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Abstract. We survey both old and new developments in the theory of al-
gorithms in real algebraic geometry – starting from effective quantifier elim-
ination in the first order theory of reals due to Tarski and Seidenberg, to
more recent algorithms for computing topological invariants of semi-algebraic
sets. We emphasize throughout the complexity aspects of these algorithms and
also discuss the computational hardness of the underlying problems. We also
describe some recent results linking the computational hardness of decision
problems in the first order theory of the reals, with that of computing certain
topological invariants of semi-algebraic sets. Even though we mostly concen-
trate on exact algorithms, we also discuss some numerical approaches involving
semi-definite programming that have gained popularity in recent times.

1. Introduction

We survey developments in the theory of algorithms in real algebraic geometry
– starting from the first effective quantifier elimination procedure due to Tarski
and Seidenberg, to more recent work on efficient algorithms for quantifier elimina-
tion, as well as algorithms for computing topological invariants of semi-algebraic
sets – such as the number semi-algebraically connected components, Euler-Poincaré
characteristic, Betti numbers etc. Throughout the survey, the emphasis is on the
worst-case complexity bounds of these algorithms, and the continuing effort to de-
sign algorithms with better complexity. Our goal in this survey is to describe these
algorithmic results (including stating precise complexity bounds in most cases), and
also give some indications of the techniques involved in designing these algorithms.
We also describe some hardness results which show the intrinsic difficulty of some
of these problems.

1.1. Notation. We first fix some notation. Throughout, R will denote a real
closed field (for example, the field R of real numbers or Ralg of real algebraic
numbers), and we will denote by C the algebraic closure of R.

A semi-algebraic subset of Rk is a set defined by a finite system of polynomial
equalities and inequalities, or more generally by a Boolean formula whose atoms
are polynomial equalities and inequalities. Given a finite set P of polynomials in
R[X1, . . . , Xk], a subset S of Rk is P-semi-algebraic if S is the realization of a
Boolean formula with atoms P = 0, P > 0 or P < 0 with P ∈ P (we will call such
a formula a quantifier-free P-formula).
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It is clear that for every semi-algebraic subset S of Rk there exists a finite set P
of polynomials in R[X1, . . . , Xk] such that S is P-semi-algebraic. We call a semi-
algebraic set a P-closed semi-algebraic set if it is defined by a Boolean formula
with no negations with atoms P = 0, P ≥ 0, or P ≤ 0 with P ∈ P.

For an element a ∈ R we let

sign(a) =


0 if a = 0,
1 if a > 0,
−1 if a < 0.

A sign condition on P is an element of {0, 1,−1}P . For any semi-algebraic
set Z ⊂ Rk the realization of the sign condition σ over Z, R(σ,Z), is the
semi-algebraic set

{x ∈ Z |
∧

P∈P
sign(P (x)) = σ(P )},

and in case Z = Rk we will denote R(σ,Z) by just R(σ).
If P is a finite subset of R[X1, . . . , Xk], we write the set of zeros of P in Rk as

Z(P,Rk) = {x ∈ Rk |
∧

P∈P
P (x) = 0}.

Given a semi-algebraic set S ⊂ Rk, we will denote by bi(S) the i-th Betti num-
ber of S, that is the rank of the i-th homology group of S (see [17] for precise
definitions of homology groups for semi-algebraic sets defined over arbitrary real
closed fields). Note that b0(S) is the number of semi-algebraically connected com-
ponents of S. We will denote by b(S) the sum

∑
i≥0 bi(S).

For x ∈ Rk and r > 0, we will denote by Bk(x, r) (resp. Sk−1(x, r)) the open
ball (resp. the sphere) with center x and radius r in Rk. When x = 0, we will write
Bk(r) (resp. Sk−1(r)) instead of Bk(0, r) (resp. Sk−1(0, r)). We will also denote
the unit ball (resp. sphere) in Rk centered at 0 by Bk (resp. Sk−1).

1.2. Main algorithmic problems. Algorithmic problems in semi-algebraic ge-
ometry typically consist of the following. We are given as input a finite family,
P ⊂ D[X1, . . . , Xk], where D is an ordered domain contained in the real closed field
R. The main algorithmic problems can be roughly divided into two classes (though
we will see later in Section 3.4 how they are related from the point of computational
complexity).

The first class of problems has a logical flavor. It includes the following.
Given a quantified P-formula Φ (with or without free variables), the task is to:
(1) (The Quantifier Elimination Problem) Compute a quantifier-free for-

mula equivalent to Φ.
(2) (The General Decision Problem) This is a special case of the previous

problem when Φ has no free variables, and the problem is to decide the
truth or falsity of Φ.

(3) (The Existential Problem) This is a special case of the last problem
when there is exactly one block of existential quantifiers; equivalently, the
problem can be stated as deciding whether a given P-semi-algebraic set is
empty or not.

The second class of problems has a more geometric and/or topological flavor.
Given a description of a P-semi-algebraic set S ⊂ Rk the task is to decide whether
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certain geometric and topological properties hold for S, and in some cases also
computing certain topological invariants of S. Some of the most basic problems
include the following.

(1) (Deciding Emptiness) Decide whether S is empty or not (this is the same
as the Existential Problem described above).

(2) (Deciding Connectivity) Given two points x, y ∈ S, decide if they are in
the same semi-algebraically connected component of S and if so output a
semi-algebraic path in S connecting them.

(3) (Describing Connected Components) Compute semi-algebraic descrip-
tions of the semi-algebraically connected components of S.

At a slightly deeper level we have problems of a more topological flavor, such as:
(4) (Computing Betti Numbers) Compute the cohomology groups of S, its

Betti numbers, its Euler-Poincaré characteristic etc..
(5) (Computing Triangulations) Compute a semi-algebraic triangulation of

S as well as,
(6) (Computing Regular Stratifications) compute a decomposition of S

into semi-algebraic smooth pieces of various dimensions satisfying certain
extra regularity conditions ( for example, Whitney conditions (a) and(b)).

Definition 1.1 (Complexity). A typical input to the algorithms considered in this
survey will be a set of polynomials with coefficients in an ordered ring D (which can
be taken to be the ring generated by the coefficients of the input polynomials). By
complexity of an algorithm we will mean the number of arithmetic operations
(including comparisons) performed by the algorithm in the ring D. In case the
input polynomials have integer coefficients with bounded bit-size, then we will
often give the bit-complexity, which is the number of bit operations performed by
the algorithm. We refer the reader to [17, Chapter 8] for a full discussion about
the various measures of complexity.

The complexity of an algorithm (see Definition 1.1 above) for solving any of the
above problems is measured in terms of the following three parameters:

• the number of polynomials, s = card P,
• the maximum degree, d = maxP∈P deg(P ), and
• the number of variables, k (and in case of quantifier elimination problems,

the block decomposition of the k variables).
The rest of the paper is organized as follows. In Section 2, we describe known al-

gorithms for quantifier elimination in the theory of the reals, starting from Tarski’s
algorithm, algorithms via cylindrical algebraic decomposition, and finally more
modern algorithms using the critical points method. We also discuss some vari-
ants of quantifier elimination problem that arise in applications, as well as certain
approaches using complex geometry of polar varieties that give efficient probabilistic
algorithms. We also discuss the known lower bounds for real quantifier elimination.

In Section 3, we concentrate on algorithms for computing topological proper-
ties of semi-algebraic sets – including connectivity property via construction of
roadmaps, computing the generalized Euler-Poincaré characteristic of semi-algebraic
sets, as well as computing the Betti numbers of semi-algebraic sets. Throughout this
section the emphasis is on algorithms with singly exponential complexity bounds.
We also discuss certain results that are special to semi-algebraic sets defined by qua-
dratic inequalities, or more generally where the defining polynomials have at most
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quadratic dependence on most of the variables. We also point out the significance
of some of the results from the point of view of computational complexity theory.
Finally, we discuss a recent reduction result linking the complexity of the problem
of computing the Betti numbers of semi-algebraic sets, with that of the decision
problem in the first order theory of the real with a fixed number of quantifier block.

In Section 4, we discuss numerical algorithms for polynomial optimization using
the “sums-of-square” approach. The main algorithmic tool here is “interior-point
algorithms for semi-definite programming” and we discuss the known results on the
computational complexity of the semi-definite programming problem.

We end with a list of open problems (Section 5).

Warning. There are several interesting topics which come under the purview of
algorithms in real algebraic geometry that have been left out of this survey (because
of lack of space as well as the author’s lack of expertise in some of these topics).
For example, we do not make any attempt to survey the extremely broad area of
research concerning efficient implementation of theoretically efficient algorithms,
specific low dimensional applications such as computing the topology of curves and
surfaces, computing certificates of positivity of polynomials (for archimedean as
well as non-archimedean real closed fields), homotopy continuation algorithms for
solving real systems etc. There are multiple excellent sources available for most
of these topics. Finally, algorithmic real algebraic geometry has a great variety of
applications, due to the ubiquity of semi-algebraic sets arising in different areas
of science and engineering – including robotics, molecular chemistry, theoretical
computer science, database theory etc. We do not make any attempt to survey
these applications.

2. Quantifier elimination and related problems

We begin appropriately with the first algorithm (in the modern sense) in real
algebraic geometry which is a starting point of the subject.

2.1. The Tarski-Seidenberg Theorem and effective quantifier elimination.
Let P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk, Y1, . . . , Y`], and Φ(Y ) a first-order formula
given by

(QωX
[ω]) . . . (Q1X

[1])F (P1, . . . , Ps),

where Qi ∈ {∀,∃}, Qi 6= Qi+1, Y = (Y1, . . . , Y`) is a block of ` free variables, X [i]

is a block of ki variables with
∑

1≤i≤ω ki = k, and F (P1, . . . , Ps) is a quantifier-free
Boolean formula with atomic predicates of the form sign(Pi(Y,X [ω], . . . , X [1])) = σ
where σ ∈ {0, 1,−1}. (Letting Π denote the partition of the blocks of variables
X1, . . . , Xk into the ω blocks of sizes k1, . . . , kω, we call a formula such as Φ, having
the block structure specified by Π to be a (P,Π)-formula.)

The Tarski-Seidenberg theorem states that

Theorem 2.1. [74] There exists a quantifier-free formula, Ψ(Y ), such that for any
y ∈ R`, Φ(y) is true if and only if Ψ(y) is true.

The quantifier elimination problem is to algorithmically construct such a formula.
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2.1.1. Algorithm arising from Tarski’s proof. Tarski’s proof [74] of the existence
of quantifier elimination in the theory of the reals was effective and was based
on Sturm’s theorem for counting real roots of polynomials in one variable with
real coefficients used in a parametric way. A modern treatment of this proof can
be found in [17, Chapter 2]. The complexity of this procedure was not formally
analysed in Tarski’s paper. However, the algorithm eliminates one variable at a
time using a parametrized version of Euclidean remainder sequence, and as a result
the number and degrees of the polynomials in the remaining variables grow rather
fast, and it is not possible to bound the complexity of the algorithm by any function
which is a tower of exponents (in the input parameters) of a fixed height, which
implies that the complexity of Tarski’s algorithm is not elementary recursive. An
elementary recursive algorithm for the General Decision Problem was found later
by Monk [56].

2.1.2. Cylindrical Algebraic Decomposition. One fundamental technique for com-
puting topological invariants of semi-algebraic sets is through Cylindrical Algebraic
Decomposition. Even though the mathematical ideas behind cylindrical algebraic
decomposition were known before (see for example [54]), Collins [35, 36] was the
first to apply cylindrical algebraic decomposition in the setting of algorithmic semi-
algebraic geometry. Schwartz and Sharir [72] realized its importance in trying to
solve the motion planning problem in robotics, as well as computing topological
properties of semi-algebraic sets. Similar ideas leading to doubly exponential algo-
rithms was also developed by Wüthrich [77].

Definition 2.2 (Cylindrical Algebraic Decomposition). A cylindrical algebraic

decomposition of Rk is a sequence S1, . . . ,Sk where, for each 1 ≤ i ≤ k, Si is a
finite partition of Ri into semi-algebraic subsets, called the cells of level i, which
satisfy the following properties:

• Each cell S ∈ S1 is either a point or an open interval.
• For every 1 ≤ i < k and every S ∈ Si, there are finitely many continuous

semi-algebraic functions

ξS,1 < . . . < ξS,`S
: S −→ R

such that the cylinder S × R ⊂ Ri+1 is the disjoint union of cells of Si+1

which are:
– either the graph of one of the functions ξS,j , for j = 1, . . . , `S :

{(x′, xj+1) ∈ S × R | xj+1 = ξS,j(x′)} ,

– or a band of the cylinder bounded from below and from above by the
graphs of the functions ξS,j and ξS,j+1, for j = 0, . . . , `S , where we
take ξS,0 = −∞ and ξi,`S+1 = +∞:

{(x′, xj+1) ∈ S × R | ξS,j(x′) < xj+1 < ξS,j+1(x′)} .

Definition 2.3. Given a finite set P ⊂ R[X1, . . . , Xk], a subset S of Rk is is P-
invariant if every polynomial P ∈ P has a constant sign (> 0, < 0, or = 0) on
S. A cylindrical algebraic decomposition of Rk adapted to P is a cylindrical
algebraic decomposition for which each cell C ∈ Sk is P-invariant. It is clear that
if S is P-semi-algebraic, a cylindrical algebraic decomposition adapted to P is a
cylindrical algebraic decomposition adapted to S.
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One important result which underlies most algorithmic applications of cylindrical
algebraic decomposition is the following (see [17, Chapter 11] for an easily accessible
exposition).

Theorem 2.4. [36, 77] For every finite set P of polynomials in R[X1, . . . , Xk], there
is a cylindrical decomposition of Rk adapted to P. Moreover, such a decomposition
can be computed in time (sd)2

O(k)
, where s = card P and d = maxP∈P deg(P ).

Cylindrical algebraic decomposition provides an alternative (and more efficient
compared to Tarski’s) algorithm for quantifier elimination, since (using the same
notation as in the previous section) the semi-algebraic subset of R` defined by Φ(Y ),
is a union of cells (of various dimensions) in a cylindrical algebraic decomposition
of Rk+` adapted to P (cf. Definition 2.3), where Y1, . . . , Y` are the last ` variables.
This last fact is a consequence of the “cylindrical” structure of the decomposition.
The complexity of such an algorithm is bounded by the complexity of computing the
cylindrical decomposition and is doubly exponential. More precisely, the complexity
is bounded by (sd)2

O(k+`)
.

Remark 2.5. The technique of cylindrical algebraic decomposition is also used in
algorithms for computing topological properties of semi-algebraic sets. After mak-
ing a generic linear change of co-ordinates, the cylindrical algebraic decomposition
algorithm yields a finite cell complex from which topological invariants of the un-
derlying semi-algebraic sets can be extracted. It should be noted that a change of
co-ordinates is needed to obtain a cell complex. However, in certain applications
a change of co-ordinates is not allowed (see [22] for one such application). It is an
interesting open question if there always exists a semi-algebraic cell decomposition
adapted to a given finite family of polynomials, having a cylindrical structure with
respect to the given co-ordinates.

2.1.3. Lower bound. Given the doubly exponential upper bound on the complexity
of quantifier elimination algorithm that follows from cylindrical algebraic decompo-
sition, it is interesting to ask whether it is at all possible to do better. This question
was investigated by Davenport and Heintz [40] who proved a doubly exponential
lower bound on the complexity of real quantifier elimination, by constructing a se-
quence of quantified formula having the property that any equivalent sequence of
quantifier-free formulas would necessarily have doubly exponential growth in size.
However, the quantified formulas in the sequence they constructed had a large num-
ber of quantifier alternations (linear in the number of variables). Thus, while it is
impossible to hope for better than doubly exponential dependence in the number,
ω, of quantifier alternations, it might still be possible to obtain algorithms with
much better complexity (i.e. singly exponential in the number of variables) if we
fix the number of quantifier alternations. This is what we describe next.

2.2. The critical points method and singly exponential algorithms. As
mentioned earlier, all algorithms using cylindrical algebraic decomposition have
doubly exponential complexity. Algorithms with singly exponential complexity for
solving problems in semi-algebraic geometry are mostly based on the critical points
method. This method was pioneered by several researchers including Grigoriev
and Vorobjov [46, 45], Renegar [67], Canny [33], Heintz, Roy and Solernò [48],
Basu, Pollack and Roy [12] amongst others. In simple terms, the critical points
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method is nothing but a method for finding at least one point in every semi-
algebraically connected component of an algebraic set. It can be shown that for a
bounded nonsingular algebraic hyper-surface, it is possible to change coordinates
so that its projection to the X1-axis has a finite number of non-degenerate critical
points. These points provide at least one point in every semi-algebraically connected
component of the bounded nonsingular algebraic hyper-surface. Unfortunately this
is not very useful in algorithms since it provides no method for performing this linear
change of variables. Moreover when we deal with the case of a general algebraic
set, which may be unbounded or singular, this method no longer works.

In order to reduce the general case to the case of bounded nonsingular alge-
braic sets, we use an important technique in algorithmic semi-algebraic geometry –
namely, perturbation of a given real algebraic set in Rk using one or more infinites-
imals. The perturbed variety is then defined over a non-archimedean real closed
extension of the ground field – namely the field of algebraic Puiseux series in the
infinitesimal elements with coefficients in R.

Since the theory behind such extensions might be unfamiliar to some readers,
we introduce here the necessary algebraic background referring the reader to [17,
Section 2.6] for full detail and proofs.

2.2.1. Infinitesimals and the field of algebraic Puiseux series.

Definition 2.6 (Puiseux series). A Puiseux series in ε with coefficients in R is
a series of the form

(2.1) a =
∑
i≥k

aiε
i/q,

with k ∈ Z, i ∈ Z, ai ∈ R, q a positive integer.

It is a straightforward exercise to verify that the field of all Puiseux series in ε
with coefficients in R is an ordered field. The order extends the order of R, and ε is
an infinitesimally small and positive, i.e. is positive and smaller than any positive
r ∈ R.

Notation 1. The field of Puiseux series in ε with coefficients in R contains as a
subfield, the field of Puiseux series which are algebraic over R[ε]. We denote by
R〈ε〉 the field of algebraic Puiseux series in ε with coefficients in R. We will
also use the notation R〈ε1, . . . , εm〉 to denote the field R〈ε1〉 · · · 〈εm〉. Notice that
in the field R〈ε1, . . . , εm〉 we have the ordering 0 < εm � εm−1 � · · · � ε1 � 1
where the symbol a� b means that a is infinitesimally small with respect to b.

The following theorem is classical (see for example [17, Section 2.6] for a proof).

Theorem 2.7. The field R〈ε〉 is real closed.

Definition 2.8 (The limε map). When a ∈ R〈ε〉 is bounded by an element of R,
limε(a) is the constant term of a, obtained by substituting 0 for ε in a.

Example 2.9. A typical example of the application of the lim map can be seen in
Figures 1 and 2 below. The first picture depicts the algebraic set Z(Q,R3), while
the second depicts the algebraic set Z(Def(Q, ζ, 4),R〈ζ〉3) (where we substituted a
very small positive number for ζ in order to able display this set), where Q and
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Def(Q, ζ, 4) are defined by Eqn. (2.4) and Eqn. (2.3) respectively The algebraic
sets Z(Q,R3) and Z(Def(Q, ζ, 4),R〈ζ〉3) are related by

Z(Q,R3) = lim
ζ

Z(Def(Q, ζ, 4),R〈ζ〉3).

Since we will often consider the semi-algebraic sets defined by the same formula,
but over different real closed extensions of the ground field, the following notation
is useful.

Notation 2. Let R′ be a real closed field containing R. Given a semi-algebraic
set S in Rk, the extension of S to R′, denoted Ext(S,R′), is the semi-algebraic
subset of R′k defined by the same quantifier free formula that defines S.

The set Ext(S,R′) is well defined (i.e. it only depends on the set S and not on
the quantifier free formula chosen to describe it). This is an easy consequence of
the transfer principle.

We now return to the discussion of the critical points method. In order for the
critical points method to work for all algebraic sets, we associate to a possibly
unbounded algebraic set Z ⊂ Rk a bounded algebraic set Zb ⊂ R〈ε〉k+1

, whose
semi-algebraically connected components are closely related to those of Z.

Let Z = Z(Q,Rk) and consider

Zb = Z(Q2 + (ε2(X2
1 + . . .+X2

k+1)− 1)2,R〈ε〉k+1).

The variety Zb is the intersection of the sphere Sk(0, 1/ε) of center 0 and radius
1
ε

with a cylinder based Ext(Z,R〈ε〉) (and is hence bounded over R〈ε〉). The
intersection of Zb with the hyper-plane Xk+1 = 0 is the intersection of Z with the

sphere Sk−1(0, 1/ε) of center 0 and radius
1
ε
. Denote by π the projection from

R〈ε〉k+1 to R〈ε〉k.
The following proposition which appears in [17] then relates the semi-algebraically

connected component of Z with those of Zb and this allows us to reduce the prob-
lem of finding points on every semi-algebraically connected component of a possibly
unbounded algebraic set to the same problem on bounded algebraic sets.

Proposition 2.10. Let N be a finite number of points meeting every semi-algebraic-
ally connected component of Zb. Then π(N) meets every semi-algebraically con-
nected component of the extension Ext(Z,R〈ε〉).

We obtain immediately using Proposition 2.10 a method for finding a point in
every semi-algebraically connected component of an algebraic set. Note that these
points have coordinates in the extension R〈ε〉 rather than in the real closed field R
we started with. However, the extension from R to R〈ε〉 preserves semi-algebraically
connected components.

2.2.2. Representation of points. One important aspect in any algorithm in real
algebraic geometry is how to represent points whose co-ordinates belong to some
real algebraic extension of the ordered ring D generated by the coefficients of the
input polynomials. There are as usual several options, such as representing an
arbitrary real algebraic number using isolating intervals, or by Thom encodings
etc. In the singly-exponential algorithms described in the book [17], points in Rk

are represented by univariate representations and an associated Thom encoding.
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Even though we will not need any further detail about these representations in
this survey, given their importance in most of the algorithms that we refer to, we
include their precise definitions below.

Definition 2.11 (Thom encoding). Let P ∈ R[X] and σ ∈ {0, 1,−1}Der(P ), a sign
condition on the set Der(P ) of derivatives of P . The sign condition σ is a Thom
encoding of x ∈ R if σ(P ) = 0 and σ is the sign condition taken by the set Der(P )
at x. Given a Thom encoding σ, we denote by x(σ) the root of P in R specified by
σ.

(Note that the use of Thom encoding to represent algebraic numbers was intro-
duced in algorithmic real algebraic geometry by Coste and Roy in [37].)

Definition 2.12 (Univariate representations and real univariate representations).
A k-univariate representation is a k + 2-tuple of polynomials of R[T ],

(f(T ), g0(T ), g1(T ), . . . , gk(T )),

such that f and g0 are coprime.
The points associated to a univariate representation are the points(

g1(t)
g0(t)

, . . . ,
gk(t)
g0(t)

)
∈ Ck

where t ∈ C is a root of f(T ).
A real k-univariate representation is a pair u, σ where u is a k-univariate

representation and σ is the Thom encoding of a root of f , tσ ∈ R. The point
associated to the real univariate representation is the point(

g1(tσ)
g0(tσ)

, . . . ,
gk(tσ)
g0(tσ)

)
∈ Rk.

Remark 2.13. By parametrizing the definition of a real k-univariate representation
(lets say by a co-ordinate function such as X1) one obtains descriptions of semi-
algebraic curves. These curve segment representations play an important role
in algorithms for computing roadmaps of semi-algebraic sets (see Section 3.1 below).

2.2.3. Deformation techniques to deal with singular varieties. For dealing with pos-
sibly singular algebraic sets we define X1-pseudo-critical points of Z(Q,Rk)
when Z(Q,Rk) is a bounded algebraic set. These pseudo-critical points are a finite
set of points meeting every semi-algebraically connected component of Z(Q,Rk).
They are the limits of the critical points of the projection to the X1 coordinate of
a bounded nonsingular algebraic hyper-surface defined by a particular infinitesimal
perturbation, Def(Q, ζ, d), of the polynomial Q (where d = deg(Q)). Moreover,
the equations defining the critical points of the projection on the X1 coordinate
on the perturbed algebraic set have a very special algebraic structure (they form
a Gröbner basis [17, Section 12.1]), which makes possible efficient computation of
these pseudo-critical values and points. We refer the reader to [17, Chapter 12] for
a full exposition including the definition and basic properties of Gröbner basis.

The deformation Def(Q, ζ, d) of Q is defined as follows. Suppose that Z(Q,Rk)
is contained in the ball of center 0 and radius 1/c. Let d̄ be an even integer bigger
than the degree d of Q and let

(2.2) Gk(d̄, c) = cd̄(X d̄
1 + · · ·+X d̄

k +X2
2 + · · ·+X2

k)− (2k − 1),
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(2.3) Def(Q, ζ, d) = ζGk(d̄, c) + (1− ζ)Q.

The algebraic set Z(Def(Q, ζ, d),R〈ζ〉k) is a bounded and non-singular hyper-
surface lying infinitesimally close to Z(Q,Rk) and the critical points of the projec-
tion map onto the X1 co-ordinate restricted to Z(Def(Q, ζ, d),R〈ζ〉k) form a finite
set of points. We take the images of these points under limζ (cf. Definition 2.8)
and we call the points obtained in this manner the X1-pseudo-critical points of
Z(Q,Rk). Their projections on the X1-axis are called pseudo-critical values.

Example 2.14. We illustrate the perturbation mentioned above by a concrete
example. Let k = 3 and Q ∈ R[X1, X2, X3] be defined by

(2.4) Q = X2
2 −X2

1 +X4
1 +X4

2 +X4
3 .

Then, Z(Q,R3) is a bounded algebraic subset of R3 shown below in Figure 1. No-
tice that Z(Q,R3) has a singularity at the origin. The surface Z(Def(Q, ζ, 4),R〈ζ〉3)
with a small positive real number substituted for ζ is shown in Figure 2. No-
tice that this surface is non-singular, but has a different semi-algebraic homotopy
type than Z(Q,R〈ζ〉3) (it has three semi-algebraically connected components com-
pared to only one of Z(Q,R〈ζ〉3)). However, the semi-algebraic set bounded by
Z(Def(Q, ζ, 4),R〈ζ〉3) (i.e. the part inside the larger component but outside the
smaller ones) is semi-algebraically homotopy equivalent to Z(Q,R〈ζ〉3).

Figure 1. The algebraic set Z(Q,R3).

Figure 2. The algebraic set Z(Def(Q, ζ, 4),R3).
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By computing algebraic representations (see [17, Section 12.4] for the precise
definition of such a representation) of the pseudo-critical points one obtains for any
given algebraic set a finite set of points guaranteed to meet every semi-algebraically
connected component of this algebraic set. Using some more arguments from real
algebraic geometry one can also reduce the problem of computing a finite set of
points guaranteed to meet every semi-algebraically connected component of the
realization of every realizable sign condition on a given family of polynomials to
finding points on certain algebraic sets defined by the input polynomials (or infin-
itesimal perturbations of these polynomials). The details of this argument can be
found in [17, Proposition 13.2].

The following theorem which is the best result of this kind appears in [13].

Theorem 2.15. Let Z(Q,Rk) be an algebraic set of real dimension k′, where Q is
a polynomial in R[X1, . . . , Xk] of degree at most d, and let P ⊂ R[X1, . . . , Xk] be a
set of s polynomials with each P ∈ P also of degree at most d. Let D be the ring
generated by the coefficients of Q and the polynomials in P. There is an algorithm
which computes a set of points meeting every semi-algebraically connected compo-
nent of every realizable sign condition on P over Z(Q,R〈ε, δ〉k). The algorithm has
complexity

(k′(k − k′) + 1)
∑
j≤k′

4j

(
s

j

)
dO(k) = sk′

dO(k)

in D. There is also an algorithm providing the list of signs of all the polynomials
of P at each of these points with complexity

(k′(k − k′) + 1)s
∑
j≤k′

4j

(
s

j

)
dO(k) = sk′+1dO(k)

in D.

Notice that the combinatorial complexity (i.e. the part that depends on s) of
the algorithm in Theorem 2.15 depends on the dimension of the variety rather than
that of the ambient space.

2.3. Certain quantitative results in metric semi-algebraic geometry. In
the case D = Z, a careful analysis of the algorithm in Theorem 2.15 produces
an explicit upper bound on the radius of a ball centered at the origin which is
guaranteed to meet every semi-algebraically connected component of any P-semi-
algebraic set in terms of s, d, k and a bound on the bit-size, τ , of the coefficients of P.
This and related bounds of this type are often needed in designing other algorithms
(for instance, in order to compute certificates of positivity by sub-division method
as done in [32]). The following rather technical but completely explicit estimate
appears in [20] (the same paper contains several other explicit estimates of similar
types).

Notation 3. Given an integer n, we denote by bit(n) the number of bits of its
absolute value in the binary representation. Note that

(2.5) bit(nm) ≤ bit(n) + bit(m),

(2.6) bit

(
n∑

i=1

mi

)
≤ bit(n) +

n
sup
i=1

(bit(mi)).
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Theorem 2.16. [20] Let P = {P1, . . . , Ps} ⊂ Z[X1, . . . , Xk] and suppose that
P ∈ P have degrees at most d, and the coefficients of P ∈ P have bitsizes at most
τ . Then there exists a ball centered at the origin of radius(

(2DN(2N − 1) + 1)2(2N−1)(τ ′′+bit(2N−1)+bit(2DN+1))
)1/2

where

d′ = sup(2(d+ 1), 6),
D = k(d′ − 2) + 2,

N = d′(d′ − 1)k−1,

τ ′′ = N(τ ′2 + bit(N) + 2bit(2D + 1) + 1),
τ ′2 = τ ′1 + 2(k − 1)bit(N) + (2k − 1)bit(k),
τ ′1 = D(τ ′0 + 4bit(2D + 1) + bit(N))− 2bit(2D + 1)− bit(N),
τ ′0 = 2τ + kbit(d+ 1) + bit(2d′) + bit(s)

intersecting every semi-algebraically connected component of the realization of every
realizable sign condition (resp. realizable weak sign condition) on P.

Remark 2.17. Note that asymptotic bounds of the form 2τdO(k)
for the same problem

were known before [19, 46, 67]. One point which needs some explanation is the fact
that s plays a role in the estimate in Theorem 2.16, while it does not appear in the
formula 2τdO(k)

. This is because the total number of polynomials of degree at most
d in k variables with bitsizes bounded by τ is bounded by (2τ+1)(

d+k
k ) = 2τdO(k)

.

2.4. Singly exponential quantifier elimination algorithms. The algorithm
with singly exponential algorithm for computing sample points in every semi-
algebraically connected component of every realizable sign condition of a family of
polynomials used in a parametrized way is a very important ingredient in designing
algorithms with singly exponential complexity for real quantifier elimination. More
precisely, it allows us to eliminate one whole block of variables (quantified by the
same quantifier) at one time, unlike in algorithms based on cylindrical algebraic
decomposition, where the elimination has to proceed one variable at a time regard-
less of the block structure of the quantifiers. The singly exponential algorithm for
eliminating one block of variables at a time is formalized as the Block Elimina-
tion Algorithm [17, Chapter 14] and does the following. Given a finite family of
polynomials P ⊂ R[X1, . . . , Xk, Y1, . . . , Y`], the Block Elimination Algorithm pro-
duces as output a family of polynomials BElimX(P) ⊂ R[Y1, . . . , Y`]. The family
BElimX(P) has the following important property that justifies its name. For each
semi-algebraically connected component, C ⊂ R`, of each realizable sign condition
of BElimX(P), the set of realizable sign conditions of P(y) ⊂ R[X1, . . . , Xk] stay
invariant as y is allowed to vary over C. The Block Elimination Algorithm also
produces a set of parametrized (by y) sample points which are guaranteed to meet
each semi-algebraically connected component of the set of realizable sign condi-
tions of P(y) ⊂ R[X1, . . . , Xk]. The complexity of this algorithm is bounded by
sk+1dO(`+k), where as usual s = card P and d is a bound on the degrees of the
polynomials in P.

2.4.1. Sign Determination Algorithm. The Block Elimination Algorithm is one im-
portant ingredient of the critical point based quantifier elimination algorithm. The
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other important ingredient is a Sign Determination Algorithm that allows one
to compute the vector of signs of a family, P, of s polynomials in D[X] at the real
roots of a fixed polynomial Q ∈ D[X], with complexity sdO(1), where d is a bound
on the degrees of the polynomials in P and Q. This algorithm was first discovered
by Ben-Or, Kozen and Reif [26] and extended by Roy and Szpirglas [69] (see also
[60] for recent improvements). This algorithm has also been generalized to the
multi-variate case (where the zeros of Q could be positive dimensional), and this is
described below in Section 3.3.

2.4.2. Quantifier Elimination Algorithm. The above ingredients (namely, the Block
Elimination Algorithm and the Sign Determination Algorithm), along with numer-
ous technical detail which we omit in this survey, allows one to prove the following
result.

Theorem 2.18. [17] Let P be a set of at most s polynomials each of degree at most
d in k + ` variables with coefficients in a real closed field R, and let Π denote a
partition of the list of variables (X1, . . . , Xk) into blocks, X[1], . . . , X[ω], where the
block X[i] has size ki, 1 ≤ i ≤ ω. Given Φ(Y ), a (P,Π)-formula, there exists an
equivalent quantifier free formula,

Ψ(Y ) =
I∨

i=1

Ji∧
j=1

(
Ni,j∨
n=1

sign(Pijn(Y )) = σijn),

where Pijn(Y ) are polynomials in the variables Y , σijn ∈ {0, 1,−1},

I ≤ s(kω+1)···(k1+1)(`+1)dO(kω)···O(k1)O(`),

Ji ≤ s(kω+1)···(k1+1)dO(kω)···O(k1),

Nij ≤ dO(kω)···O(k1),

and the degrees of the polynomials Pijk(y) are bounded by dO(kω)···O(k1). Moreover,
there is an algorithm to compute Ψ(Y ) with complexity

s(kω+1)···(k1+1)(`+1)dO(kω)···O(k1)O(`)

in D, denoting by D the ring generated by the coefficients of P.
If D = Z, and the bit-sizes of the coefficients of the polynomials are bounded by

τ , then the bit-sizes of the integers appearing in the intermediate computations and
the output are bounded by τdO(kω)···O(k1)O(`).

Remark 2.19. The algorithmic results described in Section 2.2 are based on one
common technique – namely, by taking a well chosen infinitesimal perturbation, one
can replace any bounded, real (possibly singular) variety V ⊂ Rk, by a non-singular
variety defined over an (non-archimedean) extension of R, and the projection map
on some co-cordinate (say X1) restricted to this variety has non-degenerate criti-
cal points, which moreover are defined by a zero-dimensional system of equations
which is nicely behaved (is automatically a Gröbner basis). The limits of these
critical points belong to the given variety V and moreover they meet every semi-
algebraically connected component of V . This technique (which is rather special to
real algebraic geometry as opposed to complex geometry) has several advantages
from the point of view of algorithmic complexity. The first advantage is that it
is not necessary to choose any generic co-ordinate system or direction to project
on. Secondly, the method does not care about how singular the given variety V is
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or even its dimension. Moreover, it is possible to relate the topology (up to semi-
algebraic homotopy equivalence) of V with the infinitesimal “tube” around it which
is bounded by the perturbed hyper-surface (say V ′). This reduces most algorith-
mic problems of computing topological invariants of V , to that of the well-behaved
hyper-surface V ′. Since the degree of the polynomial defining V ′ is at most twice
that of the one defining V , and the computations take place in the original ring
adjoined with at most a constant many (i.e. their number is independent of the
input parameters s, d and k) infinitesimals, the complexity is well controlled. The
main disadvantage of the approach (which could a drawback from the point of view
of practical implementation point) is that computations with even a constant many
infinitesimals are quite expensive (even though they do not affect the asymptotic
complexity bounds). Also, the process of taking algebraic limits at the end can be
quite cumbersome. Nevertheless, this perturbation approach remains the only one
which gives deterministic algorithms with the best known worst case complexity
estimates.

2.5. Intrinsic complexity and complex algebraic techniques. The model
for studying complexity of algorithms in this survey is that the size of the input
is measured in terms of the number of coefficients needed to specify the input
polynomials in the dense representation. Since this number is determined by the
following parameters:

(1) the number of variables, k;
(2) the number of polynomials, s;
(3) the degrees of the polynomials, d;

it makes sense to state the complexity estimates in terms of s, d and k.
There is another body of work (see for example [1, 2, 70, 71, 49]) in which the

goal is to obtain algorithms for computing sample points on each semi-algebraically
connected component of a given real algebraic variety V ⊂ Rk, whose complexity
is bounded by a polynomial function of some intrinsic invariant of the variety V or
in some cases the length of straight line programs encoding the input polynomials.
In this approach, the real variety V is considered as the real part of the complex
variety VC ⊂ Ck (where C is the algebraic closure of R), and the intrinsic invariant,
δ(V ) = δ(VC) depends only on the geometry of the complex variety VC, and not
on the particular presentation of it by the given input polynomials. If d is a bound
on the degrees of the polynomials defining V , then δ(V ) is bounded by O(d)k and
could be as large as dk in the worst case. However, δ(V ) could be smaller in special
cases.

Since these algorithms aim at complexity in terms of some geometric invariant of
the variety itself, the infinitesimal perturbation techniques described in the previous
sections is not available, since such a perturbation will not in general preserve this
invariant. Hence, one needs to work directly with the given variety. For example,
one needs to prove that under certain assumptions on the variety, the critical points
of a generic projection (also called the polar variety) is non-singular (see [3]). The
theory of geometric resolutions (see [2]) play an important role in these algorithms.

One feature of the algorithms that follow from these techniques is that it is nec-
essary to choose generic co-ordinates which cannot be done deterministically within
the claimed complexity bounds. As such one obtains probabilistic (as opposed to
deterministic) algorithms, meaning that these algorithms always run within the
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stated complexity time bounds, but is guaranteed to give correct results only with
high probability.

2.6. Variants of quantifier elimination and applications. In certain applica-
tions (most notably in the theory of constraint databases) one needs to perform
quantifier elimination in a more generalized setting than that discussed above. For
instance, it is sometimes necessary to eliminate quantifiers not just from one for-
mula, but a whole sequence of formulas described in some finite terms, where the
number of free variables is allowed to grow in the sequence. Clearly, the quantifier
elimination algorithms described previously is not sufficient for this purpose since
their complexity depends on the number of free variables.

We describe below a variant of the quantifier elimination problem which was
introduced in [6] motivated by a problem in constraint databases.

2.6.1. The Uniform Quantifier Elimination Problem.

Definition 2.20. We call a sequence,

{φn(T1, . . . , T`, Y1, . . . , Yn) | n > 0}
of first-order formulas φn in the language of ordered fields, to be a uniform se-
quence if each φn has the form,

φn(T1, . . . , T`, Y1, . . . , Yn) =

Q1
1≤k1≤n . . . Q

ω
1≤kω≤nφ(T1, . . . , T`, Yk1 , . . . , Ykω

),

where Qi ∈ {∨,∧}, 1 ≤ i ≤ ω and φ is some fixed (` + ω)-ary quantifier-free first-
order formula.

Thus for every n, φn is a first order formula with ` + n free variables. We will
refer to the variables T1, . . . , T` as parameters.

Given a uniform sequence of formulas Φ = {φn | n > 0}, where

φn(T1, . . . , T`, Y1, . . . , Yn) =

Q1
1≤k1≤n . . . Q

ω
1≤kω≤nφ(T1, . . . , T`, Yk1 , . . . , Ykω

),
we define the size of Φ to be the length of the formula φ.

Example 2.21. Consider the uniform sequence of formulas

φn(T1, Y1, . . . , Yn) =
∧

1≤k1≤n

(Yk1 − T1 = 0), n > 0.

Consider the sequence of quantified formulas, (∃T1)φn(T1, Y1, . . . , Yn). In this
example, it is easily seen that letting

Ψn =
∧

1≤k1≤n

∧
1≤k2≤n

(Yk1 − Yk2 = 0),

we get a uniform sequence of quantifier-free formulas satisfying,

Ψn(Y1, . . . , Yn) ⇔ (∃T1)φn(T1, Y1, . . . , Yn)

for every n > 0.

The uniform quantifier elimination problem is to eliminate quantifiers from
a uniform sequence of formulas and obtain another uniform sequence of quantifier
free formulas.

The following is proved in [6].
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Theorem 2.22. (Uniform Quantifier Elimination) Let,

Φ = {φn(T1, . . . , T`, Y1, . . . , Yn) | n > 0}

be a uniform sequence of formulas with parameters T1, . . . , T`, where

φn(T1, . . . , T`, Y1, . . . , Yn) =

Q1
1≤k1≤n . . . Q

ω
1≤kω≤nφ(T1, . . . , T`, Yk1 , . . . , Ykω ).

Let the number of different (`+ ω)-variate polynomials appearing in φ be s and
let their degrees be bounded by d.

Let R1, . . . , Rm ∈ {∃,∀}, Ri 6= Ri+1, and let T [1], . . . , T [m] be a partition of the
variables, T1, . . . , T` into m blocks of size `1, . . . , `m, where

∑
1≤i≤m `i = `.

Then, there exists an algorithm that outputs a quantifier-free first order formula,
ψ(Yk1 , . . . , Ykω′ ), along with Qi ∈ {

∨
,
∧
}, 1 ≤ i ≤ ω′, such that for every n > 0

ψn(Y1, . . . , Yn) = Q1
1≤k1≤n . . . Q

ω′

1≤kω′≤nψ(Yk1 , . . . , Ykω′ )

⇔ (R1T
[1]) . . . (RmT

[m])φn(Y1, . . . , Yn, T1, . . . , T`).

The complexity of the algorithm is bounded by

s
Q

i(`i+1)dω
Q

i O(`2i ),

and the size of the formula ψ is bounded by

s
Q

i(`i+1)dω
Q

i O(`2i )size(φ).

Remark 2.23. In [6] Theorem 2.22 is used to prove the equivalence of two different
semantics and in the theory of constraint databases. However, it also has applica-
tions in logic. For example, in the same paper it is used to prove that semi-algebraic
connectivity is not expressible by a first-order formula (see [6] for a precise defini-
tion of first-order expressibility). This inexpressibility result has as a consequence
that we cannot hope to use quantifier-elimination directly to check whether a given
semi-algebraic set is semi-algebraically connected (unlike other first-order express-
ible topological properties such as being open or closed etc. where it is possible
to do so). Note that the inexpressibility result was also proved by more abstract
model theoretic methods in [27].

The technique used in the proof of Theorem 2.22 is also used in [6] to give
an algorithm for ordinary quantifier elimination whose complexity depends on the
size of the input formula, and which has better complexity than the algorithm in
Theorem 2.18 in case the input formula has a small size. This algorithm is called
Local Quantifier Elimination Algorithm in [17].

3. Computing topological invariants of semi-algebraic sets

As remarked above (see Remark 2.23), an effective algorithm for deciding con-
nectivity of semi-algebraic sets does not automatically follow from the Tarski-
Seidenberg principle. However, one can decide questions about connectivity (as
well as compute other topological invariants such as the Betti numbers) using effec-
tive triangulation of semi-algebraic sets via Cylindrical Algebraic Decomposition.
However, such an algorithm will necessarily have doubly exponential complexity.

Most of the recent work in algorithmic semi-algebraic geometry has focused on
obtaining singly exponential time algorithms – that is algorithms with complexity
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of the order of (sd)kO(1)
rather than (sd)2

k

. An important motivating reason be-
hind the search for such algorithms, is the following theorem due to Gabrielov and
Vorobjov [43] (see also [42]) (see [61, 75, 55, 7], as well as the survey article [15], for
work leading up to this result) which gives singly exponential upper bound on the
topological complexity of semi-algebraic sets measured by the sum of their Betti
numbers.

Theorem 3.1. [43] For a P-semi-algebraic set S ⊂ Rk, the sum of the Betti
numbers of S is bounded by (O(skd))k, where s = card P, and d = maxP∈P deg(P ).

For the special case of P-closed semi-algebraic sets the following slightly better
bound was known before [7] (and this bound is used in an essential way in the proof
of Theorem 3.1). Using the same notation as in Theorem 3.1 above we have

Theorem 3.2. [7] For a P-closed semi-algebraic set S ⊂ Rk, the sum of the Betti
numbers of S is bounded by (O(sd))k.

Remark 3.3. These bounds are asymptotically tight, as can be already seen from
the example where each P ∈ P is a product of d generic polynomials of degree one.
The number of semi-algebraically connected components of the P-semi-algebraic
set defined as the subset of Rk where all polynomials in P are non-zero is clearly
bounded from below by (Csd)k for some constant C.

3.1. Roadmaps. Theorem 2.15 gives a singly exponential time algorithm for test-
ing if a given semi-algebraic set is empty or not. However, it gives no way of testing
if any two sample points computed by it belong to the same semi-algebraically con-
nected component of the given semi-algebraic set, even though the set of sample
points is guaranteed to meet each such semi-algebraically connected component. In
order to obtain connectivity information in singly exponential time a more sophis-
ticated construction is required – namely that of a roadmap of a semi-algebraic set,
which is an one dimensional semi-algebraic subset of the given semi-algebraic set
which is non-empty and semi-algebraically connected inside each semi-algebraically
connected component of the given set. Roadmaps were first introduced by Canny
[33], but similar constructions were considered as well by Grigoriev and Vorobjov
[45] and Gournay and Risler [44]. Our exposition below follows that in [14, 17]
where the most efficient algorithm for computing roadmaps is given. The notions
of pseudo-critical points and values defined above play a critical role in the design
of efficient algorithms for computing roadmaps of semi-algebraic sets.

We first define a roadmap of a semi-algebraic set . We use the following
notation. We denote by π1...j the projection, x 7→ (x1, . . . , xj). Given a set S ⊂ Rk

and y ∈ Rj , we denote by Sy = S ∩ π−1
1...j(y).

Definition 3.4 (Roadmap of a semi-algebraic set). Let S ⊂ Rk be a semi-algebraic
set. A roadmap for S is a semi-algebraic set M of dimension at most one contained
in S which satisfies the following roadmap conditions:

• RM1 For every semi-algebraically connected component D of S, D ∩M is
non-empty and semi-algebraically connected.

• RM2 For every x ∈ R and for every semi-algebraically connected component
D′ of Sx, D′ ∩M 6= ∅.

We describe the construction of a roadmap RM(Z(Q,Rk),N ) for a bounded
algebraic set Z(Q,Rk) which contains a finite set of points N of Z(Q,Rk). A
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Figure 3. Roadmap of the torus in R3.

precise description of how the construction can be performed algorithmically can
be found in [17]. We should emphasize here that RM(Z(Q,Rk),N ) denotes the
semi-algebraic set output by the specific algorithm described below which satisfies
the properties stated in Definition 3.4 (cf. Proposition 3.5).

Also, in order to understand the roadmap algorithm it is easier to first concen-
trate on the case of a bounded and non-singular real algebraic set in Rk (see Figure
3 below). In this case several definitions get simplified. For example, the pseudo-
critical values defined below are in this case ordinary critical values of the projection
map on the first co-ordinate. However, one should keep in mind that even if one
starts with a bounded non-singular algebraic set, the input to the recursive calls
corresponding to the critical sections (see below) are necessarily singular and thus
it is not possible to treat the non-singular case independently.

A key ingredient of the roadmap is the construction of pseudo-critical points and
values defined above. The construction of the roadmap of an algebraic set con-
taining a finite number of input points N of this algebraic set is as follows. We
first construct X2-pseudo-critical points on Z(Q,Rk) in a parametric way along
the X1-axis by following continuously, as x varies on the X1-axis, the X2-pseudo-
critical points on Z(Q,Rk)x. This results in curve segments and their endpoints on
Z(Q,Rk). The curve segments are continuous semi-algebraic curves parametrized
by open intervals on the X1-axis and their endpoints are points of Z(Q,Rk) above
the corresponding endpoints of the open intervals. Since these curves and their
endpoints include for every x ∈ R the X2-pseudo-critical points of Z(Q,Rk)x, they
meet every semi-algebraically connected component of Z(Q,Rk)x. Thus, the set of
curve segments and their endpoints already satisfy RM2. However, it is clear that
this set might not be semi-algebraically connected in a semi-algebraically connected
component and so RM1 might not be satisfied. We add additional curve segments
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to ensure connectedness by recursing in certain distinguished hyper-planes defined
by X1 = z for distinguished values z.

The set of distinguished values is the union of the X1-pseudo-critical values, the
first coordinates of the input points N , and the first coordinates of the endpoints
of the curve segments. A distinguished hyper-plane is an hyper-plane defined by
X1 = v, where v is a distinguished value. The input points, the endpoints of the
curve segments, and the intersections of the curve segments with the distinguished
hyper-planes define the set of distinguished points.

Let the distinguished values be v1 < . . . < v`. Note that amongst these are the
X1-pseudo-critical values. Above each interval (vi, vi+1) we have constructed a col-
lection of curve segments Ci meeting every semi-algebraically connected component
of Z(Q,Rk)v for every v ∈ (vi, vi+1). Above each distinguished value vi we have a
set of distinguished points Ni. Each curve segment in Ci has an endpoint in Ni and
another in Ni+1. Moreover, the union of the Ni contains N .

We then repeat this construction in each distinguished hyper-plane Hi defined by
X1 = vi with input Q(vi, X2, . . . , Xk) and the distinguished points in Ni. Thus, we
construct distinguished values vi,1, . . . , vi,`(i) of Z(Q(vi, X2, . . . , Xk),Rk−1) (with
the role of X1 being now played by X2) and the process is iterated until for I =
(i1, . . . , ik−2), 1 ≤ i1 ≤ `, . . . , 1 ≤ ik−2 ≤ `(i1, . . . , ik−3), we have distinguished
values vI,1 < . . . < vI,`(I) along the Xk−1 axis with corresponding sets of curve
segments and sets of distinguished points with the required incidences between
them.

The following theorem is proved in [14] (see also [17]).

Proposition 3.5. The semi-algebraic set RM(Z(Q,Rk),N ) obtained by this con-
struction is a roadmap for Z(Q,Rk) containing N .

Note that if x ∈ Z(Q,Rk), RM(Z(Q,Rk), {x}) contains a path, γ(x), connecting
a distinguished point p of RM(Z(Q,Rk)) to x.

3.1.1. Roadmaps of general semi-algebraic sets. Using the same ideas as above and
some additional techniques for controlling the combinatorial complexity of the al-
gorithm it is possible to extend the roadmap algorithm to the case of semi-algebraic
sets. The following theorem appears in [14, 17].

Theorem 3.6. [14, 17] Let Q ∈ R[X1, . . . , Xk] with Z(Q,Rk) of dimension k′ and
let P ⊂ R[X1, . . . , Xk] be a set of at most s polynomials for which the degrees of
the polynomials in P and Q are bounded by d. Let S be a P-semi-algebraic subset
of Z(Q,Rk). There is an algorithm which computes a roadmap RM(S) for S with
complexity sk′+1dO(k2) in the ring D generated by the coefficients of Q and the
elements of P. If D = Z, and the bit-sizes of the coefficients of the polynomials
are bounded by τ , then the bit-sizes of the integers appearing in the intermediate
computations and the output are bounded by τdO(k2).

Theorem 3.6 immediately implies that there is an algorithm whose output is
exactly one point in every semi-algebraically connected component of S and whose
complexity in the ring generated by the coefficients of Q and P is bounded by
sk′+1dO(k2). In particular, this algorithm counts the number semi-algebraically
connected component of S within the same time bound.
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3.1.2. Recent developments. Very recently Schost and Safey el Din [41] have given
a probabilistic algorithm for computing the roadmap of a smooth, bounded real al-
gebraic hyper-surface in Rk defined by a polynomial of degree d, whose complexity
is bounded by dO(k3/2). Complex algebraic techniques related to the geometry of
polar varieties play an important role in this algorithm. More recently, a deter-
ministic algorithm for computing roadmaps of arbitrary real algebraic sets with the
same complexity bound, has also been obtained [21]. This algorithm is based on
techniques coming from semi-algebraic geometry and can be seen as a direct gen-
eralization of Proposition 3.5 above. The main new idea is to consider the critical
points of projection maps onto a co-ordinate subspace of dimension bigger than 1
(in fact, of dimension

√
k). As a result the dimensions in the recursive calls to the

algorithm decreases by
√
k at each step of the recursion (compared to the case of

the ordinary roadmap algorithms where it decreases by 1 in each step). This results
in the improved complexity. One also needs to prove suitable generalizations of the
results guaranteeing the connectivity of the roadmap (see [17, Chapter 15]) in this
more general situation.

3.1.3. Parametrized paths. One important idea in the algorithm for computing
the first Betti number of semi-algebraic sets, is the construction of certain semi-
algebraic sets called parametrized paths. Under a certain hypothesis, these sets are
semi-algebraically contractible. Moreover, there exists an algorithm for computing
a covering of a given basic semi-algebraic set, S ⊂ Rk, by a singly exponential
number of parametrized paths.
Parametrized Paths. We are given a polynomial Q ∈ R[X1, . . . , Xk] such that
Z(Q,Rk) is bounded and a finite set of polynomials P ⊂ R[X1, . . . , Xk].

The main technical construction underlying the algorithm for computing the
first Betti number in [18], is to obtain a covering of a given P-closed semi-algebraic
set contained in Z(Q,Rk) by a family of semi-algebraically contractible subsets.
This construction is based on a parametrized version of the connecting algorithm:
we compute a family of polynomials such that for each realizable sign condition
σ on this family, the description of the connecting paths of different points in the
realization, R(σ,Z(Q,Rk)), are uniform. We first define parametrized paths. A
parametrized path is a semi-algebraic set which is a union of semi-algebraic paths
having a special property called the divergence property in [18].

More precisely,

Definition 3.7 (Parametrized paths). A parametrized path γ is a continu-
ous semi-algebraic mapping from V ⊂ Rk+1 → Rk, such that, denoting by U =
π1...k(V ) ⊂ Rk, there exists a semi-algebraic continuous function ` : U → [0,+∞),
and there exists a point a in Rk, such that

(1) V = {(x, t) | x ∈ U, 0 ≤ t ≤ `(x)},
(2) ∀ x ∈ U, γ(x, 0) = a,
(3) ∀ x ∈ U, γ(x, `(x)) = x,
(4)

∀ x ∈ U,∀ y ∈ U,∀ s ∈ [0, `(x)],∀ t ∈ [0, `(y)]
(γ(x, s) = γ(y, t) ⇒ s = t) ,
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U

a

Figure 4. A parametrized path

(5)

∀ x ∈ U,∀ y ∈ U,∀ s ∈ [0,min(`(x), `(y))]
(γ(x, s) = γ(y, s) ⇒ ∀ t ≤ s γ(x, t) = γ(y, t)) .

Given a parametrized path, γ : V → Rk, we will refer to U = π1...k(V ) as its
base. Also, any semi-algebraic subset U ′ ⊂ U of the base of such a parametrized
path, defines in a natural way the restriction of γ to the base U ′, which is another
parametrized path, obtained by restricting γ to the set V ′ ⊂ V , defined by V ′ =
{(x, t) | x ∈ U ′, 0 ≤ t ≤ `(x)}.

The following proposition which appears in [18] describes a crucial property of
parametrized paths, which makes them useful in algorithms for computing Betti
numbers of semi-algebraic sets.

Proposition 3.8. [18] Let γ : V → Rk be a parametrized path such that U =
π1...k(V ) is closed and bounded. Then, the image of γ is semi-algebraically con-
tractible.

For every point x of Z(Q,Rk), denote by σ(x) the sign condition on P at x. Let
R(σ(x),Z(Q,Rk)) = {x ∈ Z(Q,Rk) |

∧
P∈P sign(P (x)) ∈ σ(x)(P )}, where σ is

the relaxation of σ defined by σ = {0} if σ = 0,
σ = {0, 1} if σ = 1,
σ = {0,−1} if σ = −1.

We say that σ(x) is the weak sign condition defined by x on P. We denote by
P(x) the union of {Q} and the set of polynomials in P vanishing at x.

The following theorem appears in [18].

Theorem 3.9. There exists an algorithm that takes as input a finite set of poly-
nomials P ⊂ R[X1, . . . , Xk], and produces as output,
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• a finite set of polynomials A ⊂ R[X1, . . . , Xk],
• a finite set Θ of quantifier free formulas, with atoms of the form P = 0, P >

0, P < 0, P ∈ A, such that for every semi-algebraically connected compo-
nent S of the realization of every weak sign condition on P on Z(Q,Rk),
there exists a subset Θ(S) ⊂ Θ such that S =

⋃
θ∈Θ(S)

R(θ,Z(Q,Rk)),

• for every θ ∈ Θ, a parametrized path

γθ : Vθ → Rk,

with base Uθ = R(θ,Z(Q,Rk)), such that for each y ∈ R(θ,Z(Q,Rk)),
Im γθ(y, ·) is a semi-algebraic path which connects the point y to a distin-
guished point aθ of some roadmap RM(Z(P ′ ∪ {Q},Rk)) where P ′ ⊂ P,
staying inside R(σ(y),Z(Q,Rk)).

Moreover, the complexity of the algorithm is sk′+1dO(k4), where s is a bound on
the number of elements of P and d is a bound on the degrees of Q and the elements
of P.

3.2. Computing higher Betti numbers. It clear that the Betti numbers of a
semi-algebraic set which is closed and bounded can be computed using elementary
linear algebra once we have a triangulation of the set. However, triangulations of
semi-algebraic sets are expensive to compute, requiring doubly exponential time.

One basic idea that underlies some of the recent progress in designing algo-
rithms for computing the Betti numbers of semi-algebraic sets is that the coho-
mology groups of a semi-algebraic set can often be computed from a sufficiently
well-behaved covering of the set without having to triangulate the set.

The idea of computing cohomology from “good” covers is an old one in algebraic
topology and the first result in this direction is often called the “Nerve Lemma”. In
this section we give a brief introduction to the Nerve Lemma and its generalizations.

We first define formally the notion of a cover of a closed, bounded semi-algebraic
set.

Definition 3.10 (Cover). Let S ⊂ Rk be a closed and bounded semi-algebraic set.
A cover, C(S), of S consists of an ordered index set, which by a slight abuse of
language we also denote by C(S), and a map that associates to each α ∈ C(S) a
closed and bounded semi-algebraic subset Sα ⊂ S such that

S =
⋃

α∈C(S)

Sα.

For α0, . . . , αp,∈ C(S), we associate to the formal product, α0 · · ·αp, the closed
and bounded semi-algebraic set

(3.1) Sα0···αp
= Sα0 ∩ · · · ∩ Sαp

.

Recall that the 0-th simplicial cohomology group of a closed and bounded semi-
algebraic set X, H0(X), can be identified with the Q-vector space of Q-valued
locally constant functions on X. Clearly the dimension of H0(X) is equal to the
number of connected components of X.

For α0, α1, . . . , αp, β ∈ C(S), and β 6∈ {α0, . . . , αp}, let

rα0,...,αp;β : H0(Sα0···αp) −→ H0(Sα0···αp·β)
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be the homomorphism defined as follows. Given a locally constant function, φ ∈
H0(Sα0···αp

), rα0···αp;β(φ) is the locally constant function on Sα0···αp·β obtained by
restricting φ to Sα0···αp·β .

We define the generalized restriction homomorphisms

δp :
⊕

α0<···<αp,αi∈C(S)

H0(Sα0···αp) −→
⊕

α0<···<αp+1,αi∈C(S)

H0(Sα0···αp+1)

by

(3.2) δp(φ)α0···αp+1 =
∑

0≤i≤p+1

(−1)irα0···α̂i···αp+1;αi(φα0···α̂i···αp+1),

where φ ∈
⊕

α0<···<αp∈C(S) H0(Sα0···αp
) and rα0···α̂i···αp+1;αi

is the restriction ho-
momorphism defined previously. The sequence of homomorphisms δp gives rise to
a complex, L•(C(S)), defined by

(3.3) Lp(C(S)) =
⊕

α0<···<αp,αi∈C(S)

H0(Sα0···αp),

with the differentials δp : Lp(C(S)) → Lp+1(C(S)) defined as in Eqn. (3.2).

Definition 3.11 (Nerve complex). The complex L•(C(S)) is called the nerve com-
plex of the cover C(S).

For ` ≥ 0 we will denote by L•` (C(S)) the truncated complex defined by

Lp
` (C(S)) = Lp(C(S)), 0 ≤ p ≤ `,

= 0, p > `.

Notice that once we have a cover of S and we identify the semi-algebraically
connected components of the various intersections, Sα0···αp

, we have natural bases
for the vector spaces

Lp(C(S)) =
⊕

α0<···<αp,αi∈C(S)

H0(Sα0···αp)

appearing as terms of the nerve complex. Moreover, the matrices corresponding
to the homomorphisms δp in this basis depend only on the inclusion relationships
between the semi-algebraically connected components of Sα0···αp+1 and those of
Sα0···αp .

Definition 3.12 (Leray Property). We say that the cover C(S) satisfies the Leray
property if each non-empty intersection Sα0···αp

is contractible.

Clearly, in this case

H0(Sα0···αp) ∼= Q, if Sα0···αp 6= ∅
∼= 0, if Sα0···αp = ∅.

It is a classical fact (usually referred to as the Nerve Lemma) that

Theorem 3.13 (Nerve Lemma). Suppose that the cover C(S) satisfies the Leray
property. Then for each i ≥ 0,

Hi(L•(C(S))) ∼= Hi(S).

(See for instance [68] for a proof.)
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Remark 3.14. There are several interesting extensions of Theorem 3.13 (Nerve
Lemma). For instance, if the Leray property is weakened to say that each t-ary
intersection is (k− t+ 1)-connected, then one can conclude that the nerve complex
is k-connected. We refer the reader to the article by Björner [28] for more details.

Notice that Theorem 3.13 gives a method for computing the Betti numbers of S
using linear algebra from a cover of S by contractible sets for which all non-empty
intersections are also contractible, once we are able to test emptiness of the various
intersections Sα0···αp .

Now suppose that each individual member, Sα0 , of the cover is contractible,
but the various intersections Sα0···αp are not necessarily contractible for p ≥ 1.
Theorem 3.13 does not hold in this case. However, the following theorem is proved
in [18] and underlies the singly exponential algorithm for computing the first Betti
number of semi-algebraic sets described there.

Theorem 3.15. [18] Suppose that each individual member, Sα0 , of the cover C(S)
is contractible. Then,

Hi(L•2(C(S))) ∼= Hi(S), for i = 0, 1.

Remark 3.16. Notice that from a cover by contractible sets Theorem 3.15 allows
us to compute using linear algebra, b0(S) and b1(S), once we have identified the
non-empty semi-algebraically connected components of the pair-wise and triple-wise
intersections of the sets in the cover and their inclusion relationships.

3.2.1. Constructing coverings of closed semi-algebraic sets by closed contractible
sets. The parametrized paths obtained in Theorem 3.9 are not necessarily closed
or even contractible, but become so after making appropriate modifications. At the
same time it is possible to maintain the covering property, namely for any given
P-closed semi-algebraic S set, there exists a set of modified parametrized paths,
whose union is S. Moreover, these modified sets are closed and contractible. We
omit the details of this (technical) construction referring the reader to [18] for more
detail. Putting together the constructions outlined above we have:

Theorem 3.17. [18] There exists an algorithm that given as input a P-closed and
bounded semi-algebraic set S, outputs a set of formulas {φ1, . . . , φM} such that

• each R(φi,R′k) is semi-algebraically contractible, and
•

⋃
1≤i≤M

R(φi,R′k) = Ext(S,R′),

where R′ is some real closed extension of R. The complexity of the algorithm is
bounded by s(k+1)2dO(k5), where s = card P and d = maxP∈P deg(P ).

3.2.2. Computing the First Betti Number. It is now an easy consequence of the
existence of singly exponential time covering algorithm (Theorem 3.17), and The-
orem 3.15 stated above, along with the fact that we can compute descriptions of
the semi-algebraically connected components of semi-algebraic sets in singly expo-
nential time, that we can compute the first Betti number of closed and bounded
semi-algebraic sets in singly exponential time (see Remark 3.16 above), since the di-
mensions of the images and kernels of the homomorphisms of the complex, L•2(C(S))
in Theorem 3.15, can then be computed using traditional algorithms from linear
algebra. As mentioned earlier, for arbitrary semi-algebraic sets (not necessarily
closed and bounded), there is a singly exponential time reduction to the closed and
bounded case using the construction of Gabrielov and Vorobjov [42].
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3.2.3. Algorithm for Computing the First Few Betti Numbers. Using the same ideas
as above but with a more complicated recursive procedure to construct a suitable
complex one has the following:

Theorem 3.18. [9] For any given `, there is an algorithm that takes as input a P-
formula describing a semi-algebraic set S ⊂ Rk, and outputs b0(S), . . . , b`(S). The
complexity of the algorithm is (sd)kO(`)

, where s = card (P) and d = maxP∈P deg(P ).

Note that the complexity is singly exponential in k for every fixed `.

3.3. Computing generalized Euler-Poincaré characteristic. As mentioned
before in Section 2.4.1, efficient algorithms for sign determination of univariate
polynomials described in [26, 69] are amongst the most basic algorithms in algo-
rithmic real algebraic geometry. Given P ⊂ R[X], Q ∈ R[X] with card P = s,
and deg(P ) ≤ d for P ∈ P ∪ {Q}, these algorithms count for each realizable sign
condition of the family P, the cardinality of the set of real zeros of Q, lying in the
realization of that sign condition. The complexity of the algorithm in [69] is sdO(1).

In the multidimensional case, it is no longer meaningful to talk about the car-
dinalities of the zero set of Q lying in the realizations of different sign conditions
of P. However, there exists another discrete valuation on semi-algebraic sets that
properly generalizes the notion of cardinality. This valuation is the Euler-Poincaré
characteristic.

The Euler-Poincaré characteristic, χ(S), of a closed and bounded semi-
algebraic set S ⊂ Rk is defined as

χ(S) =
∑

i

(−1)ibi(S),

where bi(S) is the rank of the i-th simplicial homology group of S. Note that with
this definition, χ(∅) = 0, and χ(S) = card S, whenever card S < ∞. Moreover, χ
is additive.

The Euler-Poincaré characteristic defined above for closed and bounded semi-
algebraic set can be extended additively to all semi-algebraic sets. This gener-
alized Euler-Poincaré characteristic is then a homeomorphism (but not a
homotopy) invariant, and establishes an isomorphism between the Grothendieck
ring, K0(sa), of homeomorphism classes of semi-algebraic sets and Z.

The problem of determining the Euler-Poincaré characteristic of P-closed semi-
algebraic sets was considered in [7] where an algorithm was presented for comput-
ing the Euler-Poincaré characteristic of a given P-closed semi-algebraic set. The
complexity of the algorithm is (ksd)O(k). Moreover, in the special case when the
coefficients of the polynomials in P are integers of bit lengths bounded by τ , the
algorithm performs at most (ksd)O(k)τO(1) bit operations.

The following result (which should be viewed as a generalization of the univariate
sign determination algorithm) appears in [16].

Theorem 3.19. There exists an algorithm which given an algebraic set Z =
Z(Q,Rk) ⊂ Rk and a finite set of polynomials P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk],
computes the list χ(P, Z) indexed by elements, σ, of Sign(P, Z). If the degrees of the
polynomials in P ∪ {Q} are bounded by d, and the real dimension of Z = Z(Q,Rk)
is k′, then the complexity of the algorithm is

sk′+1O(d)k + sk′
((k′ log2(s) + k log2(d))d)

O(k).
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If the coefficients of the polynomials in P ∪{Q} are integers of bit-sizes bounded by
τ , then the bit-sizes of the integers appearing in the intermediate computations and
the output are bounded by τ((k′ log2(s) + k log2(d))d)O(k).

3.4. Relation between the complexity of quantifier elimination and the
complexity of computing Betti numbers. It is clear from the previous sections
that there are two important strands of research in algorithms in real algebraic
geometry, namely

(1) Algorithms for deciding sentences in the first-order theory of the reals (with
several blocks of quantifiers);

(2) Computing topological invariants of semi-algebraic sets (such as their Betti
numbers).

While these two classes of problems might seem quite different, the following re-
duction result gives a polynomial time reduction of the problem of deciding quanti-
fied sentences in the first order theory of the reals with a fixed number of quantifiers
to the problem of computing Betti numbers of semi-algebraic sets. For technical
reasons, the reduction is only proved for a certain sub-class of formulas which is
defined more precisely below.

Definition 3.20. (Compact general decision problem with at most ω quantifier
alternations (GDPc

ω))
Input. A sentence Φ in the first order theory of R

(Q1X1 ∈ Sk1) · · · (QωXω ∈ Skω )φ(X1, . . . ,Xω),

where for each i, 1 ≤ i ≤ ω, Xi = (Xi
0, . . . , X

i
ki

) is a block of ki+1 variables,
Qi ∈ {∃,∀}, with Qj 6= Qj+1, 1 ≤ j < ω, and φ is a quantifier-free formula
defining a closed semi-algebraic subset S of Sk1 × · · · × Skω .

Output. True or False depending on whether Φ is true or false in the first order
theory of R.

Notation 4. For any semi-algebraic set S ⊂ Rk, we denote by PS(T ), denote the
Poincaré polynomial of S – namely,

PS(T ) :=
∑
i≥0

bi(S) T i.

Definition 3.21. (Computing the Poincaré polynomial of semi-algebraic sets
(Poincaré))
Input. A quantifier-free formula defining a semi-algebraic set S ⊂ Rk.

Output. The Poincaré polynomial PS(T ).

The following reduction result appears in [25]. It says that with a mild hypothesis
of compactness, the General Decision Problem with a fixed number of quantifier
alternations can be reduced in polynomial time to the problem of computing Betti
numbers of semi-algebraic sets.

Theorem 3.22. [25] For every ω > 0, there is a deterministic polynomial time
reduction of GDPc

ω to Poincaré.

Remark 3.23. Theorem 3.22 is motivated by a well known theorem due to Toda
[76] in discrete complexity theory which relates two complexity classes – namely the
polynomial hierarchy and the complexity class #P. Theorem 3.22 can be viewed
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as an analogue of Toda’s theorem in the Blum-Shub-Smale model of computations
over arbitrary real closed fields [30] (see also [25]).

The main ingredients in the proof of Theorem 3.22 is an efficient semi-algebraic
realization of the iterated fibered join of a semi-algebraic set with itself over a
semi-algebraic map, and Alexander duality that allows one to express the Poincaré
polynomial of a semi-algebraic subset of the sphere in terms of its complement in
the sphere.

3.5. Effective semi-algebraic triangulation and stratification. As mentioned
above in Section 2.1.2 one obtains an algorithm for computing a semi-algebraic
triangulation of semi-algebraic sets using cylindrical algebraic decomposition (after
making a generic linear change of co-ordinates). The complexity of this is algorithm
dominated by the cost of the performing the cylindrical algebraic decomposition,
and is thus doubly exponential.

Algorithms for computing stratifications of semi-algebraic sets, such that the
strata satisfy additional regularity conditions (such as Whitney conditions (a) and
(b)) have been considered by several authors. Rannou [65] gave an algorithm for
obtaining stratification with regularity conditions that imply the Whitney condi-
tions. The complexity of this algorithm is doubly exponential in the depth of the
stratification. Finding a singly exponential algorithm for computing stratifications
of semi-algebraic sets remains a major open problem (see Section 5).

3.6. Semi-algebraic sets defined by quadratic and partially quadratic sys-
tems. A restricted class of semi-algebraic sets - namely, semi-algebraic sets defined
by quadratic inequalities – has been considered by several researchers [4, 5, 47]. As
in the case of general semi-algebraic sets, the Betti numbers of such sets can be
exponentially large in the number of variables, as can be seen in the following
example.

Example 3.24. The set S ⊂ R` defined by

Y1(Y1 − 1) ≥ 0, . . . , Y`(Y` − 1) ≥ 0

satisfies b0(S) = 2`.

However, it turns out that for a semi-algebraic set S ⊂ R` defined bym quadratic
inequalities, it is possible to obtain upper bounds on the Betti numbers of S which
are polynomial in ` and exponential only in m. The first such result is due to
Barvinok [5], who proved the following theorem.

Theorem 3.25. [5] Let S ⊂ R` be defined by Q1 ≥ 0, . . . , Qm ≥ 0, deg(Qi) ≤
2, 1 ≤ i ≤ m. Then b(S) ≤ `O(m).

Remark 3.26. Notice that the bound in Theorem 3.25 is polynomial in the dimen-
sion ` for fixedm, and this fact depends crucially on the assumption that the degrees
of the polynomials Q1, . . . , Qm are at most two. For instance, the semi-algebraic
set defined by a single polynomial of degree 4 can have Betti numbers exponentially
large in `, as exhibited by the semi-algebraic subset of R` defined by∑̀

i=0

Y 2
i (Yi − 1)2 ≤ 0.
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The above example illustrates the delicate nature of the bound in Theorem 3.25,
since a single inequality of degree 4 is enough to destroy the polynomial nature of
the bound. In contrast to this, it is shown in Theorem 3.31 below that a polynomial
bound on the Betti numbers of S continues to hold, even if we allow a few (meaning
any constant number) of the variables to occur with degrees larger than two in the
polynomials used to describe the set S.

The bound on the sum of all the Betti numbers in Theorem 3.25 has exponential
dependence on the number of inequalities. This dependence is unavoidable, since
the semi-algebraic set S ⊂ Rk defined by

X1(1−X1) ≤ 0, . . . , Xk(1−Xk) ≤ 0,

has b0(S) = 2k.
Hence, it is somewhat surprising that for any fixed constant `, the Betti num-

bers bk−1(S), . . . , bk−`(S), of a basic closed semi-algebraic set S ⊂ Rk defined by
quadratic inequalities, are polynomially bounded. The following theorem appears
in [8].

Theorem 3.27. Let R a real closed field and S ⊂ Rk be defined by

P1 ≤ 0, . . . , Ps ≤ 0,deg(Pi) ≤ 2, 1 ≤ i ≤ s.

Then, for ` ≥ 0,

bk−`(S) ≤
(
s

`

)
kO(`).

3.6.1. Algorithm for testing emptiness. The problem of deciding whether a given
semi-algebraic set defined by a finite set of quadratic inequalities is empty or not
was considered first by Barvinok [4] who proved the following theorem.

Theorem 3.28. [4] There exists an algorithm which decides if a given system of
inequalities Q1 ≥ 0, . . . , Q` ≥ 0, with each Qi ∈ R[X1, . . . , Xk],deg(Qi) ≤ 2, has a
solution in Rk, whose complexity is bounded by kO(`).

Barvinok’s algorithm did not produce explicit sample points meeting every semi-
algebraically connected component of the set of solutions (in the style of Theorem
2.15 in the general case). This was done by Grigoriev and Pasechnik [47]. In fact,
they consider the following more general situation.

Let S ⊂ Rk be the pull-back of a P-semi-algebraic subset T ⊂ R` via a qua-
dratic map Q = (Q1, . . . , Q`) : Rk → R`, where P ⊂ R[Y1, . . . , Y`], Q1, . . . , Q` ∈
R[X1, . . . , Xk] with deg(Qi) ≤ 2 for i = 1, . . . , `.

In [47], Grigoriev and Pasechnik give an algorithm that computes a set of sample
points guaranteed to meet every semi-algebraically connected component of S whose
complexity is bounded by (ksd)O(`) where s = card P, and d is a bound on the
degrees of the polynomials in P.

Remark 3.29. Note that the problem of deciding the feasibility of even one quartic
real polynomial equation is an NP-hard problem, and the same is true for systems
of quadratic equations. Thus, there is little hope for obtaining a polynomial-time
algorithm for either of these problems. The above results are somewhat surprising
in that they imply in the quadratic case one obtains polynomial time algorithms
for testing feasibility, provided the number of polynomials is kept fixed (see also
Section 3.6.3 below). We refer the reader to [58] and [30] for precise definitions of
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the computational complexity classes that we refer to here and elsewhere in this
survey.

3.6.2. Computing the top few Betti numbers of basic semi-algebraic sets defined by
quadratic inequalities. Motivated by the polynomial bound on the top few Betti
numbers of sets defined by quadratic inequalities (Theorem 3.27), the problem of
obtaining a polynomial time algorithm to compute these numbers was investigated
in [11] where the following result is proved.

Theorem 3.30. [11] There exists an algorithm which given a set of s polynomi-
als, P = {P1, . . . , Ps} ⊂ R[X1, . . . , Xk], with deg(Pi) ≤ 2, 1 ≤ i ≤ s, computes
bk−1(S), . . . , bk−`(S), where S is the set defined by P1 ≤ 0, . . . , Ps ≤ 0. The com-
plexity of the algorithm is

(3.4)
`+2∑
i=0

(
s

i

)
k2O(min(`,s))

.

If the coefficients of the polynomials in P are integers of bit-sizes bounded by τ ,
then the bit-sizes of the integers appearing in the intermediate computations and
the output are bounded by τ(sk)2

O(min(`,s))
.

3.6.3. Significance from the computational complexity theory viewpoint. Semi-algeb-
raic sets defined by a system of quadratic inequalities have a special significance in
the theory of computational complexity. Even though such sets might seem to be
the next simplest class of semi-algebraic sets after sets defined by linear inequali-
ties, from the point of view of computational complexity they represent a quantum
leap. Whereas there exist (weakly) polynomial time algorithms for solving linear
programming, solving quadratic feasibility problem is provably hard. For instance,
it follows from an easy reduction from the problem of testing feasibility of a real
quartic equation in many variables, that the problem of testing whether a sys-
tem of quadratic inequalities is feasible is NPR-complete in the Blum-Shub-Smale
model of computation (see [30]). Assuming the input polynomials to have integer
coefficients, the same problem is NP-hard in the classical Turing machine model,
since it is also not difficult to see that the Boolean satisfiability problem can be
posed as the problem of deciding whether a certain semi-algebraic set defined by
quadratic inequalities is empty or not. Counting the number of semi-algebraically
connected components of such sets is even harder. In fact, it is PSPACE-hard [66]
(PSPACE is a complexity class which contains the entire polynomial hierarchy),
and the proof of this results extend easily to the quadratic case. Moreover, it is
proved in [11] for ` = O(log k), computing the `-th Betti number of a basic semi-
algebraic set defined by quadratic inequalities in Rk is PSPACE-hard. In view of
these hardness results, it is unlikely that there exist polynomial time algorithms for
computing the Betti numbers (or even the first few Betti numbers) of such a set.

From this point of view, Theorem 3.30 is quite surprising, since it gives a polyno-
mial time algorithm for computing certain Betti numbers of a class of semi-algebraic
sets for which computing the zero-th Betti number is already PSPACE-hard.

3.6.4. Semi-algebraic sets defined by partially quadratic systems. We have discussed
topological as well as algorithmic results concerning general semi-algebraic sets, as
well as those defined by quadratic constraints In [24], the authors try to interpo-
late between results known for general semi-algebraic sets (defined by polynomials
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of arbitrary degrees) and those known for semi-algebraic sets defined by polyno-
mials of degree at most 2. In order to do so they consider semi-algebraic sets
defined by polynomial inequalities, in which the dependence of the polynomials on
a subset of the variables is at most quadratic. As a result we obtain common gen-
eralizations of the bounds stated in Theorems 3.2 and 3.25. Given any polynomial
P ∈ R[X1, . . . , Xk, Y1, . . . , Y`], we will denote by degX(P ) (resp. degY (P )) the
total degree of P with respect to the variables X1, . . . , Xk (resp. Y1, . . . , Y`).

Denote by
• Q ⊂ R[Y1, . . . , Y`, X1, . . . , Xk], a family of polynomials with

degY (Q) ≤ 2,degX(Q) ≤ d,Q ∈ Q, card Q = m,

• P ⊂ R[X1, . . . , Xk], a family of polynomials with

degX(P ) ≤ d, P ∈ P, card P = s.

The following theorem that interpolates between Theorems 3.1 and 3.25 above
is proved in [24].

Theorem 3.31. Let S ⊂ R`+k be a (P ∪Q)-closed semi-algebraic set. Then

b(S) ≤ `2(O(s+ `+m)`d)k+2m.

In particular, for m ≤ `, we have b(S) ≤ `2(O(s+ `)`d)k+2m.

Notice that Theorem 3.31 can be seen as a common generalization of Theorems
3.2 and 3.25, in the sense that we recover similar bounds (that is bounds having
the same shape) as in Theorem 3.2 (respectively Theorem 3.25) by setting ` and m
(respectively s, d and k) to O(1).

Note also that as a special case of Theorem 3.31 we obtain a bound on the
sum of the Betti numbers of a semi-algebraic set defined over a quadratic map.
As mentioned before, such sets have been considered from an algorithmic point of
view in [47], where an efficient algorithm is described for computing sample points
in every semi-algebraically connected component, as well as testing emptiness, of
such sets.

More precisely we have:

Corollary 3.32. Let Q = (Q1, . . . , Qk) : R` → Rk be a map where each Qi ∈
R[Y1, . . . , Y`] and deg(Qi) ≤ 2. Let V ⊂ Rk be a P-closed semi-algebraic set for
some family P ⊂ R[X1, . . . , Xk], with card P = s and deg(P ) ≤ d, P ∈ P. Let
S = Q−1(V ). Then

b(S) ≤ `2(O(s+ `+ k)`d)3k.

The techniques developed in this paper for obtaining tight bounds on the Betti
numbers of semi-algebraic sets defined by partly quadratic systems of polynomials
also pave the way towards designing more efficient algorithms for computing the
Euler-Poincaré characteristic as well as the Betti numbers of such sets.

The following theorem appears in [24].

Theorem 3.33. There exists an algorithm that takes as input the description of
a (P ∪ Q)-closed semi-algebraic set S (following the same notation as in Theorem
3.31) and outputs its the Euler-Poincaré characteristic χ(S). The complexity of
this algorithm is bounded by (`smd)O(m(m+k)). In the case when S is a basic closed
semi-algebraic set the complexity of the algorithm is (`smd)O(m+k).
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The algorithm for computing all the Betti numbers has complexity (`smd)2
O(m+k)

and its description can be found in [23]. While the complexity of both the algorithms
discussed above is polynomial for fixed m and k, the complexity of the algorithm
for computing the Euler-Poincaré characteristic is significantly better than that of
the algorithm for computing all the Betti numbers.

Note that the first versions of both these algorithms for computing the Euler-
Poincaré characteristic as well as the Betti numbers of semi-algebraic sets defined
by purely quadratic constraints having complexity which is polynomial for fixed
number of constraints, appeared first in [10] and [11] respectively. The extensions
of these algorithms to semi-algebraic sets defined by partially quadratic systems
were made in [24] and [23] respectively.

These latter results indicate that the problem of computing the Betti numbers
of semi-algebraic sets defined by a constant number of polynomial inequalities is
solvable in polynomial time, even if we allow a small (constant sized) subset of
the variables to occur with degrees larger than two in the polynomials defining the
given set.

4. Sums of squares and semi-definite programming

All the algorithms surveyed above have the feature that they are exact, and
most of them work over arbitrary real closed fields (even non-archimedean ones).
For example, the ring generated by the coefficients, D, could be the ordered ring,
Z[ε] with ε positive and infinitesimal, contained in the real closed field R = Ralg〈ε〉
and all algorithms reported above would still work without any modification.

There are some other approaches to designing algorithms for solving systems of
real polynomial equations or testing emptiness of semi-algebraic sets that deserve
mention. These approaches strictly assume that the underlying real closed field
is the field R of real numbers, and the computations are done with some finite
precision. In other words, the algorithms are numerical rather than exact, and as
such there is some possibility of error in the outputs. These algorithms are often
used in practical applications, where exact or symbolic algorithms are deemed to
be too expensive and small errors are considered not very significant.

We mention one such approach below.

4.1. Deciding non-negativity of polynomials using sums-of-squares. The
problem is to decide whether a given polynomial P ∈ R[X1, . . . , Xk] is non-negative
in Rk. More generally, the problem is to decide whether a given polynomial P ∈
R[X1, . . . , Xk] is non-negative over a given basic, semi-algebraic subset K ⊂ Rk.

There are also optimization versions of these problems namely.
Given P ∈ R[X1, . . . , Xk] compute

pmin := inf
x∈Rk

P (x).

More generally, Given P ∈ R[X1, . . . , Xk] and K ⊂ Rk a basic semi-algebraic
set, compute

pmin := inf
x∈K

P (x).

For purposes of exposition we concentrate on the first versions of these problems.
Let the degree of P be 2d and let Posk,d (resp. Σk,d) denote the cone of non-

negative polynomials (resp. cone of sum of squares) in R[X1, . . . , Xk] of degree at
most 2d. Clearly Σk,d ⊂ Posk,d and as known since Hilbert, the inclusion is strict
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unless the pair (k, d) is of the form (1, d), (k, 1) or (k, d) = (2, 2) [31, Chapter 6].
Note that the cones Posk,d are in general not understood very well (for instance,
their face structure, extreme rays etc.) and testing membership in them is clearly an
NP-hard problem. On the other hand, the cones Σk,d are relatively well understood
and membership in Σk,d can be tested via semi-definite programming as a result of
the following theorem.

For any symmetric, square matrix X ∈ Rk×k, we let X � 0 denote that X is
positive, semi-definite. For each k, d ≥ 0, we denote by Mk,d the set of exponent
vectors α = (α1, . . . , αk) ∈ Nk with |α| =

∑k
i=1 αi ≤ d.

Theorem 4.1. [34, 63] The following are equivalent.
(1) P =

∑
α∈Mk,d

pαX
α ∈ Σk,d.

(2) The following system in matrix variables X = (Xα,β)α,β∈Mk,d
is feasible:

X � 0∑
β,γ∈Mk,d,β+γ=α

Xβ,γ = pα, α ∈Mk,2d.

The feasibility problem in the above theorem is an instance of the feasibility prob-
lem in the theory of semi-definite programming . Semi-definite programming
(or semi-definite optimization) is a generalization of linear programming, where
the problem is to optimize a linear functional over some affine section of the cone
of real symmetric positive semi-definite matrices in the space of k×k real symmet-
ric matrices. Because of its wide ranging applicability, semi-definite programming
has been the focus of intense effort on the part of researchers in optimization for
developing efficient algorithms for solving semi-definite programming problems. As
a result very efficient algorithms based on “interior point methods” (see [57]) have
been developed for solving semi-definite optimization problems such as the one in
Theorem 4.1. These algorithms are very efficient in practice, but there seems to be
no definitive mathematical result which states that the running time is polynomial
(in the bit-size of the input) (unlike in the case of linear programming).

Note that the polynomial optimization problems can also be “approximated”
using the sum of squares cone just like above. For example, in order to compute

pmin := inf
x∈Rk

P (x) = sup{ρ ∈ R | P − ρ ∈ Posk,d},

one computes
psos := sup{ρ ∈ R | P − ρ ∈ Σk,d}.

Since, this latter problem is an example of semi-definite optimization problem
and can be solved in practice using efficient interior points methods. Also note that
since the latter problem involves optimization over a smaller cone we have that

psos ≤ pmin.

The idea of “relaxing” polynomial optimization problems to semi-definite pro-
gramming has been utilized by Lasserre [50, 52, 51], Parrilo [59] and others to obtain
algorithms for performing polynomial optimization which perform well in practice
(but see Remark 4.2 below).

Remark 4.2. While the idea of approximating the cone of non-negative polynomials
by the smaller cone of sums of square seems to work well in practice for solving
or approximating well solutions of polynomial optimization problems, one should
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be aware of certain negative results. Blekherman [29] proved that the ratio of the
volumes of certain fixed sections of the cones Σk,d and Posk,d goes to 0 with k
exponentially fast. This seems to indicate that the approximation of Posk,d by Σk,d

is very inaccurate as k grows (with d fixed).

We refer the reader to the excellent survey article by Laurent [53] for more de-
tailed information about the sums-of-squares methods in algorithmic real algebraic
geometry.

4.2. Complexity of semi-definite programming. Since semi-definite optimiza-
tion problems play an important role in the sums-of-square approximation algo-
rithms described above, it is important to be aware of the current complexity sta-
tus of this problem. As noted above, while interior points algorithms for solving
semi-definite programming problems are extremely efficient in practice, there is no
definite result known placing the semi-definite programming problem in the class P.
Khachiyan and Prokolab [62] proved that there exists a polynomial time algorithm
for semi-definite programming in case the dimension is fixed. Using results proved
by Ramana [64] on exact semi-definite duality theory, it can be deduced (see [73])
that semi-definite feasibility cannot be NP-complete unless NP = co-NP (a hy-
pothesis not believed to be true). In the Blum-Shub-Smale model of computation
over real machines [30], the semi-definite feasibility problem is clearly in the class
NPR , and it is unknown if it is any easier than ordinary real polynomial feasibility
problem in this model.

5. Open problems

We list here some interesting open problems some of which could possibly be
tackled in the near future.

Computing Betti numbers in singly exponential time ? Suppose S ⊂ Rk is a semi-
algebraic set defined in terms of s polynomials, of degrees bounded by d. One of
the most fundamental open questions in algorithmic semi-algebraic geometry, is
whether there exists a singly exponential (in k) time algorithm for computing the
Betti numbers of S. The best we can do so far is summarized in Theorem 3.18
which gives the existence of singly exponential time algorithms for computing the
first ` Betti numbers of S for any constant `. A big challenge is to extend these
ideas to design an algorithm for computing all the Betti numbers of S.

Computing semi-algebraic triangulations in singly exponential time ? A related
question is whether there exists an algorithm for computing semi-algebraic tri-
angulations with singly exponential complexity. Clearly, such an algorithm would
also make possible the computation of Betti numbers in singly exponential time.

More Efficient Algorithms for Computing the Number of Connected Components
in the Quadratic Case ? As described in Section 3.6 for semi-algebraic sets in Rk

defined by ` quadratic inequalities, there are algorithms for deciding emptiness, as
well as computing sample points in every semi-algebraically connected component
whose complexity is bounded by kO(`). We also have an algorithm for computing
the Euler-Poincaré characteristic of such sets whose complexity is kO(`). However,
the best known algorithm for computing the number of semi-algebraically connected
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components of such sets has complexity k2O(`)
(as a special case of the algorithm

for computing all the Betti numbers given in Theorem 3.27). This raises the ques-
tion whether there exists a more efficient algorithm with complexity kO(`) or even
kO(`2) for counting the number of semi-algebraically connected components of such
sets. Roadmap type constructions used for counting semi-algebraically connected
components in the case of general semi-algebraic sets cannot be directly employed
in this context, because such algorithms will have complexity exponential in k. Re-
cent work by Coste and Moussa [38] on the geodesic diameter of semi-algebraic sets
defined by few quadratic inequalities might contain some relevant hints towards
this goal.

More Efficient Algorithms for Computing the Number of Connected Components
for General Semi-algebraic Sets ? A very interesting open question is whether the
exponent O(k2) in the complexity of roadmap algorithms (cf. Theorem 3.6) can be
improved to O(k), so that the complexity of testing connectivity becomes asymp-
totically the same as that of testing emptiness of a semi-algebraic set (cf. Theorem
2.15). Recent improvements in the complexity of roadmap algorithms described in
Section 3.1.2 above, certainly gives some hope in this regard.

Such an improvement would go a long way in making this algorithm practically
useful. It would also be of interest for studying metric properties of semi-algebraic
sets because of the following. Applying Crofton’s formula from integral geometry
one immediately obtains as a corollary of Theorem 3.6 (using the same notation as
in the theorem) an upper bound of sk′+1dO(k2) on the length of a semi-algebraic
connecting path connecting two points in any semi-algebraically connected compo-
nent of S (assuming that S is contained in the unit ball centered at the origin).
An improvement in the complexity of algorithms for constructing connecting paths
(such as the roadmap algorithm) would also improve the bound on the length of
connecting paths. Recent results due to D’Acunto and Kurdyka [39] show that it
is possible to construct semi-algebraic paths of length dO(k) between two points of
S (assuming that S is a semi-algebraically connected component of a real algebraic
set contained in the unit ball defined by polynomials of degree d). However, the
semi-algebraic complexity of such paths cannot be bounded in terms of the param-
eters d and k. The improvement in the complexity suggested above, apart from its
algorithmic significance, would also be an effective version of the results in [39].

Remove the compactness assumption in Theorem 3.22. More generally, investigate
the role of compactness in the Blum-Shub-Smale model of computations over real
closed fields (see [25] for more details).
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