
ALGORITHMIC SEMI-ALGEBRAIC GEOMETRY AND
TOPOLOGY : LECTURE 1

SAUGATA BASU

Abstract. In this lecture we introduce semi-algebraic sets, Tarski-
Seidenberg principle, give basic definitions of homology and co-homology
groups of semi-algebraic sets, and state certain quantitative results which
give tight bounds on the ranks of these groups. We also state several
open problems and exercises.
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1. Semi-algebraic Geometry: Background

1.1. Notation. We first fix some notation. Let R be a real closed field
(for example, the field R of real numbers or Ralg of real algebraic numbers).
A semi-algebraic subset of Rk is a set defined by a finite system of poly-
nomial equalities and inequalities, or more generally by a Boolean formula
whose atoms are polynomial equalities and inequalities. Given a finite set P
of polynomials in R[X1, . . . , Xk], a subset S of Rk is P-semi-algebraic if
S is the realization of a Boolean formula with atoms P = 0, P > 0 or P < 0
with P ∈ P. It is clear that for every semi-algebraic subset S of Rk there
exists a finite set P of polynomials in R[X1, . . . , Xk] such that S is P-semi-
algebraic. We call a semi-algebraic set a P-closed semi-algebraic set if
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it is defined by a Boolean formula with no negations with atoms P = 0,
P ≥ 0, or P ≤ 0 with P ∈ P.

For an element a ∈ R we let

sign(a) =


0 if a = 0,
1 if a > 0,
−1 if a < 0.

A sign condition on P is an element of {0, 1,−1}P . For any semi-
algebraic set Z ⊂ Rk the realization of the sign condition σ over Z,
R(σ, Z), is the semi-algebraic set

{x ∈ Z |
∧
P∈P

sign(P (x)) = σ(P )},

and in case Z = Rk we will denote R(σ, Z) by just R(σ).
If P is a finite subset of R[X1, . . . , Xk], we write the set of zeros of P in

Rk as
Z(P,Rk) = {x ∈ Rk |

∧
P∈P

P (x) = 0}.

We will denote by Bk(0, r) the open ball with center 0 and radius r in Rk.
We will also denote by Sk the unit sphere in Rk+1 centered at the origin.
Notice that these sets are semi-algebraic.

For any semi-algebraic set X, we denote by X the closure of X, which
is also a semi-algebraic set by the Tarksi-Seidenberg principle [14, 12] (see
[5] for a modern treatment). The Tarksi-Seidenberg principle states
that the class of semi-algebraic sets is closed under linear projections or
equivalently that the first-order theory of the reals admits quantifier
elimination .

Exercise 1.1. Prove using the Tarski-Seidenberg principle that the closure
of a semi-algebraic set is again a semi-algebraic set.

Exercise 1.2. Consider the semi-algebraic subset of R defined by the single
(strict) polynomial inequality X3 −X > 0. Notice that the closure of this
set is not defined by the corresponding weak inequality X3 −X ≥ 0.

1.2. Topological Preliminaries. The purpose of this section is to provide
a self-contained introduction to the basic mathematical machinery needed
later. Some of the topics would be familiar to most readers while a few others
perhaps less so. The sophisticated reader can choose to skip this whole
section and proceed directly to the descriptions of the various algorithms in
the later sections.

1.2.1. Homology and Cohomology Groups. Before we get to the precise defi-
nitions of these groups it is good to have some intuition about them. Closed
and bounded semi-algebraic sets are finitely triangulable . This means
that each closed and bounded semi-algebraic set S ⊂ Rk is homeomorphic
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(in fact, by a semi-algebraic map) to the polyhedron |K| associated to a fi-
nite simplicial complex K. In fact K can be chosen such that |K| ⊂ Rk, and
there is an effective algorithm for computing K given S. The simplicial
cohomology (resp. homology groups) of S are defined in terms of K
and are well-defined (i.e they are independent of the chosen triangulation
which is of course very far from being unique).

Roughly speaking the simplicial homology groups of a finite simplicial
complex K with coefficients in a field F (which we assume to be Q in this
survey) are finite dimensional F-vector spaces and measure the connectivity
of |K| in various dimensions. For example, the zero-th simplicial homology
group, H0(K), has a generator corresponding to each connected component
of K and its dimension gives the number of connected components of |K|.
Similarly the first simplicial homology group, H1(K), is generated by the
“one-dimensional holes” of |K|, and its dimension is the number of “inde-
pendent” one-dimensional holes of |K|. If K is one-dimensional (that is a
finite graph) the dimension of H1(K) is the number of independent cycles
in K. Analogously, the i-th the simplicial homology group, Hi(K), is gen-
erated by the “i-dimensional holes” of |K|, and its dimension is the number
of independent i-dimensional holes of |K|. Intuitively an i-dimensional hole
is an i-dimensional closed surface in K (technically called a cycle) which
does not bound any (i+ 1)-dimensional subset of |K|.

The simplicial cohomology groups of K are dual (and isomorphic) to the
simplicial homology groups of K as groups. However, in addition to the
group structure they also carry a multiplicative structure (the so called cup-
product) which makes them a finer topological invariant than the homology
groups. We are not going to use this multiplicative structure. Cohomology
groups also have nice but less geometric interpretations. Roughly speaking
the cohomology groups of K represent spaces of globally defined objects
satisfying certain local conditions. For example, the zero-th cohomology
group, H0(K), can be interpreted as the vector space of global functions
on |K| which are locally constant. It is easy to see from this interpreta-
tion that the dimension of H0(K) is the number of connected components
of K. Similar geometric interpretations can be given for the higher coho-
mology groups, in terms of vector spaces of (globally defined) differential
forms satisfying certain local condition (of being closed). In literature this
cohomology theory is referred to as de Rham cohomology theory and
it is usually defined for smooth manifolds, but it can also be defined for
simplicial complexes (see for example [10, Section 1.3.1]).

It turns out that the cohomological point of view gives better intuition
in designing algorithms described later in the paper. This is our primary
reason behind preferring cohomology over homology. Another reason for
preferring the cohomology groups over the homology groups is that their in-
terpretations continue to make sense in applications outside of semi-algebraic
geometry where the notions of holes is meaningless (for instance, think of
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algebraic varieties defined over fields of positive characteristics) but the no-
tion of global functions (or for instance differential forms) continue to make
sense.

1.2.2. Definition of the Cohomology Groups of a Simplicial Complex. We
now give precise definitions of the cohomology groups of simplicial com-
plexes.

In order to do so we first need to introduce some amount of algebraic
machinery – namely the concept of complexes of vector spaces and homo-
morphisms between them.

1.2.3. Complex of Vector Spaces. A complex of vector spaces is just a se-
quence of vector spaces and linear transformations satisfying the property
that the composition of two successive linear transformations is 0.

More precisely

Definition 1.3 (Complex of Vector Spaces). A sequence {Cp}, p ∈ Z, of
Q-vector spaces together with a sequence {δp} of homomorphisms δp : Cp →
Cp+1 (called differentials) for which

(1.1) δp+1 ◦ δp = 0

for all p is called a complex.

The most important example for us of a complex of vector spaces is the
co-chain complex of a simplicial complex K denoted by C•(K). It is
defined as follows.

Definition 1.4 (Simplicial cochain complex). For each p ≥ 0, Cp(K) is a
linear functional on the Q-vector-space generated by the p-simplices of K.
Given φ ∈ Cp(K), δp(φ) is specified by its values on the (p+ 1)-dimensional
simplices of K. Given a (p+ 1)-dimensional simplex σ = [a0, . . . , ap+1] of K

(1.2) (δpφ)([a0, . . . , ap+1]) =
p+1∑
i=0

(−1)iφ([a0, . . . , âi, . . . , ap+1]),

whereˆdenotes omission.

Notice that each [a0, . . . , âi, . . . , ap+1] is a p-dimensional simplex of K
and since φ ∈ Cp(K), φ([a0, . . . , âi, . . . , ap+1]) ∈ Q is well-defined. It is
an exercise now to check that the homomorphisms δp : Cp(K) → Cp+1(K)
indeed satisfy Eqn. 1.1 in the definition of a complex.

Now let K be a simplicial complex and L ⊂ K a sub-complex of K – we
will denote such a pair simply by (K,L). Then for each p ≥ 0 we have a
surjective homomorphism Cp(K) → Cp(L) and we denote by Cp(K,L) the
kernel of this homomorphism. It is now an easy exercise to verify that the
differentials δp in the complex Cp(K) descend to Cp(K,L) and we define

Definition 1.5 (Simplicial cochain complex of a pair). The simplicial cochain
complex of the pair (K,L) to be the complex C•(K,L) whose terms, Cp(K,L),
and differentials, δp, are defined as above.
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Often, particularly in the context of algorithmic applications it is more
economical to use cellular complexes instead of simplicial complexes. We
recall here the definition of a finite regular cell complex referring the reader
to standard sources in algebraic topology for more in-depth study of cellular
theory (see [16, pp. 81]).

Definition 1.6 (Regular cell complex). An `-dimensional cell in Rk is a
subset of Rk homeomorphic to B`(0, 1). A regular cell complex Σ in Rk is a
finite collection of cells satisfying the following properties:

(1) If c1, c2 ∈ Σ, then either c1 ∩ c2 = ∅ or c1 ⊂ ∂c2 or c2 ⊂ ∂c1.
(2) The boundary of each cell of Σ is a union of cells of Σ.

We denote by |Σ| the set
⋃
c∈Σ

c.

Remark 1.7. Notice that every simplicial complex K may be considered as
a regular cell complex whose cells are the closures of the simplices of K.

As in the case of simplicial complexes it is possible to associate a complex,
C•(Σ) (the co-chain complex of K), to each regular cell complex K which is
defined in an analogous manner. In order to avoid technicalities we omit the
precise definition of this complex referring the interested reader to [16, pp.
82] instead. We remark that the dimension of Cp(Σ) is equal to the number
of p-dimensional cells in Σ and the matrix entries for the differentials in the
complex with respect to the standard basis comes from {0, 1,−1} just as in
the case of simplicial co-chain complexes.

The advantage of using cell complexes instead of simplicial complexes can
be seen in the following example.

Example 1.8. Consider the unit sphere Sk ⊂ Rk+1. For 0 ≤ j ≤ k+ 1 and
ε ∈ {+,−} let

(1.3) cεj = {x ∈ Sk | X0 = · · · = Xj−1 = 0, εXj ≥ 0}.

Then it is easy to check that each cεj is a k − j dimensional cell and the
collection, Σk = {cεj | 0 ≤ j ≤ k, ε ∈ {−,+}} is a regular cell complex with
|Σk| = Sk (see Figure 1 for the case k = 2).

Notice that #Σk = 2k. On the other hand if we consider the sphere as
homeomorphic to the boundary of a standard (k + 1)-dimensional simplex,
then the corresponding simplicial complex will contain (2k+2 − 2) simplices
(which is exponentially large in k).

We now associate to each complex, C•, a sequence of vector spaces,
Hp(C•), called the cohomology groups of C•. Note that it follows from Eqn.
1.1 that for a complex C• with differentials δp : Cp → Cp+1 the subspace
Bp(C•) = Im(δp−1) ⊂ Cp is contained in the subspace Zp(C•) = Ker(δp) ⊂
Cp. The subspaces Bp(C•) (resp. Zp(C•)) are usually referred to as the
co-boundaries (resp. co-cycles) of the complex C•. Moreover,
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Figure 1. Cell decomposition of S2

Definition 1.9 (Cohomology groups of a complex). The cohomology groups,
Hp(C•), are defined by

(1.4) Hp(C•) = Zp(C•)/Bp(C•).

We will denote by H∗(C•) the graded vector space
⊕

p Hp(C•).

Note that the cohomology groups, Hp(C•), are all Q-vector spaces (finite
dimensional if the vector spaces Cp’s are themselves finite dimensional).

Definition 1.10 (Exact sequence). A complex C• is called acyclic and the
corresponding sequence of vector space homomorphisms is called an exact
sequence if H∗(C•) = 0.

Exercise 1.11. Look up and prove for yourself the “snake lemma” and the
“five lemma”.

Applying Definition 1.9 to the particular case of the co-chain complex of
a simplicial complex K (cf. Definition 1.4) we obtain

1.2.4. Cohomology of a Simplicial Complex.

Definition 1.12 (Cohomology of a simplicial complex). The cohomology
groups of a simplicial complex K are by definition the cohomology groups,
Hp(C•(K)), of its co-chain complex.

Similarly, given a pair of simplicial complexes (K,L), we define

Definition 1.13 (Cohomology of a pair). The cohomology groups of the
pair (K,L) are by definition the cohomology groups, Hp(C•(K,L)), of its
co-chain complex.
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Example 1.14. Let ∆n be the simplicial complex corresponding to an n-
simplex. In other words the simplices of ∆n consist of [i0, . . . , i`], 0 ≤ i0 <
· · · < i` ≤ n. The polyhedron |∆n| is just the n-dimensional simplex. Then
using Definition 1.12 one can verify that

Hi(∆n) = Q, i = 0,

Hi(∆n) = 0, i > 0.

Example 1.15. Let ∂∆n be the simplicial complex corresponding to the
boundary of the n-simplex. In other words the simplices of ∂∆n consist of
[i0, . . . , i`], 0 ≤ i0 < · · · < i` ≤ n, ` < n. Then again by a direct application
of Definition 1.12 one can verify that

Hi(∂∆n) = Q, i = 0, n− 1

Hi(∂∆n) = 0, else.

The above examples serve to confirm our geometric intuition behind the
homology groups of the spaces |∆n| and |∂∆n| explained in Section 1.2.1
above – namely that they are both connected and |∆n| has no holes in
dimension > 0, and |∂∆n| has a single (n− 1)-dimensional hole.

Exercise 1.16. Verify that

Hi(∆n, ∂∆n) = Q, i = n

Hi(∆n, ∂∆n) = 0, else.

1.2.5. Homomorphisms of Complexes. We will also need the notion of ho-
momorphisms of complexes which generalizes the notion of ordinary vector
space homomorphisms.

Definition 1.17 (Homomorphisms of complexes). Given two complexes,
C• = (Cp, δp) and D• = (Dp, δp), a homomorphism of complexes,
φ• : C• → D•, is a sequence of homomorphisms φp : Cp → Dp for which
δp ◦ φp = φp+1 ◦ δp for all p.

In other words the following diagram is commutative.

(1.5)

· · · Cp Cp+1 · · ·

· · · Dp Dp+1 · · ·

// //δp

��
� �
� �
� �
� �

φp

//

��
� �
� �
� �
� �

φp+1

// //δp
//

A homomorphism of complexes φ• : C• → D• induces homomorphisms
φi : Hi(C•)→ Hi(D•) and we will denote the corresponding homomorphism
between the graded vector spaces H∗(C•),H∗(D•) by φ∗.

Definition 1.18 (Quasi-isomorphism). The homomorphism φ• is called a
quasi-isomorphism if the homomorphism φ∗ is an isomorphism.



8 SAUGATA BASU

Having introduced the algebraic machinery of complexes of vector spaces,
we now define the cohomology groups of semi-algebraic sets in terms of their
triangulations and their associated simplicial complexes.

1.2.6. Cohomology Groups of Semi-algebraic Sets. A closed and bounded
semi-algebraic set S ⊂ Rk is semi-algebraically triangulable.

Definition 1.19 (Cohomology groups of closed and bounded semi-algebraic
sets). Given a triangulation, h : |K| → S, where K is a simplicial complex,
we define the i-th simplicial cohomology group of S, by Hi(S) = Hi(C•(K)),
where C•(K) is the co-chain complex of K. The groups Hi(S) are invariant
under semi-algebraic homeomorphisms (and they coincide with the
corresponding singular cohomology groups when R = R). We denote by
bi(S) the i-th Betti number of S (i.e. the dimension of Hi(S) as a vector
space).

Exercise 1.20. Prove from the above definition that if S is a closed and
bounded semi-algebraic set then b0(S) is the number of semi-algebraically
connected components of S.

Remark 1.21. For a closed but not necessarily bounded semi-algebraic set
S ⊂ Rk we will denote by Hi(S) the i-th simplicial cohomology group of
S ∩ Bk(0, r) for sufficiently large r > 0. The sets S ∩ Bk(0, r) are semi-
algebraically homeomorphic for all sufficiently large r > 0 and hence this
definition makes sense. (The last property is usually referred to as the
local conic structure at infinity of semi-algebraic sets [5, Theorem 5.48]).
The definition of cohomology groups of arbitrary semi-algebraic sets in Rk

requires some care and several possibilities exist and we refer the reader to
[5, Section 6.3] where one such definition is given which agrees with singular
cohomology in case R = R.

1.2.7. The Euler-Poincaré Characteristic: Definition and Basic Properties.
An useful topological invariant of semi-algebraic sets which is often easier to
compute than their Betti numbers is the Euler-Poincaré characteristic.

Definition 1.22 (Euler-Poincaré characteristic of a closed and bounded
semi-algebraic set). Let S ⊂ Rk, be a closed and bounded semi-algebraic
set. Then the Euler-Poincaré characteristic of S is defined by

(1.6) χ(S) =
∑
i≥0

(−1)ibi(S).

From the point of view of designing algorithms, it is useful to define
Euler-Poincaré characteristic also for locally closed semi-algebraic sets.
A semi-algebraic set is locally closed if it is the intersection of a closed semi-
algebraic set with an open one. A standard example of a locally closed
semi-algebraic set is the realization, R(σ), of a sign-condition σ on a family
of polynomials.
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We now define Euler-Poincaré characteristic for locally closed semi-algebraic
sets in terms of the Borel-Moore cohomology groups of such sets (defined
below). This definition agrees with the definition of Euler-Poincaré charac-
teristic stated above for closed and bounded semi-algebraic sets. They may
be distinct for semi-algebraic sets which are closed but not bounded.

Definition 1.23. The simplicial cohomology groups of a pair of closed and
bounded semi-algebraic sets T ⊂ S ⊂ Rk are defined as follows. Such a pair
of closed and bounded semi-algebraic sets can be triangulated using a pair
of simplicial complexes (K,A) where A is a sub-complex of K. The p-th
simplicial cohomology group of the pair (S, T ), Hp(S, T ), is by definition to
be Hp(K,A). The dimension of Hp(S, T ) as a Q-vector space is called the p-
th Betti number of the pair (S, T ) and denoted bp(S, T ). The Euler-Poincaré
characteristic of the pair (S, T ) is

χ(S, T ) =
∑
i

(−1)ibi(S, T ).

Definition 1.24 (Borel-Moore cohomology group). The p-th Borel-Moore
cohomology group of S ⊂ Rk, denoted Hp

BM (S), is defined in terms of the
cohomology groups of a pair of closed and bounded semi-algebraic sets as
follows. For any r > 0 let Sr = S ∩ Bk(0, r). Note that for a locally closed
semi-algebraic set S both Sr and Sr \Sr are closed and bounded, and hence
Hp(Sr, Sr \ Sr) is well defined. Moreover, it is a consequence of the local
conic structure at infinity of semi-algebraic sets (see Remark 1.21 above)
that the cohomology group Hp(Sr, Sr \ Sr) is invariant for all sufficiently
large r > 0. We define Hp

BM (S) = Hp(Sr, Sr \Sr) for r > 0 sufficiently large
and it follows from the above remark that it is well defined.

Exercise 1.25. Compute the Borel-Moore cohomology groups of the fol-
lowing locally closed semi-algebraic sets.

(1) Bk(0, 1).
(2) Bk(0, 1) \ {0}.
(3) Bk(0, 1).
(4) Bk(0, 1) \ {0}.

The Borel-Moore cohomology groups are invariant under semi-algebraic
homeomorphisms (see [7]. It also follows clearly from the definition that
for a closed and bounded semi-algebraic set the Borel-Moore cohomology
groups coincide with the simplicial cohomology groups.

Definition 1.26 (Borel-Moore Euler-Poincaré characteristic). For a locally
closed semi-algebraic set S we define the Borel-Moore Euler-Poincaré char-
acteristic by

(1.7) χBM (S) =
k∑
i=0

(−1)i bBMi (S)

where bBMi (S) denotes the dimension of Hi
BM (S).
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Exercise 1.27. Compute χBM ([0, 1)), χBM ((0, 1)), χBM (Bk(0, 1)).

If S is closed and bounded then χBM (S) = χ(S).
The Borel-Moore Euler-Poincaré characteristic has the following additiv-

ity property (reminiscent of the similar property of volumes) which makes
them particularly useful in algorithmic applications.

Proposition 1.28. Let X,X1 and X2 be locally closed semi-algebraic sets
such that

X1 ∪X2 = X,X1 ∩X2 = ∅.
Then

(1.8) χBM (X) = χBM (X1) + χBM (X2).

Since for closed and bounded semi-algebraic sets, the Borel-Moore Euler-
Poincaré characteristic agrees with the ordinary Euler-Poincaré characteris-
tic, it is easy to derive the following additivity property of the Euler-Poincaré
characteristic of closed and bounded sets.

Proposition 1.29. Let X1 and X2 be closed and bounded semi-algebraic
sets. Then

(1.9) χ(X1 ∪X2) = χ(X1) + χ(X2)− χ(X1 ∩X2).

Note that Proposition 1.29 is an immediate consequence of Proposition
1.28 once we notice that the sets Y1 = X1\(X1∩X2) and Y2 = X2\(X1∩X2)
are locally closed, the set X1 ∪X2 is the disjoint union of the locally closed
sets Y1, Y2 and X1 ∩X2, and

χBM (Yi) = χBM (Xi)− χBM (X1 ∩X2) = χ(Xi)− χ(X1 ∩X2), for i = 1, 2.

More generally by applying Proposition 1.29 inductively we get the fol-
lowing inclusion-exclusion property of the (ordinary) Euler-Poincaré char-
acteristic.

For any n ∈ Z≥0 we denote by [n] the set {1, . . . , n}.

Proposition 1.30. Let X1, . . . , Xn be closed and bounded semi-algebraic
sets. Then denoting by XI the semi-algebraic set

⋂
i∈I

Xi for I ⊂ [n], we have

(1.10) χ(
⋃
i∈[n]

Xi) =
∑
I⊂[n]

(−1)(#I+1) χ(XI).

1.2.8. Homotopy Invariance. The cohomology groups of semi-algebraic sets
as defined above (Definition 1.19) are obviously invariant under semi-algebraic
homeomorphisms. But, in fact, they are invariant under a weaker equiva-
lence relation – namely, semi-algebraic homotopy equivalence (defined
below). This property is crucial in the design of efficient algorithms for com-
puting Betti numbers of semi-algebraic sets since it allows us to replace a
given set by one that is better behaved from the algorithmic point of view
but having the same homotopy type as the original set. This technique
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is ubiquitous in algorithmic semi-algebraic geometry and we will see some
version of it in almost every algorithm described in the following lectures.

Remark 1.31. The reason behind insisting on the prefix “semi-algebraic”
with regard to homeomorphisms and homotopy equivalences here and in
the rest of the paper, is that for general real closed fields, the ordinary
Euclidean topology could be rather strange. For example, the real closed
field, Ralg, of real algebraic numbers is totally disconnected as a topological
space under the Euclidean topology. On the other hand, if the ground field
R = R, then we can safely drop the prefix “semi-algebraic” in the statements
made above. However, even if we start with R = R, in many applications
described below we enlarge the field by taking non-archimedean extensions
of R made above would again apply to these field extensions.

Definition 1.32 (Semi-algebraic homotopy). Let X,Y be two closed and
bounded semi-algebraic sets. Two semi-algebraic continuous functions f, g :
X → Y are semi-algebraically homotopic, f ∼sa g, if there is a contin-
uous semi-algebraic function F : X × [0, 1] → Y such that F (x, 0) = f(x)
and F (x, 1) = g(x) for all x ∈ X.

Clearly, semi-algebraic homotopy is an equivalence relation among semi-
algebraic continuous maps from X to Y .

Definition 1.33 (Semi-algebraic homotopy equivalence). The sets X,Y are
semi-algebraically homotopy equivalent if there exist semi-algebraic contin-
uous functions f : X → Y , g : Y → X such that g◦f ∼sa IdX , f ◦g ∼sa IdY .

We have

Proposition 1.34 (Homotopy Invariance of the Cohomology Groups). Let
X,Y be two closed and bounded semi-algebraic sets of Rk that are semi-
algebraically homotopy equivalent. Then, H∗(X) ∼= H∗(Y ).

For any semi-algebraic set S, we will denote by bi(S) its i-th Betti number,
which is the dimension of the i-th cohomology group, Hi(S,Q), taken with
rational coefficients, which in our setting is also isomorphic to the i-th homol-
ogy group, Hi(S,Q) (see Section 1.2.6 below for precise definitions of these
groups). In particular, b0(S) is the number of semi-algebraically connected
components of S. We will sometimes refer to the sum b(S) =

∑
i≥0

bi(S) as

the topological complexity of a semi-algebraic set S.

2. Bounds

After having defined the Betti numbers of semi-algebraic sets we now
proceed to discuss the best known bounds on these numbers.

2.1. Bounds on the Betti Numbers of Algebraic Sets. We first con-
sider the simplest case of a non-singular compact hyper-surface in Rk.



12 SAUGATA BASU

Theorem 2.1. Let P ⊂ R[X1, . . . , Xk] such that deg(P ) ≤ d and Z(P,Rk)
is a non-singular, compact hypersurface. Then,

b(S) ≤ d(d− 1)k−1.

More generally, we have that

Theorem 2.2. [11, 15, 9] Let P ⊂ R[X1, . . . , Xk] such that deg(P ) ≤ d.
Then,

b(S) ≤ d(2d− 1)k−1.

2.2. Bounds on the Betti numbers of Semi-algebraic Sets. We now
consider the case of semi-algebraic sets.

For the special case of P-closed semi-algebraic sets we have the following
bound. (and this bound is used in an essential way in the proof of Theorem
2.4). Using the same notation as in Theorem 2.4 above we have

Theorem 2.3. [2, 4] For every P-closed semi-algebraic set S ⊂ Rk, with
s = #P, and d = maxP∈P deg(P ),

b(S) ≤
k∑
i=0

k−i∑
j=0

(
s

j

)
6jd(2d− 1)k−1.

Theorem 2.4. [8] For a general P-semi-algebraic set S ⊂ Rk, with s = #P,
and d = maxP∈P deg(P ),

b(S) ≤
k∑
i=0

k−i∑
j=0

(
2s2 + 1

j

)
6jd(2d− 1)k−1.

Remark 2.5. The bound gets worse (compared to Theorem 2.3) because of
an initial reduction step which entails replacing an arbitrary semi-algebraic
P-semi-algebraic set by a P ′-closed semi-algebraic set having the same ho-
motopy type as the original set, where the polynomials in P ′ satisfy the
same degree bound as the ones in P, but #P ′ is larger than #P.

Exercise 2.6. Prove that every semi-algebraic set is (semi-algebraically)
homotopy equivalent to a closed and bounded one.

Exercise 2.7. For k = 1, 2 design a scheme for replacing an arbitrary P-
semi-algebraic by a P ′-closed semi-algebraic set having the same homotopy
type, and such that the polynomials in P ′ are of the form P ±εj , P ∈ P and
the εj ’s are infinitesimals. How about a general k ?

Exercise 2.8 (Open problem). Notice that the bound on the Betti numbers
for an arbibtrary P-semi-algebraic set in Theorem 2.4 is significantly worse
than the bound for P-closed semi-algebraic set in Theorem 2.3. Does this
have to be so ? In other words construct an arbitrary P-semi-algebraic set
for which the sum of the Betti numbers is bigger than the bound in Theorem
2.3 (for P-closed semi-algebraic sets) (or improve Theorem 2.4).
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2.3. Betti numbers of Sign Conditions. A family of polynomials P ⊂
R[X1, . . . , Xk] induces a partition of Rk into connected regions where the
polynomials maintain their signs. Bounding the the number of elements
of such a partition (and also their topological complexity) is often very
important in practice. The following theorem gives a bound on the different
Betti numbers of the elements of this partition.

For σ ∈ {0, 1,−1}P , let bi(σ) denote the i-th Betti number of R(σ) and
let

bi(P) =
∑
σ

bi(σ).

Note that, b0(P) is the total number of semi-algebraically connected com-
ponents of the realizations of all realizable sign conditions of P.

With same notation as before we have

Theorem 2.9. [4] For 0 ≤ i ≤ k,

bi(P) ≤
k−i∑
j=0

(
s

j

)
4jd(2d− 1)k−1.

Remark 2.10. These bounds are asymptotically tight, as can be already seen
from the example where each P ∈ P is a product of d generic polynomials of
degree one. The number of connected components of the P-semi-algebraic
set defined as the subset of Rk where all polynomials in P are non-zero is
clearly bounded from below by (Ω(sd))k.

Exercise 2.11 (Open ended). While the bound in Theorem 2.9 is asymp-
totically tight there is still a substantial gap between the actual (non-
asymptotic) upper and lower bounds. Can you close this gap at least for
small values of k (starting from k = 2) ?

2.4. On the Number of Connected Components of Sign Conditions.
Often the number of connected components (i.e. b0(P)) is the quantity of
interest and it is an interesting problem to derive precise bounds just in this
case. To obtain absolutely tight bounds is still an open problem. However,
if we only consider asymptotics in s = #P and consider d, k to be fixed we
have tight bounds.

With the notation of the previous paragraphs we have

Theorem 2.12. [6]

b0(P) ≤
∑

0≤`≤k

( s

k − `

)(
s

`

)
dk +

∑
1≤i≤`

(
s

k − `

)(
s

`− i

)
dO(k2)


=

k∑
`=0

(
s

k − `

)(
s

`

)
dk +O(sk−1)

=

(
k∑
`=0

dk

`!(k − `)!

)
sk +O(sk−1)
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=
(2d)k

k!
sk +O(sk−1).

Remark 2.13. For 0 < d, k � s, this gives

b0(P) ≤
(

2esd
k

)k
.

This matches asymptotically the lower bound obtained by taking s polyno-
mials each of which is a product of d linear polynomials in general position.

2.5. Certain Restricted Classes of Semi-algebraic Sets. Since general
semi-algebraic sets can have exponential topological complexity (cf. Remark
2.10), it is natural to consider certain restricted classes of semi-algebraic sets.
One natural class consists of semi-algebraic sets defined by a conjunction of
quadratic inequalities.

2.5.1. Quantitative Bounds for Sets Defined by Quadratic Inequalities. Since
sets defined by linear inequalities have no interesting topology, sets defined
by quadratic inequalities can be considered to be the simplest class of semi-
algebraic sets which can have non-trivial topology. Such sets are in fact
quite general, since every semi-algebraic set can be defined by a (quanti-
fied) formula involving only quadratic polynomials (at the cost of increasing
the number of variables and the size of the formula). Moreover, as in the
case of general semi-algebraic sets, the Betti numbers of such sets can be
exponentially large. For example, the set S ⊂ Rk defined by

X1(1−X1) ≤ 0, . . . , Xk(1−Xk) ≤ 0,

has b0(S) = 2k.
Hence, it is somewhat surprising that for any constant ` ≥ 0, the Betti

numbers bk−1(S), . . . , bk−`(S), of a basic closed semi-algebraic set S ⊂ Rk

defined by quadratic inequalities, are polynomially bounded. The following
theorem which appears in [3] is derived using a bound proved by Barvinok
[1] on the Betti numbers of sets defined by few quadratic equations.

Theorem 2.14. [3] Let R a real closed field and S ⊂ Rk be defined by

P1 ≤ 0, . . . , Ps ≤ 0, deg(Pi) ≤ 2, 1 ≤ i ≤ s.
Then, for any ` ≥ 0,

bk−`(S) ≤
(
s

`

)
kO(`).

Notice that for fixed ` this gives a polynomial bound on the highest ` Betti
numbers of S (which could possibly be non-zero). Observe also that similar
bounds do not hold for sets defined by polynomials of degree greater than
two. For instance, the set V ⊂ Rk defined by the single quartic inequality,

k∑
i=1

X2
i (Xi − 1)2 − ε ≥ 0,
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will have bk−1(V ) = 2k, for all small enough ε > 0.
To see this observe that for all sufficiently small ε > 0, Rk \ V is defined

by
k∑
i=1

X2
i (Xi − 1)2 < ε

and has 2k connected components since it retracts onto the set {0, 1}k. It
now follows that

bk−1(V ) = b0(Rk \ V ) = 2k,

where the first equality is a consequence of the well-known Alexander duality
theorem (see [13, pp. 296]).
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3. List of Exercises

(1) Prove using the Tarski-Seidenberg principle that the closure of a
semi-algebraic set is again a semi-algebraic set.

(2) Consider the semi-algebraic subset of R defined by the single (strict)
polynomial inequality X3 − X > 0. Notice that the closure of this
set is not defined by the corresponding weak inequality X3−X ≥ 0.

(3) Verify that

Hi(∆n, ∂∆n) = Q, i = n

Hi(∆n, ∂∆n) = 0, else.

(4) Prove from the above definition that if S is a closed and bounded
semi-algebraic set then b0(S) is the number of semi-algebraically
connected components of S.

(5) Compute the Borel-Moore cohomology groups of the following lo-
cally closed semi-algebraic sets.
(a) Bk(0, 1).
(b) Bk(0, 1) \ {0}.
(c) Bk(0, 1).
(d) Bk(0, 1) \ {0}.

(6) Compute χBM ([0, 1)), χBM ((0, 1)), χBM (Bk(0, 1)).
(7) Prove that every semi-algebraic set is (semi-algebraically) homotopy

equivalent to a closed and bounded one.
(8) For k = 1, 2 design a scheme for replacing an arbitrary P-semi-

algebraic by a P ′-closed semi-algebraic set having the same homo-
topy type, and such that the polynomials in P ′ are of the form
P ± εj , P ∈ P and the εj ’s are infinitesimals. How about a general
k ?

(9) (Open problem) Notice that the bound on the Betti numbers for
an arbibtrary P-semi-algebraic set in Theorem 2.4 is significantly
worse than the bound for P-closed semi-algebraic set in Theorem
2.3. Does this have to be so ? In other words construct an arbitrary
P-semi-algebraic set for which the sum of the Betti numbers is bigger
than the bound in Theorem 2.3 (for P-closed semi-algebraic sets) (or
improve Theorem 2.4).

(10) (Open ended) While the bound in Theorem 2.9 is asymptotically
tight there is still a substantial gap between the actual (non-asymptotic)
upper and lower bounds. Can you close this gap at least for small
values of k (starting from k = 2) ?
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