
A COMPLEX ANALOGUE OF TODA’S THEOREM

SAUGATA BASU

Abstract. Toda [21] proved in 1989 that the (discrete) polynomial time hi-

erarchy, PH, is contained in the class P#P, namely the class of languages
that can be decided by a Turing machine in polynomial time given access to

an oracle with the power to compute a function in the counting complexity

class #P. This result which illustrates the power of counting is considered to
be a seminal result in computational complexity theory. An analogous result

(with a compactness hypothesis) in the complexity theory over the reals (in

the sense of Blum-Shub-Smale real machines [3]) was proved in [1]. Unlike
Toda’s proof in the discrete case, which relied on sophisticated combinatorial

arguments, the proof in [1] is topological in nature in which the properties of

the topological join is used in a fundamental way. However, the constructions
used in [1] were semi-algebraic in nature – they used real inequalities in an

essential way and as such do not extend to the complex case. In this paper, we

extend the techniques developed in [1] to the complex projective case. A key
role is played by the complex join of quasi-projective complex varieties. As a

consequence we obtain a complex analogue of Toda’s theorem. As in the real
case, the complex analogue of Toda’s theorem is proved with a compactness

assumption which we are unable to remove presently. We also relate the com-

putational hardness of two well-studied problems in computational algebraic
geometry – namely the problem of deciding sentences in the first order the-

ory of algebraically closed fields of characteristic 0 with a constant number of

quantifier alternations, and that of computing Betti numbers of constructible
subsets of complex projective spaces. We obtain a polynomial time reduction

in the Blum-Shub-Smale model of the compact version of the first problem to

the second.

1. Introduction and Main Results

1.1. History and Background. The primary motivation for this paper comes
from classical (i.e. discrete) computational complexity theory. In classical com-
plexity theory, there is a seminal result due to Toda [21] linking the complexity of
counting with that of deciding sentences with a fixed number of quantifier alterna-
tions.

More precisely, Toda’s theorem gives the following inclusion (see Section 1.2
below or refer to [15] for precise definitions of the complexity classes appearing in
the theorem).

Theorem 1.1 (Toda [21]).
PH ⊂ P#P.
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In other words, any language in the (discrete) polynomial hierarchy can be de-
cided by a Turing machine in polynomial time, given access to an oracle with the
power to compute a function in #P.

Remark 1.2. The proof of Theorem 1.1 in [21] is quite non-trivial. While it is
obvious that the classes P,NP, coNP are contained in P#P, the proof for the
higher levels of the polynomial hierarchy is quite intricate and proceeds in two
steps: first proving that the PH ⊂ BP · ⊕ ·P (using previous results of Schöning
[16], and Valiant and Vazirani [22]), and then showing that BP · ⊕ · P ⊂ P#P.
Aside from the obvious question about what should be a proper analogue of the
complexity class #P over the reals or complex numbers, because of the presence
of the intermediate complexity class in the proof, there seems to be no direct way
of extending such a proof to real or complex complexity classes in the sense of
Blum-Shub-Smale model of computation [3, 18]. The proof of the main theorem
(Theorem 2.1) of this paper, which can be seen as a complex analogue of Theorem
1.1, proceeds along completely different lines and is mainly topological in nature.

In the late eighties Blum, Shub and Smale [3, 18] introduced the notion of Tur-
ing machines over more general fields, thereby generalizing the classical problems of
computational complexity theory such as P vs NP to corresponding problems over
arbitrary fields (such as the real, complex, p-adic numbers etc.) If one considers
languages accepted by a Blum-Shub-Smale machine over a finite field one recov-
ers the classical notions of discrete complexity theory. Over the last two decades
there has been a lot of research activity towards proving real as well as complex
analogues of well known theorems in discrete complexity theory. The first steps in
this direction were taken by the authors Blum, Shub, and Smale (henceforth B-S-S)
themselves, when they proved the NPC-completeness of the problem of deciding
whether a systems of n+1 polynomial equations in n variables of has a solution (in
affine space) (this is the complex analogue of Cook-Levin’s theorem that the sat-
isfiability problem is NP-complete in the discrete case), and subsequently through
the work of several researchers (Koiran, Bürgisser, Cucker, Meer to name a few) a
well-established complexity theory over the reals as well as complex numbers have
been built up, which mirrors closely the discrete case.

It is thus quite natural to seek a real as well as a complex analogue of Toda’s
theorem. Indeed, there has been a large body of recent research on obtaining
appropriate real (as well as complex) analogues of results in discrete complexity
theory, especially those related to counting complexity classes (see [14, 4, 6, 5]).

In [1] a real analogue of Toda’s theorem was proved (with a compactness hy-
pothesis). In this paper we prove a similar result in the complex case. Even though
the basic approach is similar in both cases, the topological tools in the complex
case are different enough to merit a separate treatment. This is elaborated further
in the next section (the main difficulty in extending the real arguments in [1] to
the complex case is that we can no longer use inequalities in our constructions).
Aside from the obvious motivation of proving a complex version of Toda’s theorem,
a second motivation comes from the fact that it can be considered as a first step
towards proving the classical Toda’s theorem using algebro-geometric techniques
– something that we do not explore further in the current paper. Moreover, the
original result of Toda, together with its real and complex counter-parts seem to
suggest a deeper connection of a model-theoretic flavor, between the problems of
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efficient quantifier-elimination and efficient computation of certain discrete invari-
ants of definable sets in a structure, which might be an interesting problem on its
own to explore further in the future.

In order to formulate our result it is first necessary to define precisely com-
plex counter-parts of the discrete polynomial time hierarchy PH and the discrete
complexity class #P, and this is what we do next.

1.2. Complex counter-parts of PH and #P. For the rest of the paper C will
denote an algebraically closed field of characteristic zero (there is no essential loss
in assuming that C = C) (indeed by a transfer argument it suffices to prove all our
results in this case). By a complex machine we will mean a machine in the sense
of Blum-Shub-Smale [3]) over the ground field C.

Notational convention. Since in what follows we will be forced to deal with multiple
blocks of variables in our formulas, we follow a notational convention by which we
denote blocks of variables by bold letters with superscripts (e.g. Xi denotes the
i-th block), and we use non-bold letters with subscripts to denote single variables
(e.g. Xi

j denotes the j-th variable in the i-th block). We use xi to denote a
specific value of the block of variables Xi. We will call a quantifier-free first-
order formula (in the language of fields), φ(X1; · · · ; Xω), having several blocks of
variables (X1, . . . ,Xω) to be multi-homogeneous if each polynomial appearing
in it is multi-homogeneous in the blocks of variables (X1, . . . ,Xω) and such that φ
is satisfied whenever any one of the blocks Xi = 0. Clearly such a formula defines
a constructible subset of Pk1C × · · · × Pkω

C where the block Xi is assumed to have
ki + 1 variables. If ω = 1, that is there is only one block of variables, then we call
φ a homogeneous formula .

Notation 1.3 (Realization). More generally, let

Φ(X1; . . . : XM ) def= (Q1Y1) · · · (QωYN )φ(X1; · · · ; XM ; Y1; · · · ; YN )

be a (quantified) multi-homogeneous formula, with Qi ∈ {∃,∀}, 1 ≤ i ≤ N , φ a
quantifier-free multi-homogeneous formula, and Xi (resp. Yj) is a block of ki + 1
(resp. `j + 1) variables. We denote by R(Φ) ⊂ Pk1C × · · · × PkM

C the constructible
set which is the realization of the formula Φ; i.e.,

R(Φ(X)) = {(x1, . . . ,xM ) ∈ Pk1C × · · · × PkM

C |
(Q1y1 ∈ P`1C ) · · · (QωyN ∈ P`NC )φ(x1; · · · ; xM ; y1; · · · ; yN )}.

Sometimes, in order to emphasize the block structure in a multi-homogeneous for-
mula, we will write the quantifications as (∃Y ∈ P`C) (resp. (∀Y ∈ P`C)) instead of
just (∃Y) (resp. (∀Y)). This is purely notational and does not affect the syntax of
the formula.

We say that two multi-homogeneous formulas, Φ and Ψ, are equivalent if R(Φ) =
R(Ψ). Clearly, equivalent multi-homogeneous formulas must have identical number
of blocks of free variables, and the corresponding block sizes must also be equal.

Since the notion of multi-homogeneous formulas might look a bit unusual at
first glance from the point of view of logic, we illustrate below how to homogenize
non-homogeneous formulas by considering the following simple example (which is
a building block for the “repeated squaring” technique used to prove doubly expo-
nential lower bounds for (real) quantifier elimination [7]).
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Example 1.4. Let Φ(X) be the following (existentially) quantified non-homogeneous
formula expressing the fact X4 = 1.

Φ(X) def= ∃Y (Y 2 − 1 = 0) ∧ (Y −X2 = 0).

A multi-homogeneous version of the same formula is given by:

Φh(X0 : X1) def= ∃(Y0 : Y1)(Y 2
1 − Y 2

0 = 0) ∧ (X2
0Y1 −X2

1Y0 = 0).

Notice that the quantifier-free bi-homogeneous formula

Ψh(X0 : X1;Y0 : Y1) def= (Y 2
1 − Y 2

0 = 0) ∧ (X2
0Y1 −X2

1Y0 = 0)

defines a constructible subset of P1
C×P1

C, and that the affine part of the constructible
subset of P1

C defined by Φh coincides with the constructible subset of C1 defined by
Φ(X).

1.2.1. Complex analogue of PH. We recall the definition of the polynomial hierar-
chy over C. It mirrors the discrete case very closely (see [20]).

Definition 1.5 (The class PC). Let k(n) be any polynomial in n. A sequence(
Tn ⊂ Ck(n)

)
n>0

of constructible subsets is said to belong to the class PC if there exists a B-S-S
machine M over C (see [3, 2]), such that for all x ∈ Ck(n), the machine M tests
membership of x in Tn in time bounded by a polynomial in n.

Definition 1.6 (The classes ΣC,ω and ΠC,ω). Let k(n), k1(n), . . . , kω(n) be poly-
nomials in n. A sequence (

Sn ⊂ Ck(n)
)
n>0

of constructible subsets is said to be in the complexity class ΣC,ω, if for each n > 0,
the constructible set Sn is described by a first order formula

(1.1) (Q1Y1) · · · (QωYω)φn(X1, . . . , Xk(n),Y1, . . . ,Yω),

with φn a quantifier free formula in the first order theory of C, and for each i, 1 ≤
i ≤ ω, Yi = (Y i1 , . . . , Y

i
ki(n)) is a block of ki(n) variables, Qi ∈ {∃,∀}, with Qj 6=

Qj+1, 1 ≤ j < ω, Q1 = ∃, and the sequence(
Tn ⊂ Ck(n) × Ck1(n) × · · · × Ckω(n)

)
n>0

of constructible subsets defined by the quantifier-free formulas (φn)n>0 belongs to
the class PC.

Similarly, the complexity class ΠC,ω is defined as in Definition 1.6, with the
exception that the alternating quantifiers in (1.1) start with Q1 = ∀.

Since, adding an additional block of quantifiers on the outside (with new vari-
ables) does not change the set defined by a quantified formula we have the following
inclusions:

ΣC,ω ⊂ ΠC,ω+1, and ΠC,ω ⊂ ΣC,ω+1.

Note that by the above definition the class ΣC,0 = ΠC,0 is the familiar class PC,
the class ΣC,1 = NPC and the class ΠC,1 = co-NPC.
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Definition 1.7 (Complex polynomial hierarchy). The complex polynomial time
hierarchy is defined to be the union

PHC
def=

⋃
ω≥0

(ΣC,ω ∪ΠC,ω) =
⋃
ω≥0

ΣC,ω =
⋃
ω≥0

ΠC,ω.

As in the real case studied in [1] for technical reasons we need to restrict to
compact constructible sets. However, unlike in [1] where the compact languages
consisted of closed semi-algebraic subsets of spheres, in this paper we consider closed
subsets of projective spaces instead. This is a much more natural choice for defining
compact complex complexity classes (indeed, the sphere is not a constructible set
over the complex numbers).

We now define the compact analogue of PHC that we will denote PHc
C. Unlike

in the non-compact case, we will assume all variables vary over certain compact
sets (namely complex projective spaces of varying dimensions).

We first need to be precise about what we mean by a complexity class of se-
quences of constructible subsets of complex projective spaces.

Notation 1.8 (Affine cone). For any constructible subset S ⊂ PkC we denote by
C(S) ⊂ Ck+1 the affine cone over S.

Definition 1.9. Let k(n) be a polynomial in n. We say that a sequence(
Sn ⊂ Pk(n)

C

)
n>0

of constructible subsets is in the complexity class PC, if the sequence of affine cones
(C(Sn) ⊂ Ck(n)+1)n>0 ∈ PC.

Remark 1.10. Since a product of any constant number, ω, of projective spaces,
Pk1C × · · · × Pkω

C , can be embedded into the projective space P(k1+1)···(kω+1)−1
C by

the classical Segre embedding [17, Chap. 1, Sec. 5] (which we will denote by
Segk1,...,kω

), and the Segre map is polynomial time computable (for fixed ω), we
will occasionally abuse notation and identify the sequence(

Sn ⊂ Pk1(n)
C × · · · × Pkω(n)

C

)
n>0

with its image sequence(
Segk1(n),...,kω(n)(Sn) ⊂ P(k1(n)+1)···(kω(n)+1)−1

C

)
n>0

under the Segre map. In particular, we will sometime say that a sequence (Sn ⊂
Pk1(n)

C ×· · ·×Pkω(n)
C )n>0 is in PC, when strictly speaking we mean that the sequence(

Segk1(n),...,kω(n)(Sn) ⊂ P(k1(n)+1)···(kω(n)+1)−1
C

)
n>0

is in PC. As long as ω is a fixed number, and k1, . . . , kω polynomially bounded,
this abuse of notation does not cause any problem.

Definition 1.11 (Compact projective version of ΣC,ω). Let

k(n), k1(n), . . . , kω(n)

be polynomials in n. A sequence(
Sn ⊂ Pk(n)

C

)
n>0
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of constructible subsets is in the complexity class Σc
C,ω, if for each n > 0, Sn is

described by a first order formula

(Q1Y1 ∈ Pk1(n)
C ) · · · (QωYω ∈ Pkω(n)

C )φn(X0, . . . , Xk(n); Y1; · · · ; Yω),

with φn a quantifier-free first order multi-homogeneous formula defining a closed
(in the Zariski topology) subset of Pk(n)

C × Pk1(n)
C × · · · × Pkω(n)

C , and for each i, 1 ≤
i ≤ ω, Yi = (Y i0 , . . . , Y

i
ki

) is a block of ki(n) + 1 variables, Qi ∈ {∃,∀}, with
Qj 6= Qj+1, 1 ≤ j < ω, Q1 = ∃, and the sequence of constructible sets (Tn)n>0

defined by the formulas (φn)n>0 belongs to the class PC.

Example 1.12. The following is an example of a language in Σc
C,1 (i.e. the compact

version of NPC).
Let k(n, d) =

(
n+d
d

)
and identify P(n+1)k(n,d)−1

C with systems of n+1 polynomials
(not all 0) in n variables of degree at most d (up to multiplication of the whole
system by non-zero constants). Let Sn,d ⊂ P(n+1)k(n,d)−1

C be defined by

Sn,d = {(P1 : . . . : Pn+1) ∈ P(n+1)k(n,d)−1
C | ∃x = (x0 : · · · : xn) ∈ PnC with

Ph1 (x) = · · · = Phn+1(x) = 0};

where Ph denotes the homogenization of a polynomial P (in degree d). In other
words Sn,d is the set of systems of (n+ 1) polynomial equations of degree at most
d, which have a zero in the complex projective space PnC. Then it is clear from the
definition of the class Σc

C,1 that for any fixed d > 0,(
Sn,d ⊂ P(n+1)k(n,d)−1

C

)
n>0
∈ Σc

C,1.

Note that it is not known if for any fixed d(
Sn,d ⊂ P(n+1)k(n,d)−1

C

)
n>0

is NPC-complete, while the non-compact version of this language i.e. the language
consisting of systems of polynomials having a zero in Cn (instead of PnC), has been
shown to be NPC-complete for d ≥ 2 [2].

We define analogously the class Πc
C,ω, and finally define:

Definition 1.13. The compact projective polynomial hierarchy over C is
defined to be the union

PHc
C

def=
⋃
ω≥0

(Σc
C,ω ∪Πc

C,ω) =
⋃
ω≥0

Σc
C,ω =

⋃
ω≥0

Πc
C,ω.

Notice that the constructible subsets belonging to any language in PHc
C are all

compact (in fact Zariski closed subsets of complex projective spaces).

1.2.2. Complex projective analogue of #P. We now define the complex analogue of
#P (cf. the class #P†R defined in [1] in the real case).

We first need a notation.

Notation 1.14 (Poincaré polynomial). For any constructible subset S ⊂ PkC we
denote by bi(S) the i-th Betti number (that is the rank of the singular homology
group Hi(S) = Hi(S,Z)) of S.

We also let PS ∈ Z[T ] denote the Poincaré polynomial of S, namely
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(1.2) PS(T ) def=
∑
i≥0

bi(S) T i.

Definition 1.15 (The class #P†C). We say a sequence of functions

(fn : PnC → Z[T ])n>0

is in the class #P†C, if there exists a polynomial m(n), and a language(
Sn ⊂ PnC × Pm(n)

C

)
n>0
∈ PC,

such that
fn(x) = PSn,x

for each x ∈ PnC, where Sn,x = Sn ∩ π−1(x) and π : PnC × Pm(n)
C → PnC is the

projection along the last co-ordinates.

Note that we have given the class #P†C defined above the power of computing the
Poincaré polynomial of constructible subsets of complex projective (not just affine)
spaces. In the real case, this does not make any difference since every semi-algebraic
subset of a projective space can be efficiently embedded in an affine space. However,
in the complex case there is no obvious reduction of the problem of computing the
Poincaré polynomial of projective varieties to the problem of computing the same
in the affine case.

Remark 1.16. We make a few remarks about the class #P†C defined above. First
of all notice that the class #P†C is quite robust. For instance, given two sequences
(fn)n>0, (gn)n>0 ∈ #P†C it follows (by taking disjoint union of the corresponding
constructible sets) that (fn + gn)n>0 ∈ #P†C, and also (fngn)n>0 ∈ #P†C (by
taking Cartesian product of the corresponding constructible sets and using the
multiplicative property of the Poincaré polynomials, which itself is a consequence
of the Kunneth formula in homology theory.)

Remark 1.17. The connection between counting points of varieties and their Betti
numbers is more direct over fields of positive characteristic via the zeta function.
The zeta function of a variety defined over Fp is the exponential generating function
of the sequence whose n-th term is the number of points in the variety over Fpn .
The zeta function of such a variety turns out to be a rational function in one
variable (a deep theorem of algebraic geometry first conjectured by Andre Weil [23]
and proved by Dwork [10] and Deligne [8, 9]), and its numerator and denominator
are products of polynomials whose degrees are the Betti numbers of the variety
with respect to a certain (`-adic) co-homology theory. The point of this remark
is that the problems of “counting” varieties and computing their Betti numbers,
are connected at a deeper level, and thus our choice of definition for a complex
analogue of #P is not altogether ad hoc.

Remark 1.18. A different definition of the class #P †C (more in line with previous
work of Burgisser et al. [6]) would be obtained by replacing in Definition 1.15 the
Poincaré polynomial, PS(T ), by the Euler-Poincaré characteristic i.e. the value of
PS at T = −1. The Euler-Poincaré characteristic is additive (at least in the cate-
gory of compact varieties), and thus has some attributes of being a discrete analogue
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of volume. But at the same time it should be noted that the Euler-Poincaré charac-
teristic is a rather weak invariant – for instance, it does not determine the number
of connected components of a given variety. Also notice that in the case of finite
fields referred to in Remark 1.17, all the Betti numbers, not just their alternating
sum, enter (as degrees of factors) in the rational expression for the zeta function of
a variety. While it would certainly be a much stronger reduction result if one could
obtain a Toda-type theorem using only the Euler-Poincaré characteristic instead of
the whole Poincaré polynomial, it is at present unclear if such a theorem can be
proven.

2. Statements of the main theorems

We can now state the main result of this paper.

Theorem 2.1 (Complex analogue of Toda’s theorem).

PHc
C ⊂ P#P†C

C .

Remark 2.2. We leave it as an open problem to prove Theorem 2.1 with PHC

instead of PHc
C on the left hand side. However, we also note that many theorems

of complex algebraic geometry take their most satisfactory form in the case of
complete varieties, which is the setting considered in this paper.

As a consequence of our method, we obtain a reduction (Theorem 2.5) that might
be of independent interest. We first define the following two problems:

Definition 2.3 (Compact general decision problem with at most ω quantifier al-
ternations (GDPc

C,ω)). The input and output for this problem are as follows.
• Input. A sentence Φ

(Q1X1 ∈ Pk1C ) · · · (QωXω ∈ Pkω

C )φ(X1; . . . ; Xω),

where for each i, 1 ≤ i ≤ ω, Qi ∈ {∃,∀}, with Qj 6= Qj+1, 1 ≤ j < ω, and
φ is a quantifier-free multi-homogeneous formula defining a closed subset S
of Pk1 × · · · × Pkω .
• Output. True or False depending on whether Φ is true or false.

Definition 2.4 (Computing the Poincaré polynomial of constructible sets (Poincaré)).
The input and output for this problem are as follows.

• Input. A quantifier-free homogeneous formula defining a constructible sub-
set S ⊂ PkC.
• Output. The Poincaré polynomial PS(T ).

Theorem 2.5. For every ω > 0, there is a deterministic polynomial time reduction
in the Blum-Shub-Smale model of GDPc

C,ω to Poincaré.

2.1. Outline of the main ideas and contributions. The basic idea behind
the proof of a real analogue of Toda’s theorem in [1] is a topological construction,
which given a semi-algebraic set S ⊂ Rm+n, p ≥ 0, and π : Rm+n ⊂ Rn the projec-
tion along (say) the first m co-ordinates, constructs efficiently a semi-algebraic set,
Dp(S), such that

(2.1) bi(π(S)) = bi(Dp(S)), 0 ≤ i < p.
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Moreover, membership in Dp(S) can be tested efficiently if the same is true for S.
Note that this last property will not hold in general for the set π(S) itself (unless
of course PR = NPR).

The topological construction used in the definition of Dp(X) in [1] is the iterated
fibered join, Jpπ(X), of a semi-algebraic set X with itself over a projection map π.
The fibers of the induced map Jπ(X) : Jpπ(X)→ π(X), over a point y ∈ π(X), are
then ordinary (p+ 1)-fold joins of the fiber π−1(y), and by connectivity properties
of the join are p-connected. It is now possible using a version of the Vietoris-Beagle
theorem that the map Jπ(X) is a p-equivalence (see [1] for the precise definition of
p-equivalence). The main construction in [1] was to realize efficiently the fibered
join Jpπ(X) up to homotopy by a semi-algebraic set. This construction however is
semi-algebraic in nature – i.e. it uses real inequalities in an essential way and thus
does not generalize in a straightforward way to the complex case. Thus, a different
construction is needed in the complex case.

In the complex case, the role of the fibered join is played by the complex join
fibered over a map defined below (see Definition 3.18). The fibers of the (p+1)-fold
complex join fibered over a projection π, JpC,π(X), of a compact constructible set X
are not quite p-connected as in the real case, but are reasonably nice – namely they
are homologically equivalent to a projective space of dimension p (see Proposition
3.15). This allows us to relate the Poincaré polynomial of X with that of its image
image π(X), even though the relation is not as straightforward as in the real case
(see Theorem 3.20 below).

We remark that Theorem 3.20 can be used to express directly the Betti numbers
of the image under projection of a projective variety in terms of those another
projective variety obtained directly without having to perform effective quantifier
elimination (which has exponential complexity). The description of this second
variety is much simpler and algebraic in nature compared to the one used in [1] in
the real semi-algebraic case, and thus might be of independent interest. Theorem
3.20 can also be viewed as an improvement over the descent spectral sequence
argument used in [11] to bound the Betti numbers of projections (of semi-algebraic
sets) in the complex projective case. A similar construction using the projective join
is also available in the real case (using Z/2Z coefficients) but we omit its description
in the current paper.

The rest of the paper is organized as follows. In Section 3 we state and prove the
necessary ingredients from algebraic topology needed to prove the main theorems.
In Section 4 we prove the main results of the paper.

3. Topological Ingredients

In this section we state and prove the main topological ingredients necessary for
the proof of the main theorems.

3.1. Alexander-Lefshetz duality. We will need the classical Alexander-Lefshetz
duality theorem in order to relate the Betti numbers of a compact constructible
subset K of PnC to those of its complement, PnC −K.

Theorem 3.1 (Alexander-Lefshetz duality). Let K ⊂ PnC be a closed constructible
subset. Then for each odd i, 1 ≤ i ≤ 2n+ 1, we have that

(3.1) bi−1(K)− bi−2(K) = b2n−i(PnC −K)− b2n−i+1(PnC −K) + 1.
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Proof. Lefshetz duality theorem [19] gives for each i, 0 ≤ i ≤ 2n,

bi(PnC −K) = b2n−i(PnC,K).

The theorem now follows from the long exact sequence of homology,

· · · → Hi(K)→ Hi(PnC)→ Hi(PnC,K)→ Hi−1(K)→ · · ·

after noting that Hi(PnC) = 0, for all i 6= 0, 2, 4, . . . , 2n, and Hi(PnC) ∼= Z, otherwise.
�

For technical reasons (see Corollary 3.4 below) we need to consider the even and
odd parts of the Poincaré polynomial of constructible sets.

Given P =
∑
i≥0 aiT

i ∈ Z[T ], we write

P
def= P even(T 2) + TP odd(T 2),

where
P even(T ) =

∑
i≥0

a2iT
i,

and
P odd(T ) =

∑
i≥0

a2i+1T
i.

We introduce for any S ⊂ PnC, a related polynomial, QS(T ), which we call the
pseudo-Poincaré polynomial of S defined as follows.

(3.2) QS(T ) def=
∑
j≥0

(b2j(S)− b2j−1(S))T j .

In other words:

(3.3) QS = P even
S − TP odd

S .

We introduce below notation for several operators on polynomials that we will
use later.

Notation 3.2 (Operators on polynomials). For any polynomial Q =
∑
i≥0 aiT

i ∈
Z[T ] with deg(Q) ≤ n, we will denote by:

(A) Recn(Q) the polynomial TnQ( 1
T );

(B) Truncm(Q) the polynomial
∑

0≤i≤m aiT
i ∈ Z[T ]; and,

(C) MP (Q) the polynomial PQ, for any polynomial P ∈ Z[T ].

Remark 3.3. Notice that all the operators introduced above are computable in
polynomial time.

Using the notation introduced above we have the following easy corollary of
Theorem 3.1.

Corollary 3.4. Let A ⊂ PnC be an either open or closed constructible subset. Then,

QA(T ) = −Recn(QPn
C−A) +

n∑
i=0

T i.
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3.2. The complex join of constructible sets. Let X ⊂ PkC and Y ⊂ P`C
be two constructible sets defined by homogeneous formulas φ(X0, . . . , Xk) and
ψ(Y0, . . . , Y`) respectively, where (X0 : · · · : Xk) (respectively (Y0 : · · · : Y`)) are
homogeneous co-ordinates in PkC (respectively P`C).

Definition 3.5 (Complex join). The complex join , JC(X,Y ), of X and Y is
defined to be the constructible subset of Pk+`+1

C defined by the formula

φ(Z0, · · · , Zk) ∧ ψ(Zk+1, · · · , Zk+`+1),

where (Z0 : · · · : Zk+`+1) are homogeneous coordinates in Pk+`+1
C .

Remark 3.6. Firstly, notice that JC(X,Y ) does not depend on the formulas φ and
ψ used to define X and Y respectively. Also, notice that if X and Y are both
empty then so is JC(X,Y ). Indeed, if X = ∅ (respectively, Y = ∅) then JC(X,Y ) is
isomorphic to Y (respectively, X). If X and Y are both non-empty then JC(X,Y )
is obtained topologically by joining each point of X with each point of Y by a
complex projective line, P1

C.

Example 3.7. It is easy to check from the above definition that the join, JC(PkC,P`C),
of two projective spaces is again a projective space, namely Pk+`+1

C .

Remark 3.8. The projective join as defined above is a classical object in algebraic
geometry. Amongst many other applications, the complex suspension of a projective
variety X (i.e. the complex join JC(X,P1

C)) plays an important role in defining
Lawson homology of projective varieties [12].

Definition 3.9. For p > 0, we denote by JpC(X) the (p+ 1)-fold iterated complex
join of X with itself.

In other words
JpCX = JC(JC(· · · (JC(X)) · · · ))︸ ︷︷ ︸

(p+1) times

.

If X ⊂ PkC is defined by a first-order homogeneous formula φ(X0, . . . , Xk), then
JpC(X) ⊂ P(p+1)(k+1)−1

C is defined by the homogeneous formula

JpC(φ)(X0
0 , . . . , X

0
k , . . . , X

p
0 , . . . , X

p
k) def=

p∧
i=0

φ(Xi
0, . . . , X

i
k).

where (X0
0 : · · · : Xp

k) are homogeneous co-ordinates in P(p+1)(k+1)−1
C .

Note that by Remark 3.6, if X is empty then JpC(X) is empty for every p > 0.

3.3. Properties of the topological join. We also need to introduce the topo-
logical join of two spaces. The following is mostly taken from [1].

Definition 3.10. The join X ∗ Y of two topological spaces X and Y is defined by

(3.4) X ∗ Y def= X × Y ×∆1/ ∼,

where
(x, y, t0, t1) ∼ (x′, y′, t0, t1)

if t0 = 1, x = x′ or t1 = 1, y = y′.
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Intuitively, X ∗ Y is obtained by joining each point of X with each point of Y
by an interval.

We will need the well-known fact that the iterated join of a topological space is
highly connected. In order to make this statement precise we first define

Definition 3.11 (p-equivalence). A map f : A → B between two topological
spaces is called a p-equivalence if the induced homomorphism

f∗ : Hi(A)→ Hi(B)

is an isomorphism for all 0 ≤ i < p, and an epimorphism for i = p, and we say that
A is p-equivalent to B.

The following is well known (see, for instance, [13, Proposition 4.4.3]).

Theorem 3.12. Let X be a compact semi-algebraic set. Then, the (p+1)-fold join
X ∗ · · · ∗X︸ ︷︷ ︸
(p+1) times

is p-equivalent to a point.

We will need a particular property of projection maps that we are going to
consider later in the paper.

Notation 3.13. For any constructible set A, we denote by K(A) the collection of
all compact (in the Euclidean topology) subsets of A.

Definition 3.14. Let f : A→ B be a map between two constructible sets A and B.
We say that f compact covering if for any L ∈ K(f(A)), there exists K ∈ K(A)
such that f(K) = L.

3.4. Properties of the complex join.

Proposition 3.15. Let X ⊂ PkC be a non-empty constructible subset and p > 0.
Let

i : JpC(X) ↪→ P(p+1)(k+1)−1
C

denote the inclusion map. Then the induced homomorphism

i∗ : Hj(J
p
CX)→ Hj(P(p+1)(k+1)−1

C )

is an isomorphism for 0 ≤ j < p.

Before proving Proposition 3.15 we first fix some notation.

Notation 3.16 (Hopf map). For any k ≥ 0, we will denote by π : Ck+1 \{0} → PkC
the tautological line bundle over PkC, and by

π̃ : S2k+1 → PkC,
the Hopf fibration , namely the restriction of π to the unit sphere in Ck+1 defined
by the equation |z1|2 + · · · + |zk+1|2 = 1. Finally for any subset S ⊂ PkC, we
will denote by S̃ the subset π̃−1(S) ⊂ S2k+1. Restricting the map π̃ to S̃ we
obtain the restriction of the Hopf fibration to the base S i.e. we have the following
commutative diagram.

S̃
� � i //

π̃

��

S2k+1

π̃

��

S
� � i // PkC
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We need the following lemma.

Lemma 3.17. Let X ⊂ PkC, Y ⊂ P`C be constructible subsets. Then ˜JC(X,Y ) ⊂
S2(k+`)+3 is homeomorphic to the (topological) join X̃ ∗ Ỹ .

Proof. Consider x ∈ X and y ∈ Y and the projective line L ⊂ JC(X,Y ) joining x
and y. It is easy to see that the preimage L̃ = π̃−1(L) ∼= S3 is a topological join of
π̃−1(x) and π̃−1(y) (each homeomorphic to S1). Now since X̃ (resp. Ỹ ) is fibered

by the various π̃−1(x) (resp. π̃−1(y)), it follows that ˜JC(X,Y ) is homeomorphic to
X̃ ∗ Ỹ . �

Proof of Proposition 3.15. It follows from repeated applications of Lemma 3.17 that
J̃pC(X) is homeomorphic to

X̃ ∗ · · · ∗ X̃︸ ︷︷ ︸
(p+1) times

.

We also have the commutative square

J̃pCX
� � i //

π̃

��

S2(p+1)(k+1)−1

π̃

��

JpCX
� � i // P(p+1)(k+1)−1

C

and a corresponding square

H∗(J̃
p
CX)

i∗ //

π̃∗

��

H∗(S2(p+1)(k+1)−1)

π̃∗

��

H∗(J
p
CX)

i∗ // H∗(P(p+1)(k+1)−1
C )

of induced homomorphisms in the homology groups.
It follows from Theorem 3.12 that if X 6= ∅, then

H0(J̃pC(X)) ∼= Z,

Hi(J̃
p
CX) ∼= 0, 0 < i < p.

It is easy to see that for p > 0, JpC(X) is simply connected and hence J̃pC(X) is
a simple S1-bundle (i.e. a S1-bundle with a simply connected base) over JpC(X).

It now follows by a standard argument (which we expand below) involving the

spectral sequence of the bundle π̃ : J̃pC(X)→ JpC(X), that for 0 ≤ i < p,

Hi(J
p
C(X)) ∼= Z, for i even,(3.5)

Hi(J
p
C(X)) ∼= 0 for i odd.

(The above claim also follows from the Gysin sequence of the S1-bundle π̃ :

J̃pC(X)→ JpC(X) but we give an independent proof below).
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Consider the E2-term of the (homological) spectral sequence of the bundle

π̃ : J̃pC(X)→ Jp(X).

For i, j ≥ 0, we have that

Ei,j2 = Hi(J
p
C(X))⊗Hj(S1).

From this we deduce that

Ei,02 = Ei,12 = Hi(J
p
C(X)).

Also, from the fact that
H0(J̃pC(X)) = Z,

we get that
E0,0

2 = Z,
and hence,

E0,1
2 = Z

as well. Moreover, we have that

Ei,j3 = Ei,j4 = · · · = Ei,j∞

for all i ≥ 0 and j = 0, 1. Now from the fact that the spectral sequence Er converges
to the homology of J̃pC(X) we deduce that

Ei,j3 = 0 for 0 ≤ i ≤ p− 1 and all j,

E0,0
3 = Z.

This implies that the differential

d2 : Ei,02 → Ei−2,1
2

is an isomorphism for 1 ≤ i ≤ p− 1. Together with the fact that

Ei,02 = Ei,12 = Hi(J
p
C(X)),

this immediately implies (3.5). The proposition follows directly from this. �

3.5. Complex join fibered over a map and its properties. In our application
we need the complex join fibered over certain maps.

Definition 3.18 (Complex join fibered over a map). Let A ⊂ PkC × P`C be a
constructible set defined by a first-order multi-homogeneous formula,

φ(X0, . . . , Xk;Y0, . . . , Y`)

and let πY : PkC × P`C → PkC be the projection along the Y-co-ordinates.
For p > 0, the p-fold complex join of A fibered over the map πY, JpC,Y(A) ⊂

PkC × P(`+1)(p+1)−1
C , is defined by the formula

(3.6)

JpC,Y(φ)(X0, . . . , Xk;Y 0
0 , . . . , Y

0
` , . . . , Y

p
0 , . . . , Y

p
` ) def=

p∧
i=0

φ(X0, . . . , Xk;Y i0 , . . . , Y
i
` ).

Remark 3.19. There is a natural induced map

JpC,Y : JpC,Y(A)→ πY (A)

sending (x0 : · · · : xk; y0
0 : · · · : yp` ) ∈ JpC,Y(A) to (x0 : · · · : xk) ∈ πY (A). It is easy

to verify from Definition 3.18 that the map JpC,Y is well defined and is a surjection.
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Now, let A ⊂ PkC × P`C be a constructible subset πY : PkC × P`C → PkC be the
projection along the last co-ordinates. Suppose that πY is a compact covering. The
following theorem relates the Poincaré polynomial of JpC,Y(A) to that of the image
πY(A).

Theorem 3.20. For every p ≥ 0, we have that

PπY(A) = (1− T 2)PJp
C,Y(A) mod T p.(3.7)

Proof. We first assume that A is compact. We have the following commutative
square.

JpC,Y(A) � � i //

Jp
C,Y

��

πY(A)× P(p+1)(`+1)−1
C

πY

��

πY(A) Id // πY(A)

The diagram above induces a morphism, φi,jr : Ei,jr → ′E
i,j
r between the (ho-

mological) Leray spectral sequences of the two vertical maps in the above dia-
gram. Here, Er (resp. ′Er) denotes the Leray spectral sequence of the map
JpC,Y : JpC,Y(A) → πY(A) (resp. πY : πY(A) × P(p+1)(`+1)−1

C → πY (A)). The

spectral sequence, ′Er, of the map πY : πY(A) × P(p+1)(`+1)−1
C → πY (A) degener-

ates at the ′E2-term where
′E

i,j
2 = Hi(πY(A),Hj(P(p+1)(`+1)−1

C )),

where Hi(πY(A),Hj(P(p+1)(`+1)−1
C )) denotes the i-th homology group of πY(A)

with local coefficients taking values in the fibers Hj(π−1
Y (x)), x ∈ πY(A). Moreover,

it follows from Proposition 3.15 that

φi,j2 : Ei,j2 → ′E
i,j
2

are isomorphisms for i+ j < p. Thus, Ei,j∞ = ′E
i,j
∞ for 0 ≤ i+ j < p. This implies

that Hq(J
p
C,Y(A)) ∼= Hq(πY(A)× P(p+1)(`+1)−1

C ) for 0 ≤ q < p, and thus

(3.8) PJp
C,Y(A) = P

πY(A)×P(p+1)(`+1)−1
C

mod T p.

We also have that

P
πY(A)×P(p+1)(`+1)−1

C
= PπY(A) × PP(p+1)(`+1)−1

C
(3.9)

= PπY(A) × (1 + T 2 + · · ·+ T 2((p+1)(`+1)−1))

= PπY(A) × (1− T 2)−1 mod T p.

The theorem now follows from Eqns. (3.8) and (3.9). The general case follows
by taking direct limit over all compact subsets of A. More precisely, for K1 ⊂ K2

compact subsets of A, we have for 0 ≤ q < p the following commutative square.

Hq(J
p
C,Y(K1)) i∗ //

∼=
��

Hq(J
p
C,Y(K2))

∼=
��

Hq(πY(K1)× P(p+1)(`+1)−1
C )

i∗ // Hq(πY(K2)× P(p+1)(`+1)−1
C )
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where the vertical maps are isomorphisms by the previous case. If we take the
direct limit as K ranges in K(A), we obtain the following:

lim
−→

Hq(J
p
C,Y(K)) ∼= //

∼=
��

Hq(J
p
f (A))

��

lim
−→

Hq(πY(K)× P(p+1)(`+1)−1
C )

∼= // Hq(πY(A)× P(p+1)(`+1)−1
C )

The isomorphism on the top level comes from the fact that homology and direct
limit commute [19]. For the bottom isomorphism, we need the additional fact that
since we assume that πY is a compact covering we have

lim
−→
{Hq(πY(K)×P(p+1)(`+1)−1

C ) | K ∈ K(A)} = lim
−→
{Hq(L×P(p+1)(`+1)−1

C ) | L ∈ K(πY (A))}.

This proves that the right vertical arrow is also an isomorphism. �

Using the same notation as in Theorem 3.20 and Eqn (3.2) we have the following
easy corollary of Theorem 3.20.

Corollary 3.21. Let p = 2m+ 1 with m ≥ 0. Then

QπY(A) = (1− T ) QJp
C,Y(A) mod Tm+1.(3.10)

Proof. The corollary follows directly from Theorem 3.20 and the fact that for any
polynomial P ∈ Z[T ] we have

((1− T 2)P )even = (1− T )(P )even,

((1− T 2)P )odd = (1− T )(P )odd.

�

3.6. Complexity properties of the complex join. In this section we state a few
properties of the complex join which are important for reasons related to complexity.

Firstly, for technical reasons we will need to replace a leading block of identical
quantifiers in a multi-homogeneous formula, i.e. a block of quantifiers of type
(∃Y1 ∈ Pk1C ) · · · (∃YN ∈ PkN

C ) (resp. (∀Y1 ∈ Pk1C ) · · · (∀YN ∈ PkN

C )) by a single
quantifier (∃Y 0 ∈ Pk0C ) (resp. (∀Y 0 ∈ Pk0C )).

From the geometric point of view, we achieve this by replacing a projection map,

πY1,...,YN : PkC × Pk1C × · · · × PkN

C → PkC,
by a rational map

πY0 : PkC × Pk0C 99K PkC,
defined by

πY0 = πY1,...,YN ◦ φ
where

φ : PkC × Pk0C 99K PkC × Pk1C × · · · × PkN

C ,

with k0 = k1 + · · ·+ kN +N − 1, is the dominant rational map defined by

φ(x; y0 : · · · : yk0) = (x; y0 : . . . : yk1 ; · · · ; yk0−kn
: · · · : yk0).

Now, let U ⊂ PkC × Pk0C be the domain of regularity of φ, and S ⊂ PkC × Pk1C ×
· · · × PkN

C a constructible subset, such that πY1,...,YN |S is a compact covering.
We have the following lemma (using the same notation as above).
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Lemma 3.22. (A)

πY0(φ|−1
U (S)) = πY1,...,YN (S);

(B) the map πY0 |φ|−1
U (S) is a compact covering.

Proof. Immediate. �

The following technical proposition, which expresses the same statement as in
Lemma 3.22, but using the language of logic, follows directly from Lemma 3.22.

Proposition 3.23. Let Φ(X) be the quantified formula

(Q1Y1) · · · (QNYN )φ(X; Y1; · · · ; YN ),

with φ a quantifier-free multi-homogeneous formula defining a constructible subset
of PkC × Pk1C × · · · × PkN

C , X = (X0, . . . , Xk), and for each i, 1 ≤ i ≤ N , Yi =
(Y i0 , . . . , Y

i
ki

), and Qi ∈ {∃,∀}.
(A) Suppose that the first ` ≤ N quantifiers in Φ, Q1, . . . , Q`, are all existential,

and let

ψ(X; Y1; · · · ; Y`) def=

(Q`+1Y`+1 ∈ Pk`+1
C ) · · · (QNYN ∈ PkN

C )

φ(X; Y1; · · · ; YN ).

Then Φ(X) is equivalent to the formula E(Φ)(X) defined by

E(Φ)(X) def= (∃Y0 ∈ Pk0C ) E(ψ)(X,Y0)

with

E(ψ)(X; Y0) def= (Q`+1Y`+1 ∈ Pk`+1
C ) · · · (QNYN ∈ PkN

C )

φ̃(X0, . . . , Xk; Y0; Y`+1; · · · ; YN ),

where
Y0 = (Y 1

0 , . . . , Y
1
k1 , . . . , Y

`
0 , . . . , Y

`
k`

),

k0 = k1 + · · ·+ k` + `− 1,

and

φ̃
def=

φ ∧ ∧̀
i=1

¬
ki∧
j=0

(Y ij = 0)

 ∨
∧̀
i=1

ki∧
j=0

(Y ij = 0)

 .

Moreover, if the projection map πY1,...,Y` : R(ψ)→ PkC is a compact cover-
ing, then so is the projection map πY0 : R(E(ψ))→ PkC.

(B) Suppose that the first ` ≤ N quantifiers Q1, . . . , Q` are all universal, and
let

ψ(X; Y1; · · · ; Y`) def=

(Q`+1Y`+1 ∈ Pk`+1
C ) · · · (QNYN ∈ PkN

C )

φ(X; Y1; · · · ; YN ).

Then Φ(X) is equivalent to the formula A(Φ)(X) defined by

A(Φ)(X) def= A(ψ)(X; Y0)
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with

A(ψ)(X; Y0) def= (∀Y0 ∈ Pk0C ) (Q`+1Y`+1 ∈ Pk`+1
C ) · · · (QNYN ∈ PkN

C )

φ̃(X0, . . . , Xk; Y0; Y`+1; · · · ; YN ),

where

Y0 = (Y 1
0 , . . . , Y

1
k1 , . . . , Y

`
0 , . . . , Y

`
k`

),

k0 = k1 + · · ·+ k` + `− 1,

and φ̃ is the same formula as φ but with a different block structure as dis-
played above.

Proof. Follows directly from Lemma 3.22. �

We will also need the following proposition.

Proposition 3.24 (Polynomial time membership testing). Suppose that the se-
quence of constructible sets (Sn ⊂ Pk(n)

C × P`(n)
C )n>0 ∈ PC, and Xn = (X0 : · · · :

Xk(n)) Yn = (Y0 : · · · : Y`(n)) are homogeneous co-ordinates of Pk(n)
C and P`(n)

C

respectively. Let p(n) be a polynomial. Then,(
J
p(n)
C,Yn

(Sn) ⊂ Pk(n)
C × P(p(n)+1)(`(n)+1)−1

C

)
n>0
∈ PC.

Proof. Obvious from the definition of (Jp(n)
C,Yn

(Sn))n>0. �

We now show how the formulas JpC,Y(Φ) behave when the formula Φ involves
quantified blocks of variables.

Lemma 3.25. Suppose the first-order formula Φ(X,Y) is of the form

Φ def= (Q1Z1 ∈ Pk1C )(Q2Z2 ∈ Pk2C ) . . . (QωZω ∈ Pkω

C )Ψ(X; Y; Z1; · · · ; Zω)

with Qi ∈ {∃,∀}, and Ψ a quantifier-free first order multi-homogeneous formula.
Let πY denote the projection along the Y = (Y0, . . . , Y`) co-ordinates. Then, for

each p ≥ 0, the formula JpC,Y(Φ) is equivalent to the formula

J̄pC,Y(Φ) def=

(Q1Z1,1 ∈ Pk1C ) · · · (Q1Zp,1 ∈ Pk1C )

(Q2Z1,2 ∈ Pk2C ) · · · (Q2Zp,2 ∈ Pk2C )
...

(QωZ1,ω ∈ Pkω

C ) · · · (QωZp,ω ∈ Pkω

C )
p∧
i=0

Ψ(X;Y i0 , . . . , Y
i
` ; Zi,1; . . . ; Zi,ω).

Proof. Obvious from the definition of JpC,Y(Φ). �
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4. Proof of the main theorem

We are now in a position to prove Theorem 2.1. The proof depends on the
following key proposition.

Proposition 4.1. Let m(n), k1(n), . . . , kM (n) be polynomials, and let

(Φn(X,Y))n>0

be a sequence of multi-homogeneous formulas

Φn(X,Y) def= (Q1Z1 ∈ Pk1C ) · · · (QMZM ∈ PkM

C )φn(X; Y; Z1; · · · ; ZM ),

having free variables (X; Y) = (X0, . . . , Xk(n);Y0, . . . , Ym(n)), with

Q1, . . . , QM ∈ {∃,∀},
and φn a multi-homogeneous quantifier-free formula defining a constructible subset

Sn ⊂ PkC × PmC × Pk1C × · · · × PkM

C ,

such that Sn is a closed (resp. open) constructible subset of πZ1,...,ZM (Sn)× Pk1C ×
· · · × PkM

C , where

πZ1,...,ZM : Pk(n)
C × Pm(n)

C × Pk1C × · · · × PkM

C → Pk(n)
C × Pm(n)

C

is the projection map along the last M factors.
Suppose also that (

R(φn(X; Y; Z1; · · · ; ZM ))
)
n>0
∈ PC.

Then there exists:
(A) a sequence of quantifier-free multi-homogeneous formulas

(Θn(X; V))n>0 ,

with V = (V0, . . . , VN ), and N polynomially bounded in n, such that for
each x ∈ Pk(n)

C , Θn(x; V) describes a constructible subset Tn ⊂ PNC , and

(Tn)n>0 ∈ PC;

(B) polynomial time computable maps

Fn : Z[T ]≤N → Z[T ]≤m,

such that the pseudo-Poincaré polynomials of the fibers over x verify

QR(Φn(x;Y)) = Fn(QR(Θn(x;V))).

Proof. Suppose that the number of maximal contiguous blocks of identical quanti-
fiers in the sequence Q1, . . . , QM is ω. In other words, there exists 0 = `0 < `1 <
· · · < `ω = M such that for each i, 1 ≤ i ≤ ω, the quantifiers Qj ’s for `i−1 < j ≤ `i,
are all either existential or all universal, and moreover Q`i 6= Q`i+1, 1 ≤ i < M .

The proof is by induction on ω.
We assume that:

(?) each Sn = R(φn) is a closed constructible subset of

πZ1,...,ZM (Sn)× Pk1C × · · · × PkM

C .

The open case can be handled analogously.
If ω = 0 then we let Θn = Φn and N = m, and Fn to be the identity map. Since

there are no quantifiers, for each n ≥ 0 the constructible set defined by Θn and Φn
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are the same, and thus the Betti numbers of the sets defined by Θn and Φn are
equal.

If ω > 0, we have the following two cases.

(A) Case 1, Q1, . . . , Q`1 = ∃: In this case we first replace the formula Φn by
E(Φn) = (∃Z0 ∈ Pk0C ) E(ψn)(X; Y; Z0) (cf. Proposition 3.23), where ψn is
defined by (following similar notation as in Proposition 3.23)

ψn(X; Y; Z1; · · · ; Z`1) def=

(Q`1+1Z`1+1 ∈ Pk`1+1

C ) · · · (QMZM ∈ PkM

C )

φ(X; Y; Z1; · · · ; ZN ),

thereby replacing the first `1 quantifiers by a single one, and replacing the
first `1 blocks of variables, Z1, . . . ,Z`1 by a single block, Z0 of size, k0 + 1
where k0 = k1 + · · ·+ k`1 + `1 − 1. Moreover, the projection

πZ0 |R(E(ψn)) : R(E(ψn))→ PkC × PmC

is a compact covering by Proposition 3.23, since it is easy to check that

πZ1,...,ZM |R(ψn) : R(ψn)→ PkC × PmC

is a compact covering using assumption (?).
We now consider the sequence of formulas J̄2m+1

C,Z0 (E(ψn)) (cf. Lemma 3.25).
Observe that the formula J̄2m+1

C,Z0 (E(ψn)) has one less block of quantifiers
than the formula Φn. We now replace the blocks of variables Y and
(Z0,0, . . . ,Z0,2m+1) by a single block

U = (U0,0,0, . . . , Um,2m+1,k0)

of homogeneous variables using the Segre map. More precisely we consider
the following sequence of formulas defined by

Φ̄n(X;U0,0,0, . . . , Um,2m+1,k0) def= m∧
i,i′=0

2m+1∧
j,j′=0

k0∧
`,`′=0

Ui,j,`Ui′,j′,`′ = Ui,j′,`′Ui′,j,`

∧
 m∧
i=0

2m+1∧
j=0

k0∧
`=0

J̄2m+1
C,Z0 (E(ψn))(X;U0,j,`, . . . , Um,j,`;Ui,0,0 . . . , Ui,2m+1,k0)

 .

Each formula Φ̄n(X; U) defines a constructible subset of

PnC × P(m+1)(2m+2)(k0+1)−1
C

isomorphic to R(J̄2m+1
C,Z1 (E(ψn))).

Since the formulas in the sequence
(
Φ̄n
)
n>0

in addition to having one less
block of quantifiers than the ones in the sequence (Φn)n>0, also satisfies by
Proposition 3.24 and Lemma 3.25 the required polynomial time hypothesis,
and also satisfies property (?), we can apply the induction hypothesis to
this sequence to obtain a sequence of formulas (Θn)n>0, and a sequence of
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polynomial time computable maps (Gn)n>0. By inductive hypothesis we
can suppose that for each x ∈ Pk(n)

C

QR(J̄2m+1
C,Z0 (E(ψn))(x,·)) = QR(Φ̄n(x,U)) = Gn(QR(Θn(x,·))).

Using Corollary 3.21 we have

QR(Φn(x,Y)) = QπZ0 (R(E(ψn))(x,·))

= (1− T )QR(J̄2m+1
C,Z0 (E(Ψn))(x,·)) mod Tm+1

= (1− T )Gn(QR(Θn(x,·))) mod Tm+1.

We set
Fn = Truncm ◦M1−T ◦Gn

(see Notation 3.2). This completes the induction in this case.
(B) Case 2, Q1, . . . , Q`1 = ∀: In this case we first replace the formula Φn by

A(Φn) (cf. Proposition 3.23), thereby replacing the first `1 quantifiers by
a single one, and replacing the first `1 blocks of variables, Z1, . . . ,Z`1 by a
single block, Z0 of size, k0 + 1 where k0 = k1 + · · ·+ k`1 + `1 − 1.

We now consider the sequence of formulas J̄2m+1
C,Z0 (¬A(ψn)) (cf. Proposi-

tion 3.23), where ψn is defined as in the previous case.
We now apply the proposition inductively as above to obtain a sequence

(Θn)n>0, and maps (Gn)n>0. By inductive hypothesis we can suppose that
for each x ∈ PnC we have

QR(J̄2m+1
C,Z0 (¬A(ψn))(x,·)) = Gn(QR(Θn(x,·))).

QPm
C \R(Φn(x;Y)) = QπZ1 (R(¬A(ψn))(x,·))

= (1− T )QR(J̄2m+1
C,Z0 (¬A(ψn))(x,·)) mod Tm+1

= (1− T )Gn(QR(Θn(x,·))) mod Tm+1.

The set K = R(Φn(x; Y)) is a constructible compact, so by Corollary
3.4 (corollary to Theorem 3.1), we have

QK(T ) = −Recm(Truncm(QPm
C−K)) +

m∑
i=0

T i.

We set Fn to be the operator defined by

Fn(Q) = −Recm(Truncm(M1−T (Gn(Q)))) +
m∑
i=0

T i.

This completes the induction in this case as well.
�

Proof of Theorem 2.1. Follows immediately from Proposition 4.1 in the special case
whenm = 0. In this case the sequence of formulas (Φn)n>0 correspond to a language
in the polynomial hierarchy and for each n, x = (x0 : · · · : xk(n)) ∈ Sn ⊂ Pk(n)

C if
and only if

Fn(QR(Θn(x,·)))(0) > 0
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and this last condition can be checked in polynomial time with advice from the
class #P†C. �

Remark 4.2. It is interesting to observe that in complete analogy with the proof of
the classical Toda’s theorem the proof of Theorem 2.1 also requires just one call to
the oracle at the end.

Proof of Theorem 2.5. Follows from the proof of Proposition 4.1 since the formula
Θn is clearly computable in polynomial time from the given formula Φn as long as
the number of quantifier alternations ω is bounded by a constant. �
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ler, Bézout, Betti, and Poincaré, Complexity of computations and proofs (Jan Krajicek,
ed.), Quad. Mat., vol. 13, Dept. Math., Seconda Univ. Napoli, Caserta, 2004, pp. 73–151.

MR 2131406 (2006c:68053)

5. , Counting complexity classes for numeric computations. II. Algebraic and semialge-

braic sets, J. Complexity 22 (2006), no. 2, 147–191. MR 2200367 (2007b:68059)

6. P. Bürgisser, F. Cucker, and M. Lotz, Counting complexity classes for numeric computations.
III. Complex projective sets, Found. Comput. Math. 5 (2005), no. 4, 351–387. MR 2189543

(2006h:68039)

7. J. H. Davenport and J. Heintz, Real quantifier elimination is doubly exponential, Journal of
Symbolic Computation 5 (1988), no. 1/2, 29–35.

8. P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. (1974), no. 43,
273–307. MR 0340258 (49 #5013)

9. , La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. (1980), no. 52, 137–

252. MR 601520 (83c:14017)
10. B. Dwork, On the rationality of the zeta function of an algebraic variety, American Journal

of Mathematics 82 (1960), no. 3, 631–648.
11. A. Gabrielov, N. Vorobjov, and T. Zell, Betti numbers of semialgebraic and sub-Pfaffian sets,

J. London Math. Soc. (2) 69 (2004), no. 1, 27–43. MR 2025325 (2004k:14105)
12. H. Blaine Lawson, Jr., Algebraic cycles and homotopy theory, Ann. of Math. (2) 129 (1989),

no. 2, 253–291. MR 986794 (90h:14008)
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