, then, the excess compliance matrix, from equation 
may be written,

If the backgroundmedium is orthorhombic, thenfor the
fractured rock to beorthorhombic, the background’snatural
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coordinate axes must coincide with the principal directions
Of Such an excess compliance matrix is equal to the
excess compliance matrix of three mutually perpendicular
scalar fracture sets, one fracture set perpendicular to the
l-direction with its scalar compliance equal to  the second
perpendicular to the 2-direction with its scalar compliance
equal to and the third perpendicular to the 3-direction
with its scalar compliance equal to  Thus any number of
arbitrary scalar fracture sets in a medium is long wavelength
equivalent to three mutually perpendicular scalar fracture
sets at most.

If this compliance matrix is added to an isotropic back-
ground compliance matrix, then, not only may it be seen that
the fractured medium is orthorhombic, but further, such an

orthorhombic medium depends on only four parameters, not
     one might expect. We call an

orthorhombic medium equivalent to such a fractured me-
dium, a “scalar orthorhombic” medium. To see how there
are only four parameters for a scalar orthorhombic medium,
consider the form of such a fractured medium, although for
simplicity, we shall use Young’s modulus  , and Poisson’s
ratio  and note then that,

1   

   

Then, the 6 X 6 compliance matrix  =  +  may be
written,

and letting dimensionless   1 +    =  2, 3,  may
be written in terms of the  and  only, as:
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Then the stiffness matrix, found by inversion of the compli-
ance matrix, is,

and evaluating the anellipticity in each of the coordinate
planes yields the interesting result that a medium with a
compliance matrix of the form of equation (21) has vanishing
anellipticity in each of the coordinate planes (Kachanov,
1980, 1992).

For gas-saturated cracked porous sandstones, the assump-
tion that =  for each set of cracks may not be
unreasonable. For dry penny-shaped cracks  = 1 

 [for example, see Hudson (1981), or Sayers and Kacha-
nov (1991)] and from measurements on Berea sandstone, for
example, = 0.11 (Lo et al., 1986). This yields

T   + = 0.028 as a measure of how much
 differs from Hsu and Schoenberg (1993) have

recently reported measurements of ultrasonic velocities
made on a block composed of lucite plates with roughened
surfaces pressed together with a static normal stress to
simulate a fractured medium. Table 1 gives values of  

 +  calculated using the values of  
 and  reported in Table 1 of Hsu and Schoenberg

(1993). It is seen that the approximation  =  is
reasonable, particularly at the higher stress levels.

Table 1.   +  calculated from the measure-
ments of Hsu and Schoenberg (1993) as a function of the stress
applied normal to the joints.

Stress (MPa) T   + 

6 0.1736
12 0.1177
18 0.0332
24 -0.0035

CONCLUSION

For seismic modeling of fractured media, when the frac-
tures seem to be aligned in one or several directions, and
wavelengths are much larger than the fracture spacing, it is
convenient to formulate the equivalent anisotropic medium
problem in terms of the elastic compliance. The assumption
of linear slip deformation, essentially equation (3), or equiv-
alently, equation (7), has some experimental validation, for
example Cheadle et al. (1991) whose measurements were
shown by Hood (Private Communication, 1991) to fit the
VFTI assumption,and Hsu and Schoenberg (1993) who
demonstrated that the behavior of roughened surfaces in
Plexiglas fit the LSD model. What can be obtained from
seismic data is the orientation of the dominant set of frac-
tures and some estimate of the fracture compliances relative
to the compliance of the complete fractured rock. The
estimation of the shape and size distribution is beyond the
capability of long wavelength seismic data.

The formulation presented in this paper is expected to be
of wide applicability because of (a) its simplicity because of
the additive property of the compliances, and (b) its utility
since the theory mimics the behavior of sets of large parallel
joints as well aligned micro-fractures. One might expect that
the theory is at least approximately accurate in modeling the
behavior of fractured rock for all the intermediate sizes
(relative to wavelength) as well.
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