
ALGORITHMIC SEMI-ALGEBRAIC GEOMETRY AND
TOPOLOGY : LECTURE 2

SAUGATA BASU

Abstract. In this lecture we discuss the main algorithmic problems
in semi-algebraic geometry and topology. We also discuss some of the
basic tools used in the currently most efficient algorithms for solving
these problems.
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1. Main Algorithmic Problems

Algorithmic problems in semi-algebraic geometry typically consist of the
following. We are given as input a finite family, P ⊂ R[X1, . . . , Xk], as well
as a formula defining a P-semi-algebraic set S. The task is to decide whether
certain geometric and topological properties hold for S, and in some cases
also computing certain topological invariants of S. Some of the most basic
problems include the following.

Given a P-semi-algebraic set S ⊂ Rk:
(1) decide whether it is empty or not,
(2) given two points x, y ∈ S, decide if they are in the same connected

component of S and if so output a semi-algebraic path in S joining
them,

(3) compute semi-algebraic descriptions of the connected components of
S,
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(4) compute semi-algebraic descriptions of the projection of S onto some
linear subspace of Rk (this problem is also known as the quantifier
elimination problem for the first order theory of the reals and many
other problems can be posed as special cases of this very general
problem).

At a deeper level we have problems of a more topological flavor, such as:
(5) compute the cohomology groups of S, its Betti numbers, its Euler-

Poincaré characteristic etc.,
(6) compute a semi-algebraic triangulation of S as well as
(7) compute a decomposition of S into semi-algebraic smooth pieces

of various dimensions which fit together nicely (a Whitney-regular
stratification).

The complexity of an algorithm for solving any of the above problems is
measured in terms of the following three parameters:

• the number of polynomials, s = #P,
• the maximum degree, d = maxP∈P deg(P ), and
• the number of variables, k.

Definition 1.1 (Complexity). A typical input to the algorithms considered
in this survey will be a set of polynomials with coefficients in an ordered
ring D (which can be taken to be the ring generated by the coeffcients
of the input polynomials). By complexity of an algorithm we will mean
the number of arithmetic operations (including comparisons) performed by
the algorithm in the ring D. In case the input polynomials have integer
coefficients with bounded bit-size, then we will often give the bit-complexity,
which is the number of bit operations performed by the algorithm. We refer
the reader to [11, Chapter 8] for a full discussion about the various measures
of complexity.

Even though the goal is always to design algorithms with the best possible
complexity in terms of all the parameters s, d, k, the relative importance
of the parameters is very much application dependent. For instance, in
applications in computational geometry it is the combinatorial complexity
(that is the dependence on s) that is of paramount importance, the algebraic
part depending on d, as well as the dimension k, are assumed to be bounded
by constants. On the other hand in algorithmic real algebraic geometry, and
in applications in complexity theory, the algebraic part depending on d is
considered to be equally important.

1.1. Brief History. Even though there exist algorithms for solving all the
above problems, the main research problem is to design efficient algorithms
for solving them. The complexity of the first decision procedure given by
Tarski [27] to solve Problems 1 and 4 listed in Section 1 is not elementary
recursive, which implies that the running time cannot be bounded by a func-
tion of the size of the input which is a fixed tower of exponents. The first
algorithm with a significantly better worst-case time bound was given by
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Collins [16] in 1976. His algorithm had a worst case running time doubly
exponential in the number of variables. Collins’ method is to obtain a cylin-
drical algebraic decomposition of the given semi-algebraic set (see Section
3.1 below for definition). Once this decomposition is computed most topo-
logical questions about semi-algebraic sets such as those listed in Section
1 can be answered. However, this method involves cascading projections
which involve squaring of the degrees at each step resulting in a complexity
which is doubly exponential in the number of variables.

Most of the recent work in algorithmic semi-algebraic geometry has fo-
cused on obtaining single exponential time algorithms – that is algorithms
with complexity of the order of (sd)k

O(1)
rather than (sd)2k

. An important
motivating reason behind the search for such algorithms, is the following
theorem due to Gabrielov and Vorobjov [17] (see [24, 28, 23, 2], as well as
the survey article [9], for work leading up to this result).

2. Recent Algorithmic Results

In this section we list some of the recent progress on the algorithmic
problem of determining the Betti numbers of semi-algebraic sets.

• In [10], an algorithm with single exponential complexity is given for
computing the first Betti number of semi-algebraic sets.
• The above result is generalized in [4], where a single exponential

time algorithm is given for computing the first ` Betti numbers of
semi-algebraic sets, where ` is allowed to be any constant. More
precisely, an algorithm is described that takes as input a description
of a P-semi-algebraic set S ⊂ Rk, and outputs the first ` + 1 Betti
numbers of S, b0(S), . . . , b`(S). The complexity of the algorithm is
(sd)k

O(`)
, where s = #(P) and d = maxP∈P deg(P ), which is single

exponential in k for ` any constant.
• In [5], a polynomial time algorithm is given for computing a constant

number of the top Betti numbers of semi-algebraic sets defined by
quadratic inequalities. If the number of inequalities is fixed then the
algorithm computes all the Betti numbers in polynomial time. More
precisely, an algorithm is described which takes as input a semi-
algebraic set, S, defined by P1 ≥ 0, . . . , Ps ≥ 0, where each Pi ∈
R[X1, . . . , Xk] has degree ≤ 2, and computes the top ` Betti numbers
of S, bk−1(S), . . . , bk−`(S), in polynomial time. The complexity of
the algorithm is

∑`+2
i=0

(
s
i

)
k2O(min(`,s))

. For fixed `, the complexity of
the algorithm can be expressed as s`+2k2O(`)

, which is polynomial
in the input parameters s and k. For fixed s, we obtain by letting
` = k, an algorithm for computing all the Betti numbers of S whose
complexity is k2O(s)

.
• In [12], a polynomial time algorithm is obtained for computing a

constant number of the lowest Betti numbers of semi-algebraic sets
defined as the projection of semi-algebraic sets defined by few by



4 SAUGATA BASU

quadratic inequalities. More precisely, let S ⊂ Rk+m be a closed
and bounded semi-algebraic set defined by P1 ≥ 0, . . . , P` ≥ 0, where
Pi ∈ R[X1, . . . , Xk, Y1, . . . , Ym], and deg(Pi) ≤ 2, 1 ≤ i ≤ `. Let π
denote the standard projection from Rk+m onto Rm. An algorithm
is described for computing the the first q Betti numbers of π(S),
whose complexity is (k +m)2O((q+1)`)

. For fixed q and `, the bound
is polynomial in k +m.
• The complexity estimates for all the algorithms mentioned above

included both the combinatorial and algebraic parameters. As men-
tioned before, in applications in computational geometry the alge-
braic part of the complexity is treated as a constant. In this context,
an interesting question is how efficiently can one compute the Betti
numbers of an arrangement of n closed and bounded semi-algebraic
sets, S1, . . . , Sn ⊂ Rk, where each Si is described using a constant
number of polynomials with degrees bounded by a constant. Such
arrangements are ubiquitous in computational geometry (see [1]).
A naive approach using triangulations would entail a complexity of
O(n2k

). This problem is considered in [3] where an algorithm is de-

scribed for computing `-th Betti number, b`(
n⋃
i=1

Si), 0 ≤ ` ≤ k − 1,

using O(n`+2) algebraic operations. Additionally, one has to per-
form linear algebra on integer matrices of size bounded by O(n`+2).
All previous algorithms for computing the Betti numbers of arrange-
ments triangulated the whole arrangement giving rise to a complex
of size O(n2k

) in the worst case. Thus, the complexity of computing
the Betti numbers (other than the zero-th one) for these algorithms

was O(n2k
). This is the first algorithm for computing b`(

n⋃
i=1

Si) that

does not rely on such a global triangulation, and has a graded com-
plexity which depends on `.

3. Algorithmic Preliminaries

In this section we give a brief overview of the basic algorithmic construc-
tions from semi-algebraic geometry that play a role in the design of more
sophisticated algorithms. These include cylindrical algebraic decomposition
(Section 3.1), the critical point method (Section 3.2), and the construction
of roadmaps of semi-algebraic sets (Section 3.3).

3.1. Cylindrical Algebraic Decomposition. As mentioned earlier one
fundamental technique for computing topological invariants of semi-algebraic
sets is through Cylindrical Algebraic Decomposition. Even though the math-
ematical ideas behind cylindrical algebraic decomposition were known be-
fore (see for example [22]), Collins [16] was the first to apply cylindrical



ALGORITHMIC SEMI-ALGEBRAIC GEOMETRY AND TOPOLOGY 5

algebraic decomposition in the setting of algorithmic semi-algebraic geom-
etry. Schwartz and Sharir [26] realized its importance in trying to solve
the motion planning problem in robotics, as well as computing topological
properties of semi-algebraic sets. Variants of the basic cylindrical algebraic
decomposition have also been used in several papers in computational geom-
etry. For instance in the paper by Chazelle et al. [14], a truncated version of
cylindrical decomposition is described whose combinatorial (though not the
algebraic) complexity is single exponential. This result has found several
applications in discrete and computational geometry (see for instance [15]).

Definition 3.1 (Cylindrical Algebraic Decomposition). A cylindrical alge-
braic decomposition of Rk is a sequence S1, . . . ,Sk where, for each 1 ≤ i ≤ k,
Si is a finite partition of Ri into semi-algebraic subsets, called the cells of
level i, which satisfy the following properties:

• Each cell S ∈ S1 is either a point or an open interval.
• For every 1 ≤ i < k and every S ∈ Si, there are finitely many

continuous semi-algebraic functions

ξS,1 < . . . < ξS,`S : S −→ R

such that the cylinder S × R ⊂ Ri+1 is the disjoint union of cells of
Si+1 which are:

– either the graph of one of the functions ξS,j , for j = 1, . . . , `S :

{(x′, xj+1) ∈ S × R | xj+1 = ξS,j(x′)} ,

– or a band of the cylinder bounded from below and from above
by the graphs of the functions ξS,j and ξS,j+1, for j = 0, . . . , `S ,
where we take ξS,0 = −∞ and ξi,`S+1 = +∞:

{(x′, xj+1) ∈ S × R | ξS,j(x′) < xj+1 < ξS,j+1(x′)} .

We note that every cell of a cylindrical algebraic decomposition is semi-
algebraical-
ly homeomorphic to an open i-cube (0, 1)i (by convention, (0, 1)0 is a point).

A cylindrical algebraic decomposition adapted to a finite family of semi-
algebraic sets T1, . . . , T` is a cylindrical algebraic decomposition of Rk such
that every Ti is a union of cells. (see Figure 1).

Definition 3.2. Given a finite set P ⊂ R[X1, . . . , Xk], a subset S of Rk is
is P-invariant if every polynomial P ∈ P has a constant sign (> 0, < 0, or
= 0) on S. A cylindrical algebraic decomposition of Rk adapted to P is a
cylindrical algebraic decomposition for which each cell C ∈ Sk is P-invariant.
It is clear that if S is P-semi-algebraic, a cylindrical algebraic decomposition
adapted to P is a cylindrical algebraic decomposition adapted to S.

One important result which underlies most algorithmic applications of
cylindrical algebraic decomposition is the following (see [11, Chapter 11] for
an easily accessible exposition).
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Figure 1. Example of cylindrical algebraic decomposition
of R3 adapted to a sphere.

Theorem 3.3. For every finite set P of polynomials in R[X1, . . . , Xk],
there is a cylindrical decomposition of Rk adapted to P. Moreover, such
a decomposition can be computed in time (sd)2O(k)

, where s = #P and
d = maxP∈P deg(P ).

The cylindrical algebraic decomposition obtained in Theorem 3.3 can in
fact be refined to give a semi-algebraic triangulation of any given semi-
algebraic set within the same complexity bound.

Recall that

Definition 3.4 (Semi-algebraic Triangulation). A semi-algebraic triangu-
lation of a semi-algebraic set S is a simplicial complex K together with a
semi-algebraic homeomorphism from |K| to S.

The following theorem states that such triangulations can be computed
for any closed and bounded semi-algebraic set with double exponential com-
plexity.

Theorem 3.5. Let S ⊂ Rk be a closed and bounded semi-algebraic set,
and let S1, . . . , Sq be semi-algebraic subsets of S. There exists a simplicial
complex K in Rk and a semi-algebraic homeomorphism h : |K| → S such
that each Sj is the union of images by h of open simplices of K. Moreover,
the vertices of K can be chosen with rational coordinates.



ALGORITHMIC SEMI-ALGEBRAIC GEOMETRY AND TOPOLOGY 7

Moreover, if S and each Si are P-semi-algebraic sets, then the semi-
algebraic triangulation (K,h) can be computed in time (sd)2O(k)

, where s =
#P and d = maxP∈P deg(P ).

3.2. The Critical Point Method. As mentioned earlier, all algorithms
using cylindrical algebraic decomposition have double exponential complex-
ity. Algorithms with single exponential complexity for solving problems in
semi-algebraic geometry are mostly based on the critical point method. This
method was pioneered by several researchers including Grigoriev and Vorob-
jov [20, 19], Renegar [25], Canny [13], Heintz, Roy and Solernò [21], Basu,
Pollack and Roy [6] amongst others. In simple terms, the critical point
method is nothing but a method for finding at least one point in every semi-
algebraically connected component of an algebraic set. It can be shown that
for a bounded nonsingular algebraic hyper-surface, it is possible to change
coordinates so that its projection to the X1-axis has a finite number of
non-degenerate critical points. These points provide at least one point in
every semi-algebraically connected component of the bounded nonsingular
algebraic hyper-surface. Unfortunately this is not very useful in algorithms
since it provides no method for performing this linear change of variables.
Moreover when we deal with the case of a general algebraic set, which may
be unbounded or singular, this method no longer works.

In order to reduce the general case to the case of bounded nonsingular
algebraic sets, we use an important technique in algorithmic semi-algebraic
geometry – namely, perturbation of a given real algebraic set in Rk using
one or more infinitesimals. The perturbed variety is then defined over a
non-archimedean real closed extension of the ground field – namely the field
of algebraic Puiseux series in the infinitesimal elements with coefficients in
R.

Since the theory behind such extensions might be unfamiliar to some
readers, we introduce here the necessary algebraic background referring the
reader to [11, Section 2.6] for full detail and proofs.

3.2.1. Infinitesimals and the Field of Algebraic Puiseux Series.

Definition 3.6 (Puiseux series). A Puiseux series in ε with coefficients in
R is a series of the form

(3.1) a =
∑
i≥k

aiε
i/q,

with k ∈ Z, i ∈ Z, ai ∈ R, q a positive integer.

It is a straightforward exercise to verify that the field of all Puiseux series
in ε with coefficients in R is an ordered field. The order extends the order of
R, and ε is an infinitesimally small and positive, i.e. is positive and smaller
than any positive r ∈ R.

Notation 1. The field of Pusisex series in ε with coefficients in R contains
as a subfield, the field of Puiseux series which are algebraic over R[ε]. We
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denote by R〈ε〉 the field of algebraic Puiseux series in ζ with coefficients in
R.

The following theorem is classical (see for example [11, Section 2.6] for a
proof).

Theorem 3.7. The field R〈ε〉 is real closed.

Definition 3.8 (The limε map). When a ∈ R〈ε〉 is bounded by an element
of R, limε(a) is the constant term of a, obtained by substituting 0 for ε in
a.

Example 3.9. A typical example of the application of the lim map can be
seen in Figures 2 and 3 below. The first picture depicts the algebraic set
Z(Q,R3), while the second depicts the algebraic set Z(Q̄,R〈ζ〉3) (where we
substituted a very small positive number for ζ in order to able display this
set), where Q and Q̄ are defined by Eqn. (3.4) and Eqn. (3.3) resp. The
algebraic sets Z(Q,R3) and Z(Q̄,R〈ζ〉3) are related by

Z(Q,R3) = lim
ζ

Z(Q̄,R〈ζ〉3).

Since we will often consider the semi-algebraic sets defined by the same
formula, but over different real closed extensions of the ground field, the
following notation is useful.

Notation 2. Let R′ be a real closed field containing R. Given a semi-
algebraic set S in Rk, the extension of S to R′, denoted Ext(S,R′), is the
semi-algebraic subset of R′k defined by the same quantifier free formula that
defines S.

The set Ext(S,R′) is well defined (i.e. it only depends on the set S and
not on the quantifier free formula chosen to describe it). This is an easy
consequence of the transfer principle.

We now return to the discussion of the critical point method. In order
for the critical point method to work for all algebraic sets, we associate
to a possibly unbounded algebraic set Z ⊂ Rk a bounded algebraic set
Z ′ ⊂ R〈ε〉k+1, whose semi-algebraically connected components are closely
related to those of Z.

Let Z = Z(Q,Rk) and consider

Z ′ = Z(Q2 + (ε2(X2
1 + . . .+X2

k+1)− 1)2,R〈ε〉k+1).

The set Z ′ is the intersection of the sphere Skε of center 0 and radius
1
ε

with

a cylinder based on the extension of Z to R〈ε〉. The intersection of Z ′ with
the hyperplane Xk+1 = 0 is the intersection of Z with the sphere Sk−1

ε of

center 0 and radius
1
ε

. Denote by π the projection from R〈ε〉k+1 to R〈ε〉k.
The following proposition which appears in [11] then relates the connected

component of Z with those of Z ′ and this allows us to reduce the problem
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of finding points on every connected component of a possibly unbounded
algebraic set to the same problem on bounded algebraic sets.

Proposition 3.10. Let N be a finite number of points meeting every semi-
algebraically connected component of Z ′. Then π(N) meets every semi-
algebraically connected component of the extension Ext(Z ′,R〈ε〉) of Z ′ to
R〈ε〉.

We obtain immediately using Proposition 3.10 a method for finding a
point in every connected component of an algebraic set. Note that these
points have coordinates in the extension R〈ε〉 rather than in the real closed
field R we started with. However, the extension from R to R〈ε〉 preserves
semi-algebraically connected components.

For dealing with possibly singular algebraic sets we define X1-pseudo-
critical points of Z(Q,Rk) when Z(Q,Rk) is a bounded algebraic set. These
pseudo-critical points are a finite set of points meeting every semi-algebraically
connected component of Z(Q,Rk). They are the limits of the critical points
of the projection to the X1 coordinate of a bounded nonsingular algebraic
hyper-surface defined by a particular infinitesimal perturbation, Q̄, of the
polynomial Q. Moreover, the equations defining the critical points of the
projection on the X1 coordinate on the perturbed algebraic set have a very
special algebraic structure (they form a Gröbner basis [11, Section 12.1]),
which makes possible efficient computation of these pseudo-critical values
and points. We refer the reader to [11, Chapter 12] for a full exposition
including the definition and basic properties of Gröbner basis.

The deformation Q̄ of Q is defined as follows. Suppose that Z(Q,Rk) is
contained in the ball of center 0 and radius 1/c. Let d̄ be an even integer
bigger than the degree d of Q and let

(3.2) Gk(d̄, c) = cd̄(X d̄
1 + · · ·+X d̄

k +X2
2 + · · ·+X2

k)− (2k − 1),

(3.3) Q̄ = ζGk(d̄, c) + (1− ζ)Q.

The algebraic set Z(Q̄,R〈ζ〉k) is a bounded and non-singular hyper-surface
lying infinitesimally close to Z(Q,Rk) and the critical points of the projection
map onto the X1 co-ordinate restricted to Z(Q̄,R〈ζ〉k) form a finite set of
points. We take the images of these points under limζ (cf. Definition 3.8)
and we call the points obtained in this manner the X1-pseudo-critical points
of Z(Q,Rk). Their projections on the X1-axis are called pseudo-critical
values.

Example 3.11. We illustrate the perturbation mentioned above by a con-
crete example. Let k = 3 and Q ∈ R[X1, X2, X3] be defined by

(3.4) Q = X2
2 −X2

1 +X4
1 +X4

2 +X4
3 .

Then, Z(Q,R3) is a bounded algebraic subset of R3 shown below in Figure 2.
Notice that Z(Q,R3) has a singularity at the origin. The surface Z(Q̄,R3)
with a small positive real number substituted for ζ is shown in Figure 3.
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Notice that this surface is non-singular, but has a different homotopy type
than Z(Q,R3) (it has three connected components compared to only one of
Z(Q,R3)). However, the semi-algebraic set bounded by Z(Q̄,R3) (i.e. the
part inside the larger component but outside the smaller ones) is homotopy
equivalent to Z(Q,R3).

Figure 2. The algebraic set Z(Q,R3).

Figure 3. The algebraic set Z(Q̄,R3).

By computing algebraic representations (see [11, Section 12.4] for the
precise definition of such a representation) of the pseudo-critical points one
obtains for any given algebraic set a finite set of points guaranteed to meet
every connected component of this algebraic set. Using some more argu-
ments from real algebraic geometry one can also reduce the problem of
computing a finite set of points guaranteed to meet every connected com-
ponent of the realization of every realizable sign condition on a given family
of polynomials to finding points on certain algebraic sets defined by the in-
put polynomials (or infinitesimal perturbations of these polynomials). The
details of this argument can be found in [11, Proposition 13.2].

The following theorem which is the best result of this kind appears in [7].

Theorem 3.12. [7] Let Z(Q,Rk) be an algebraic set of real dimension k′,
where Q is a polynomial in R[X1, . . . , Xk] of degree at most d, and let
P ⊂ R[X1, . . . , Xk] be a set of s polynomials with each P ∈ P also of degree
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at most d. Let D be the ring generated by the coefficients of Q and the poly-
nomials in P. There is an algorithm which computes a set of points meeting
every semi-algebraically connected component of every realizable sign condi-
tion on P over Z(Q,R〈ε, δ〉k). The algorithm has complexity

(k′(k − k′) + 1)
∑
j≤k′

4j
(
s

j

)
dO(k) = sk

′
dO(k)

in D. There is also an algorithm providing the list of signs of all the poly-
nomials of P at each of these points with complexity

(k′(k − k′) + 1)s
∑
j≤k′

4j
(
s

j

)
dO(k) = sk

′+1dO(k)

in D.

Notice that the combinatorial complexity of the algorithm in Theorem
3.12 depends on the dimension of the variety rather than that of the ambient
space. Since we are mostly concentrating on single exponential algorithms
in this part of the survey, we do not emphasize this aspect too much.

Notice that the combinatorial complexity of the algorithm in Theorem
3.12 depends on the dimension of the variety rather than that of the ambient
space. Since we are mostly concentrating on single exponential algorithms
in this part of the survey, we do not emphasize this aspect too much.

3.3. Roadmaps. Theorem 3.12 gives a single exponential time algorithm
for testing if a given semi-algebraic set is empty or not. However, it gives
no way of testing if any two sample points computed by it belong to the
same connected component of the given semi-algebraic set, even though the
set of sample points is guaranteed to meet each such connected component.
In order to obtain connectivity information in single exponential time a
more sophisticated construction is required – namely that of a roadmap of
a semi-algebraic set, which is an one dimensional semi-algebraic subset of
the given semi-algebraic set which is non-empty and connected inside each
connected component of the given set. Roadmaps were first introduced by
Canny [13], but similar constructions were considered as well by Grigoriev
and Vorobjov [19] and Gournay and Risler [18]. Our exposition below follows
that in [8, 11] where the most efficient algorithm for computing roadmaps is
given. The notions of pseudo-critical points and values defined above play
a critical role in the design of efficient algorithms for computing roadmaps
of semi-algebraic sets.

We first define a roadmap of a semi-algebraic set. We use the following
notation. We denote by π1...j the projection, x 7→ (x1, . . . , xj). Given a set
S ⊂ Rk and y ∈ Rj , we denote by Sy = S ∩ π−1

1...j(y).

Definition 3.13 (Roadmap of a semi-algebraic set). Let S ⊂ Rk be a semi-
algebraic set. A roadmap for S is a semi-algebraic set M of dimension at
most one contained in S which satisfies the following roadmap conditions:
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X2

X3

v3 v4 v5v1
v2 v6

X1

Input points

Figure 4. Roadmap of the torus in R3.

• RM1 For every semi-algebraically connected component D of S, D∩
M is semi-algebraically connected.
• RM2 For every x ∈ R and for every semi-algebraically connected

component D′ of Sx, D′ ∩M 6= ∅.

We describe the construction of a roadmap RM(Z(Q,Rk),N ) for a bounded
algebraic set Z(Q,Rk) which contains a finite set of points N of Z(Q,Rk).
A precise description of how the construction can be performed algorithmi-
cally can be found in [11]. We should emphasize here that RM(Z(Q,Rk),N )
denotes the semi-algebraic set output by the specific algorithm described be-
low which satisfies the properties stated in Definition 3.13 (cf. Proposition
3.14).

Also, in order to understand the roadmap algorithm it is easier to first
concentrate on the case of a bounded and non-singular real algebraic set in
Rk (see Figure 4 below). In this case several definitions get simplified. For
example, the pseudo-critical values defined below are in this case ordinary
critical values of the projection map on the first co-ordinate. However, one
should keep in mind that even if one starts with a bounded non-singular
algebraic set, the input to the recursive calls corresponding to the critical
sections (see below) are necessarily singular and thus it is not possible to
treat the non-singular case independently.

A key ingredient of the roadmap is the construction of pseudo-critical points
and values defined above. The construction of the roadmap of an algebraic
set containing a finite number of input points N of this algebraic set is as
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follows. We first construct X2-pseudo-critical points on Z(Q,Rk) in a para-
metric way along the X1-axis by following continuously, as x varies on the
X1-axis, the X2-pseudo-critical points on Z(Q,Rk)x. This results in curve
segments and their endpoints on Z(Q,Rk). The curve segments are continu-
ous semi-algebraic curves parametrized by open intervals on the X1-axis and
their endpoints are points of Z(Q,Rk) above the corresponding endpoints of
the open intervals. Since these curves and their endpoints include for every
x ∈ R the X2−pseudo-critical points of Z(Q,Rk)x, they meet every con-
nected component of Z(Q,Rk)x. Thus, the set of curve segments and their
endpoints already satisfy RM2. However, it is clear that this set might not
be semi-algebraically connected in a semi-algebraically connected compo-
nent and so RM1 might not be satisfied. We add additional curve segments
to ensure connectedness by recursing in certain distinguished hyperplanes
defined by X1 = z for distinguished values z.

The set of distinguished values is the union of the X1-pseudo-critical val-
ues, the first coordinates of the input points N , and the first coordinates
of the endpoints of the curve segments. A distinguished hyperplane is an
hyperplane defined by X1 = v, where v is a distinguished value. The input
points, the endpoints of the curve segments, and the intersections of the
curve segments with the distinguished hyperplanes define the set of distin-
guished points.

Let the distinguished values be v1 < . . . < v`. Note that amongst these are
the X1-pseudo-critical values. Above each interval (vi, vi+1) we have con-
structed a collection of curve segments Ci meeting every semi-algebraically
connected component of Z(Q,Rk)v for every v ∈ (vi, vi+1). Above each dis-
tinguished value vi we have a set of distinguished points Ni. Each curve
segment in Ci has an endpoint in Ni and another in Ni+1. Moreover, the
union of the Ni contains N .

We then repeat this construction in each distinguished hyperplane Hi

defined by X1 = vi with input Q(vi, X2, . . . , Xk) and the distinguished
points in Ni. Thus, we construct distinguished values vi,1, . . . , vi,`(i) of
Z(Q(vi, X2, . . . , Xk),Rk−1) (with the role of X1 being now played by X2)
and the process is iterated until for I = (i1, . . . , ik−2), 1 ≤ i1 ≤ `, . . . , 1 ≤
ik−2 ≤ `(i1, . . . , ik−3), we have distinguished values vI,1 < . . . < vI,`(I) along
the Xk−1 axis with corresponding sets of curve segments and sets of distin-
guished points with the required incidences between them.

The following theorem is proved in [8] (see also [11]).

Proposition 3.14. The semi-algebraic set RM(Z(Q,Rk),N ) obtained by
this construction is a roadmap for Z(Q,Rk) containing N .

Note that if x ∈ Z(Q,Rk), RM(Z(Q,Rk), {x}) contains a path, γ(x),
connecting a distinguished point p of RM(Z(Q,Rk)) to x.

3.3.1. The Divergence Property of Connecting Paths. In applications to al-
gorithms for computing Betti numbers of semi-algebraic sets it becomes
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important to examine the properties of parametrized paths which are the
unions of connecting paths starting at a given p and ending at x, where x
varies over a certain semi-algebraic subset of Z(Q,Rk).

We first note that for any x = (x1, . . . , xk) ∈ Z(Q,Rk) we have by con-
struction that RM(Z(Q,Rk)) is contained in RM(Z(Q,Rk), {x}). In fact,

RM(Z(Q,Rk), {x}) = RM(Z(Q,Rk)) ∪ RM(Z(Q,Rk)x1 ,Mx1),

where Mx1 consists of (x2, . . . , xk) and the finite set of points obtained by
intersecting the curves in RM(Z(Q,Rk)) parametrized by the X1-coordinate
with the hyperplane π−1

1 (x1).

x

y

p1(x)

p1(y)

X1

γ(RM1(x), p1(x), x)

γ(RM1(y), p1(y), y)

γ(RM, p, p1(y))

p

Figure 5. The connecting path Γ(x).

A connecting path γ(x) (with non-self intersecting image) joining a distin-
guished point p of RM(Z(Q,Rk)) to x can be extracted from RM(Z(Q,Rk), {x}).
The connecting path γ(x) consists of two consecutive parts, γ0(x) and Γ1(x).
The path γ0(x) is contained in RM(Z(Q,Rk)) and the path Γ1(x) is con-
tained in Z(Q,Rk)x1 . The part γ0(x) consists of a sequence of sub-paths
γ0,0, . . . , γ0,m. Each γ0,i is a semi-algebraic path parametrized by one of the
co-ordinates X1, . . . , Xk, over some interval [a0,i, b0,i] with γ0,0(a0,0) = p.
The semi-algebraic maps

γ0,0, . . . , γ0,m

and the end-points of their intervals of definition

a0,0, b0,0, . . . , a0,m, b0,m
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are all independent of x (up to the discrete choice of the path γ(x) in
RM(Z(Q,Rk), {x})), except b0,m which depends on x1.

Moreover, Γ1(x) can again be decomposed into two parts γ1(x) and Γ2(x)
with Γ2(x) contained in Z(Q,Rk)(x1,x2) and so on.

If y = (y1, . . . , yk) ∈ Z(Q,Rk) is another point such that x1 6= y1, then
since Z(Q,Rk)x1 and Z(Q,Rk)y1 are disjoint, it is clear that

RM(Z(Q,Rk), {x}) ∩ RM(Z(Q,Rk), {y}) = RM(Z(Q,Rk)).

Now consider a connecting path γ(y) extracted from RM(Z(Q,Rk), {y}).
The images of Γ1(x) and Γ1(y) are disjoint. If the image of γ0(y) (which is
contained in RM(Z(Q,Rk)) follows the same sequence of curve segments as
γ0(x) starting at p (i.e. it consists of the same curves segments γ0,0, . . . , γ0,m

as in γ0(x)), then it is clear that the images of the paths γ(x) and γ(y) has
the property that they are identical up to a point and they are disjoint after
it. This is called the divergence property in [10].

3.3.2. Roadmaps of General Semi-algebraic Sets. Using the same ideas as
above and some additional techniques for controlling the combinatorial com-
plexity of the algorithm it is possible to extend the roadmap algorithm to
the case of semi-algebraic sets. The following theorem appears in [10, 11]
and gives the most efficient algorithm for constructing roadmaps.

Theorem 3.15. [10, 11] Let Q ∈ R[X1, . . . , Xk] with Z(Q,Rk) of dimension
k′ and let P ⊂ R[X1, . . . , Xk] be a set of at most s polynomials for which
the degrees of the polynomials in P and Q are bounded by d. Let S be a
P-semi-algebraic subset of Z(Q,Rk). There is an algorithm which computes
a roadmap RM(S) for S with complexity sk

′+1dO(k2) in the ring D generated
by the coefficients of Q and the elements of P. If D = Z, and the bit-sizes
of the coefficients of the polynomials are bounded by τ , then the bit-sizes of
the integers appearing in the intermediate computations and the output are
bounded by τdO(k2).

Theorem 3.15 immediately implies that there is an algorithm whose out-
put is exactly one point in every semi-algebraically connected component of
S and whose complexity in the ring generated by the coefficients of Q and P
is bounded by sk

′+1dO(k2). In particular, this algorithm counts the number
semi-algebraically connected component of S within the same time bound.
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