Combinatorial Complexity in O-minimal Geometry

Saugata Basu

School of Mathematics
Georgia Tech

Geometry Seminar, Courant Institute, Mar 18, 2008
Combinatorial Complexity in O-minimal Geometry
Let $\mathcal{A} = \{S_1, \ldots, S_n\}$, with each S_i belonging to some “simple” class of sets.

For $I \subset \{1, \ldots, n\}$, let $\mathcal{A}(I)$ denote the set

$$\bigcap_{i \in I \subset [1 \ldots n]} S_i \cap \bigcap_{j \in [1 \ldots n] \setminus I} \mathbb{R}^k \setminus S_j,$$

and it is customary to call a connected component of $\mathcal{A}(I)$ a cell of the arrangement \mathcal{A} and we denote by $C(\mathcal{A})$ the set of all non-empty cells of the arrangement \mathcal{A}.

The cardinality of $C(\mathcal{A})$ is called the combinatorial complexity of the arrangement \mathcal{A}.
Let $\mathcal{A} = \{S_1, \ldots, S_n\}$, with each S_i belonging to some “simple” class of sets.

For $I \subset \{1, \ldots, n\}$, let $\mathcal{A}(I)$ denote the set

$$\bigcap_{i \in I} S_i \cap \bigcap_{j \in \{1, \ldots, n\} \setminus I} \mathbb{R}^k \setminus S_j,$$

and it is customary to call a connected component of $\mathcal{A}(I)$ a cell of the arrangement \mathcal{A} and we denote by $\mathcal{C}(\mathcal{A})$ the set of all non-empty cells of the arrangement \mathcal{A}.

The cardinality of $\mathcal{C}(\mathcal{A})$ is called the combinatorial complexity of the arrangement \mathcal{A}.
Let $\mathcal{A} = \{S_1, \ldots, S_n\}$, with each S_i belonging to some “simple” class of sets.

For $I \subset \{1, \ldots, n\}$, let $\mathcal{A}(I)$ denote the set

$$\bigcap_{i \in I \subset \{1\ldots n\}} S_i \cap \bigcap_{j \in \{1\ldots n\} \setminus I} R^k \setminus S_j,$$

and it is customary to call a connected component of $\mathcal{A}(I)$ a cell of the arrangement \mathcal{A} and we denote by $C(\mathcal{A})$ the set of all non-empty cells of the arrangement \mathcal{A}.

The cardinality of $C(\mathcal{A})$ is called the combinatorial complexity of the arrangement \mathcal{A}.
What does “simple” mean?

The class of sets usually considered in the study of arrangements are sets with "bounded description complexity". This means that each set in the arrangement is defined by a first order formula in the language of ordered fields involving at most a constant number polynomials whose degrees are also bounded by a constant.

Additionally, there is often a requirement that the sets be in "general position". The precise definition of "general position" varies with context, but often involves restrictions such as: the sets in the arrangements are smooth manifolds, intersecting transversally.
The class of sets usually considered in the study of arrangements are sets with “bounded description complexity”. This means that each set in the arrangement is defined by a first order formula in the language of ordered fields involving at most a constant number polynomials whose degrees are also bounded by a constant.

Additionally, there is often a requirement that the sets be in “general position”. The precise definition of “general position” varies with context, but often involves restrictions such as: the sets in the arrangements are smooth manifolds, intersecting transversally.
Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$ be a set of polynomials with degrees bounded by d and $\#\mathcal{P} = n$.

For $\sigma \in \{0, 1, -1\}^\mathcal{P}$, we denote by
\[\mathcal{R}(\sigma) = \{ x \in \mathbb{R}^k \mid \text{sign}(P(x)) = \sigma(P), \forall P \in \mathcal{P} \}, \]
and $b_i(\sigma) = b_i(\mathcal{R}(\sigma))$.

(B-Pollack-Roy, 2005)

\[\sum_{\sigma \in \{0,1,-1\}^\mathcal{P}} b_i(\mathcal{R}(\sigma)) \leq \sum_{j=0}^{k-i} \binom{n}{j} 4^j d(2d - 1)^{k-1} = n^{k-i} O(d)^k. \]
Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$ be a set of polynomials with degrees bounded by d and $\# \mathcal{P} = n$.

For $\sigma \in \{0, 1, -1\}^\mathcal{P}$, we denote by $\mathcal{R}(\sigma) = \{ x \in \mathbb{R}^k \mid \text{sign}(P(x)) = \sigma(P), \forall P \in \mathcal{P} \}$, and $b_i(\sigma) = b_i(\mathcal{R}(\sigma))$.

(B-Pollack-Roy, 2005)

$$\sum_{\sigma \in \{0, 1, -1\}^\mathcal{P}} b_i(\mathcal{R}(\sigma)) \leq \sum_{j=0}^{k-i} \binom{n}{j} 4^j d(2d - 1)^{k-1} = n^{k-i} O(d)^k.$$
Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_k]$ be a set of polynomials with degrees bounded by d and $\#\mathcal{P} = n$.

For $\sigma \in \{0, 1, -1\}^\mathcal{P}$, we denote by $\mathcal{R}(\sigma) = \{x \in \mathbb{R}^k \mid \text{sign}(P(x)) = \sigma(P), \forall P \in \mathcal{P}\}$, and $b_i(\sigma) = b_i(\mathcal{R}(\sigma))$.

(B-Pollack-Roy, 2005)

$$\sum_{\sigma \in \{0, 1, -1\}^\mathcal{P}} b_i(\mathcal{R}(\sigma)) \leq \sum_{j=0}^{k-i} \binom{n}{j} 4^j d(2d - 1)^{k-1} = n^{k-i} O(d)^k.$$
In the language of arrangements, the result in the previous slide implies that the combinatorial complexity of an arrangement of \(n \) algebraic hypersurfaces of fixed degree in \(\mathbb{R}^k \) is bounded by \(O(n^k) \) (\(d \) and \(k \) are to be considered fixed).

Proof based on the Oleinik-Petrovsky-Thom-Milnor bound on the Betti numbers of real algebraic varieties, along with inequalities derived from the Mayer-Vietoris exact sequence.
In the language of arrangements, the result in the previous slide implies that the combinatorial complexity of an arrangement of \(n \) algebraic hypersurfaces of fixed degree in \(\mathbb{R}^k \) is bounded by \(O(n^k) \) (\(d \) and \(k \) are to be considered fixed).

Proof based on the Oleinik-Petrovsky-Thom-Milnor bound on the Betti numbers of real algebraic varieties, along with inequalities derived from the Mayer-Vietoris exact sequence.
Notice that the bound in the previous page are products of two quantities – one that depends only on n (and k), and another part which is independent of n. We refer to the first part as the **combinatorial part** of the complexity, and the latter as the **algebraic part**.

While understanding the algebraic part of the complexity is a very important problem, in several applications, most notably in discrete and computational geometry, it is the combinatorial part of the complexity that is of interest (the algebraic part is assumed to be bounded by a constant).
Notice that the bound in the previous page are products of two quantities – one that depends only on n (and k), and another part which is independent of n. We refer to the first part as the **combinatorial part** of the complexity, and the latter as the **algebraic part**.

While understanding the **algebraic part** of the complexity is a very important problem, in several applications, most notably in **discrete and computational geometry**, it is the **combinatorial part** of the complexity that is of interest (the algebraic part is assumed to be bounded by a constant).
Definition of O-minimal Structures

An o-minimal structure over a real closed field \mathbb{R} is a sequence $\mathcal{S}(\mathbb{R}) = (\mathcal{S}_n)_{n \in \mathbb{N}}$.

1. All algebraic subsets of \mathbb{R}^n are in \mathcal{S}_n.
2. The class \mathcal{S}_n is closed under complementation and finite unions and intersections.
3. If $A \in \mathcal{S}_m$ and $B \in \mathcal{S}_n$ then $A \times B \in \mathcal{S}_{m+n}$.
4. If $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection map on the first n co-ordinates and $A \in \mathcal{S}_{n+1}$, then $\pi(A) \in \mathcal{S}_n$.
5. The elements of \mathcal{S}_1 are precisely finite unions of points and intervals.
An o-minimal structure over a real closed field \mathbb{R} is a sequence $S(\mathbb{R}) = (S_n)_{n \in \mathbb{N}}$.

1. All algebraic subsets of \mathbb{R}^n are in S_n.
2. The class S_n is closed under complementation and finite unions and intersections.
3. If $A \in S_m$ and $B \in S_n$ then $A \times B \in S_{m+n}$.
4. If $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection map on the first n co-ordinates and $A \in S_{n+1}$, then $\pi(A) \in S_n$.
5. The elements of S_1 are precisely finite unions of points and intervals.
An o-minimal structure over a real closed field \mathbb{R} is a sequence $S(\mathbb{R}) = (S_n)_{n \in \mathbb{N}}$.

1. All algebraic subsets of \mathbb{R}^n are in S_n.

2. The class S_n is closed under complementation and finite unions and intersections.

3. If $A \in S_m$ and $B \in S_n$ then $A \times B \in S_{m+n}$.

4. If $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection map on the first n co-ordinates and $A \in S_{n+1}$, then $\pi(A) \in S_n$.

5. The elements of S_1 are precisely finite unions of points and intervals.
An o-minimal structure over a real closed field \mathbb{R} is a sequence $S(\mathbb{R}) = (S_n)_{n \in \mathbb{N}}$.

1. All algebraic subsets of \mathbb{R}^n are in S_n.
2. The class S_n is closed under complementation and finite unions and intersections.
3. If $A \in S_m$ and $B \in S_n$ then $A \times B \in S_{m+n}$.
4. If $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection map on the first n co-ordinates and $A \in S_{n+1}$, then $\pi(A) \in S_n$.
5. The elements of S_1 are precisely finite unions of points and intervals.
Definition of O-minimal Structures

An o-minimal structure over a real closed field \mathbb{R} is a sequence $\mathcal{S}(\mathbb{R}) = (\mathcal{S}_n)_{n \in \mathbb{N}}$.

1. All algebraic subsets of \mathbb{R}^n are in \mathcal{S}_n.
2. The class \mathcal{S}_n is closed under complementation and finite unions and intersections.
3. If $A \in \mathcal{S}_m$ and $B \in \mathcal{S}_n$ then $A \times B \in \mathcal{S}_{m+n}$.
4. If $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection map on the first n co-ordinates and $A \in \mathcal{S}_{n+1}$, then $\pi(A) \in \mathcal{S}_n$.
5. The elements of \mathcal{S}_1 are precisely finite unions of points and intervals.
Our first example of an o-minimal structure $S(R)$, is the o-minimal structure over a real closed field R where each S_n is exactly the class of semi-algebraic subsets of R^n.

Let S_n be the images in R^n under the projection maps $R^{n+k} \to R^n$ of sets of the form

$$\{(x, y) \in R^{n+k} \mid P(x, y, e^x, e^y) = 0\},$$

where P is a real polynomial in $2(n + k)$ variables, and $e^x = (e^{x_1}, \ldots, e^{x_n})$ and $e^y = (e^{y_1}, \ldots, e^{y_k})$. We will denote this o-minimal structure over R by $S_{\text{exp}}(R)$.
Our first example of an o-minimal structure $S(R)$, is the o-minimal structure over a real closed field R where each S_n is exactly the class of semi-algebraic subsets of R^n.

Let S_n be the images in R^n under the projection maps $R^{n+k} \to R^n$ of sets of the form
\[\{(x, y) \in R^{n+k} \mid P(x, y, e^x, e^y) = 0\}, \] where P is a real polynomial in $2(n + k)$ variables, and $e^x = (e^{x_1}, \ldots, e^{x_n})$ and $e^y = (e^{y_1}, \ldots, e^{y_k})$. We will denote this o-minimal structure over R by $S_{\exp}(R)$.
Let S_n be the images in \mathbb{R}^n under the projection maps $\mathbb{R}^{n+k} \to \mathbb{R}^n$ of sets of the form
$\{(x, y) \in \mathbb{R}^{n+k} \mid P(x, y) = 0\}$, where P is a restricted analytic function in $(n + k)$ variables.

(A restricted analytic function in N variables is an analytic function defined on an open neighborhood of $[0, 1]^N$ restricted to $[0, 1]^N$ (and extended by 0 outside)).
Admissible Sets

Let $S(R)$ be an o-minimal structure on a real closed field R and let $T \subset R^{k+\ell}$ be a fixed definable set.

We will call S of R^k to be a (T, π_1, π_2)-set if

$$S = T_y = \pi_1(\pi_2^{-1}(y) \cap T)$$

for some $y \in R^\ell$.

Saugata Basu
Combinatorial Complexity in O-minimal Geometry
Let $\mathcal{S}(R)$ be an o-minimal structure on a real closed field R and let $T \subset R^{k+\ell}$ be a fixed definable set.

We will call \mathcal{S} of R^k to be a (T, π_1, π_2)-set if

$$S = T_y = \pi_1(\pi_2^{-1}(y) \cap T)$$

for some $y \in R^\ell$.
Let $S(\mathbb{R}) = S_{\text{sa}}(\mathbb{R})$ and Let $T \subset \mathbb{R}^{2k+1}$ be the semi-algebraic set defined by

$$T = \left\{ (x_1, \ldots, x_k, a_1, \ldots, a_k, b) \mid \langle a, x \rangle - b = 0 \right\}$$

(where we denote $a = (a_1, \ldots, a_k)$ and $x = (x_1, \ldots, x_k)$), and π_1 and π_2 are the projections onto the first k and last $k + 1$ co-ordinates respectively. A (T, π_1, π_2)-set is clearly a hyperplane in \mathbb{R}^k and vice versa.
Let $S(\mathbb{R}) = S_{\exp}(\mathbb{R})$ and

$$T = \{(x, y_1, \ldots, y_m, a_1, \ldots, a_m) \mid x, y_1, \ldots, y_m \in \mathbb{R}^k, a_1, \ldots, a_m \in \mathbb{R}, x_1, \ldots, x_k > 0, \sum_{i=0}^{m} a_i x^y_i = 0\},$$

with $\pi_1 : \mathbb{R}^{k+m(k+1)} \to \mathbb{R}^k$ and $\pi_2 : \mathbb{R}^{k+m(k+1)} \to \mathbb{R}^{m(k+1)}$ be the projections onto the first k and the last $m(k+1)$ co-ordinates respectively. The (T, π_1, π_2)-sets in this example include (amongst others) all semi-algebraic sets consisting of intersections with the positive orthant of all real algebraic sets defined by a polynomial having at most m monomials (different sets of monomials are allowed to occur in different polynomials).
Let $\mathcal{A} = \{S_1, \ldots, S_n\}$, such that each $S_i \subset \mathbb{R}^k$ is a (T, π_1, π_2)-set. For $I \subset \{1, \ldots, n\}$, we let $\mathcal{A}(I)$ denote the set

$$\bigcap_{i \in I \subset [1\ldots n]} S_i \cap \bigcap_{j \in [1\ldots n] \setminus I} \mathbb{R}^k \setminus S_j,$$

and we will call such a set to be a **basic \mathcal{A}-set**. We will denote by, $\mathcal{C}(\mathcal{A})$, the set of non-empty connected components of all basic \mathcal{A}-sets.
We will call definable subsets $S \subseteq \mathbb{R}^k$ defined by a Boolean formula whose atoms are of the form, $x \in S_i, 1 \leq i \leq n$, a A-set. An A-set is thus a union of basic A-sets.

In case T is closed and the Boolean formula contains no negation we will call S an A-closed set.
We will call definable subsets $S \subset \mathbb{R}^k$ defined by a Boolean formula whose atoms are of the form, $x \in S_i, 1 \leq i \leq n$, a A-set. An A-set is thus a union of basic A-sets.

In case T is closed and the Boolean formula contains no negation we will call S an A-closed set.
Theorem

Let $S(R)$ be an o-minimal structure over a real closed field R and let $T \subset R^{k+\ell}$ be a closed definable set. Then, there exists a constant $C = C(T) > 0$ depending only on T, such that for any (T, π_1, π_2)-family $A = \{S_1, \ldots, S_n\}$ of subsets of R^k the following holds. For every $i, 0 \leq i \leq k$,

$$\sum_{D \in C(A)} b_i(D) \leq C \cdot n^{k-i}.$$

In particular, the combinatorial complexity of A, is at most $C \cdot n^k$. The topological complexity of any m cells in the arrangement A is bounded by $m + C \cdot n^{k-1}$.
Theorem

Let $\mathcal{S}(\mathbb{R})$ be an o-minimal structure over a real closed field \mathbb{R} and let $T \subset \mathbb{R}^{k+\ell}$, $V \subset \mathbb{R}^k$ be closed definable sets with $\dim(V) = k'$. Then, there exists a constant $C = C(T, V) > 0$ depending only on T and V, such that for any (T, π_1, π_2)-family, $\mathcal{A} = \{S_1, \ldots, S_n\}$, of subsets of \mathbb{R}^k, and for every $i, 0 \leq i \leq k'$,

$$\sum_{D \in C(\mathcal{A}, V)} b_i(D) \leq C \cdot n^{k'-i}.$$

In particular, the combinatorial complexity of \mathcal{A} restricted to V, is bounded by $C \cdot n^{k'}$.

Saugata Basu
Combinatorial Complexity in O-minimal Geometry
Theorem

Let $S(R)$ be an o-minimal structure over a real closed field R, and let $T \subset R^{k+\ell}$ be a definable set. Then, there exists a constant $C = C(T, V) > 0$ such that for any (T, π_1, π_2)-family, A with $\#A = n$, and an A-set $S \subset R^k$,

$$\sum_{i \geq 0} b_i(S) \leq C \cdot n^k$$
Theorem (Topological Complexity of Projections)

Let \(S(\mathbb{R}) \) be an o-minimal structure, and let \(T \subset \mathbb{R}^{k+\ell} \) be a definable, closed and bounded set. Let \(k = k_1 + k_2 \) and let \(\pi_3 : \mathbb{R}^k \to \mathbb{R}^{k_2} \) denote the projection map on the last \(k_2 \) co-ordinates.

Then, there exists a constant \(C = C(T) > 0 \) such that for any \((T, \pi_1, \pi_2)\)-family, \(A \), with \(|A| = n\), and an \(A \)-closed set \(S \subset \mathbb{R}^k \),

\[
\sum_{i=0}^{k_2} b_i(\pi_3(S)) \leq C \cdot n^{(k_1+1)k_2}.
\]
A ccd is a finite partition of \(R^k \) into definable sets \((C_i)_{i \in I}\) (called the cells of the ccd) satisfying the following properties.

If \(k = 1 \) then a ccd of \(R \) is given by a finite set of points \(a_1 < \cdots < a_N \) and the cells of the ccd are the singletons \(\{a_i\} \) as well as the open intervals, \((\infty, a_1), (a_1, a_2), \ldots, (a_N, \infty)\).

If \(k > 1 \), then a ccd of \(R^k \) is given by a ccd, \((C_i')_{i \in I'}\), of \(R^{k-1} \) and for each \(i \in I' \), a collection of cells, \(C_i \) defined by,

\[
C_i = \{\phi_i(C_i' \times D_j) \mid j \in J_i\},
\]
Definition II

where

\[\phi_i : C'_i \times \mathbb{R} \rightarrow \mathbb{R}^k \]

is a definable homemorphism satisfying \(\pi \circ \phi = \pi \), \((D_j)_{j \in J_i}\) is a cdcd of \(\mathbb{R}\), and \(\pi : \mathbb{R}^k \rightarrow \mathbb{R}^{k-1}\) is the projection map onto the first \(k - 1\) coordinates. The cdcd of \(\mathbb{R}^k\) is then given by

\[\bigcup_{i \in I'} C_i. \]

Given a family of definable subsets \(A = \{S_1, \ldots, S_n\}\) of \(\mathbb{R}^k\), we say that a cdcd is adapted to \(A\), if each \(S_i\) is a union of cells of the given cdcd.
Easier to understand with a picture
Theorem (Quantitative cylindrical definable cell decomposition)

Let $S(R)$ be an o-minimal structure over a real closed field R, and let $T \subset R^{k+\ell}$ be a closed definable set. Then, there exist constants $C_1, C_2 > 0$ depending only on T, and definable sets,

$$\{ T_i \}_{i \in I}, \quad T_i \subset R^k \times R^{2(2^k-1) \cdot \ell},$$

depending only on T, with $|I| \leq C_1$, such that for any (T, π_1, π_2)-family, $A = \{ S_1, \ldots, S_n \}$ with $S_i = T_{y_i}, y_i \in R^\ell, 1 \leq i \leq n$, some sub-collection of the sets...
Theorem (Quantitative cylindrical definable cell decomposition)

\[\pi_{\leq k} \leq k + 2(2^k - 1) \cdot \ell \left(\pi_{> k} \cdot (\pi_{> k} \cdot (y_{i_1}, \ldots, y_{i_{2(2^k - 1)}) \cap T_i \right), \]

\[i \in I, 1 \leq i_1, \ldots, i_{2(2^k - 1)} \leq n, \]

form a cdcd of \(\mathbb{R}^k \) compatible with \(\mathcal{A} \). Moreover, the cdcd has at most \(C_2 \cdot n^{2(2^k - 1)} \) cells.
Theorem

Let $S(R)$ be an o-minimal structure over a real closed field R, and let $T \subset R^{k+\ell}$ be a definable set. Then, there exists a constant $1 > \varepsilon = \varepsilon(T) > 0$ depending only on T, such that for any (T, π_1, π_2)-family, $A = \{S_1, \ldots, S_n\}$, there exists two subfamilies $A_1, A_2 \subset A$, with $|A_1|, |A_2| \geq \varepsilon n$, and either,

- for all $S_i \in A_1$ and $S_j \in A_2$, $S_i \cap S_j \neq \emptyset$, or
- for all $S_i \in A_1$ and $S_j \in A_2$, $S_i \cap S_j = \emptyset$.

Saugata Basu

Combinatorial Complexity in O-minimal Geometry
Ramsey-type Theorem

Theorem

Let $S(R)$ be an o-minimal structure over a real closed field R, and let $T \subset R^{k+\ell}$ be a definable set. Then, there exists a constant $1 > \varepsilon = \varepsilon(T) > 0$ depending only on T, such that for any (T, π_1, π_2)-family, $A = \{S_1, \ldots, S_n\}$, there exists two subfamilies $A_1, A_2 \subset A$, with $|A_1|, |A_2| \geq \varepsilon n$, and either,

- for all $S_i \in A_1$ and $S_j \in A_2$, $S_i \cap S_j \neq \emptyset$, or
- for all $S_i \in A_1$ and $S_j \in A_2$, $S_i \cap S_j = \emptyset$.

Saugata Basu

Combinatorial Complexity in O-minimal Geometry
Let $S(\mathbb{R})$ be an o-minimal structure over a real closed field \mathbb{R}, and let $T \subset \mathbb{R}^{k+\ell}$ be a definable set. Then, there exists a constant $1 > \varepsilon = \varepsilon(T) > 0$ depending only on T, such that for any (T, π_1, π_2)-family, $A = \{S_1, \ldots, S_n\}$, there exists two subfamilies $A_1, A_2 \subset A$, with $|A_1|, |A_2| \geq \varepsilon n$, and either,

- for all $S_i \in A_1$ and $S_j \in A_2$, $S_i \cap S_j \neq \emptyset$, or
- for all $S_i \in A_1$ and $S_j \in A_2$, $S_i \cap S_j = \emptyset$.

Saugata Basu
Combinatorial Complexity in O-minimal Geometry
Suppose that $T_1, \ldots, T_m \subset \mathbb{R}^{k+\ell}$ are closed, definable sets,

$\pi_1 : \mathbb{R}^{k+\ell} \to \mathbb{R}^k$ and $\pi_2 : \mathbb{R}^{k+\ell} \to \mathbb{R}^\ell$ the two projections.

Lemma

For any collection of (T_i, π_1, π_2) families $A_i, 1 \leq i \leq m$, the family $\bigcup_{1 \leq i \leq m} A_i$ is a (T', π'_1, π'_2) family where,

$$T' = \bigcup_{i=1}^m T_i \times \{e_i\} \subset \mathbb{R}^{k+\ell+m},$$

with e_i the i-th standard basis vector in \mathbb{R}^m, and $\pi'_1 : \mathbb{R}^{k+\ell+m} \to \mathbb{R}^k$ and $\pi'_2 : \mathbb{R}^{k+\ell+m} \to \mathbb{R}^{\ell+m}$, the projections onto the first k and the last $\ell + m$ coordinates respectively.
Hardt’s Triviality Theorem

Theorem (Hardt, 1980)

Given any definable set $S \subset \mathbb{R}^{k_1+k_2}$, there exists a finite partition of \mathbb{R}^{k_2} into definable sets $\{T_i\}_{i \in I}$ such that S is definably trivial over each T_i.

This means that for each $i \in I$ and any point $z \in T_i$, the pre-image $\pi_S^{-1}(T_i)$ is definably homeomorphic to $\pi_S^{-1}(z) \times T_i$ by a fiber preserving homeomorphism. In particular, for each $i \in I$, all fibers $\pi_S^{-1}(z), z \in T_i$ are definably homeomorphic.
Hardt’s Triviality Theorem

Theorem (Hardt, 1980)

Given any definable set $S \subset \mathbb{R}^{k_1+k_2}$, there exists a finite partition of \mathbb{R}^{k_2} into definable sets $\{T_i\}_{i \in I}$ such that S is definably trivial over each T_i.

This means that for each $i \in I$ and any point $z \in T_i$, the pre-image $\pi_S^{-1}(T_i)$ is definably homeomorphic to $\pi_S^{-1}(z) \times T_i$ by a fiber preserving homeomorphism. In particular, for each $i \in I$, all fibers $\pi_S^{-1}(z)$, $z \in T_i$ are definably homeomorphic.
Theorem (Hardt, 1980)

Given any definable set $S \subseteq \mathbb{R}^{k_1+k_2}$, there exists a finite partition of \mathbb{R}^{k_2} into definable sets $\{T_i\}_{i \in I}$ such that S is definably trivial over each T_i.

This means that for each $i \in I$ and any point $z \in T_i$, the pre-image $\pi_S^{-1}(T_i)$ is definably homeomorphic to $\pi_S^{-1}(z) \times T_i$ by a fiber preserving homeomorphism. In particular, for each $i \in I$, all fibers $\pi_S^{-1}(z)$, $z \in T_i$ are definably homeomorphic.
Given closed definable sets $X \subset V \subset \mathbb{R}^k$, and $\varepsilon > 0$, we denote

$$\text{OT}(X, V, \varepsilon) = \{x \in V \mid d_X(x) < \varepsilon\},$$

$$\text{CT}(X, V, \varepsilon) = \{x \in V \mid d_X(x) \leq \varepsilon\},$$

$$\text{BT}(X, V, \varepsilon) = \{x \in V \mid d_X(x) = \varepsilon\},$$

and finally for $\varepsilon_1 > \varepsilon_2 > 0$ we define

$$\text{Ann}(X, V, \varepsilon_1, \varepsilon_2) = \{x \in V \mid \varepsilon_2 < d_X(x) < \varepsilon_1\},$$

$$\overline{\text{Ann}}(X, V, \varepsilon_1, \varepsilon_2) = \{x \in V \mid \varepsilon_2 \leq d_X(x) \leq \varepsilon_1\}.$$
Let $\mathcal{A} = \{S_1, \ldots, S_n\}$ be a collection of closed definable subsets of \mathbb{R}^k and let $V \subset \mathbb{R}^k$ be a closed, and bounded definable set. Then, for all sufficiently small $1 \gg \varepsilon_1 \gg \varepsilon_2 > 0$ the following holds. For any connected component, C, of $\mathcal{A}(I) \cap V$, $I \subset [1 \ldots n]$, there exists a connected component, D, of the definable set,

$$\bigcap_{1 \leq i \leq n} \text{Ann}(S_i, \varepsilon_1, \varepsilon_2)^c \cap V$$

such that D is definably homotopy equivalent to C.
Proof of Theorem on Topological Complexity

For $1 \leq i \leq n$, let $y_i \in \mathbb{R}^\ell$ such that

$$S_i = T_{y_i},$$

and let

$$A_i(\varepsilon_1, \varepsilon_2) = \text{Ann}(S_i, \varepsilon_1, \varepsilon_2)^c \cap V.$$

Applying Mayer-Vietoris inequalities we have for $0 \leq i \leq k'$,

$$b_i(\bigcap_{j=1}^n A_j(\varepsilon_1, \varepsilon_2)) \leq b_{k'}(V) + \sum_{j=1}^{k' - i} \sum_{J \subseteq \{1, \ldots, n\}, \#(J) = j} \left(b_{i+j-1}(A^J(\varepsilon_1, \varepsilon_2)) \right)$$

where $A^J(\varepsilon_1, \varepsilon_2) = \bigcup_{j \in J} A_j(\varepsilon_1, \varepsilon_2)$.
Proof of Theorem on Topological Complexity

For $1 \leq i \leq n$, let $y_i \in \mathbb{R}^\ell$ such that

$$S_i = T_{y_i},$$

and let

$$A_i(\varepsilon_1, \varepsilon_2) = \text{Ann}(S_i, \varepsilon_1, \varepsilon_2)^c \cap V.$$

Applying Mayer-Vietoris inequalities we have for $0 \leq i \leq k'$,

$$b_i(\bigcap_{j=1}^n A_j(\varepsilon_1, \varepsilon_2)) \leq b_{k'}(V) + \sum_{j=1}^{k'-i} \sum_{J \subseteq \{1, \ldots, n\}, \#(J) = j} \left(b_{i+j-1}(A^J(\varepsilon_1, \varepsilon_2)) \right)$$

where $A^J(\varepsilon_1, \varepsilon_2) = \bigcup_{j \in J} A_j(\varepsilon_1, \varepsilon_2)$.

Saugata Basu

Combinatorial Complexity in O-minimal Geometry
Notice that each $\text{Ann}(S_i, \varepsilon_1, \varepsilon_2)^c, 1 \leq i \leq n$, is a $(\text{Ann}(T, \varepsilon_1, \varepsilon_2)^c, \pi_1, \pi_2)$-set and moreover,

$$\text{Ann}(S_i, \varepsilon_1, \varepsilon_2)^c = T_y \cap \text{Ann}(T, \varepsilon_1, \varepsilon_2)^c; \ 1 \leq i \leq n.$$

For $J \subset [1 \ldots n]$, we denote

$$S^J(\varepsilon_1, \varepsilon_2) = \bigcup_{j \in J} \text{Ann}(S_j, \varepsilon_1, \varepsilon_2)^c.$$

There are only a finite number (depending on T) of topological types amongst $S^J(\varepsilon_1, \varepsilon_2)$. Restricting all the sets to V in the above argument, we obtain that there are only finitely many (depending on T and V) of topological types amongst the sets $A^J(\varepsilon_1, \varepsilon_2) = S^J(\varepsilon_1, \varepsilon_2) \cap V$.
Notice that each $\text{Ann}(S_i, \varepsilon_1, \varepsilon_2)^c, 1 \leq i \leq n$, is a \((\text{Ann}(T, \varepsilon_1, \varepsilon_2)^c, \pi_1, \pi_2)\)-set and moreover,

$$\text{Ann}(S_i, \varepsilon_1, \varepsilon_2)^c = T_{y_i} \cap \text{Ann}(T, \varepsilon_1, \varepsilon_2)^c; \ 1 \leq i \leq n.$$

For $J \subset [1 \ldots n]$, we denote

$$S^J(\varepsilon_1, \varepsilon_2) = \bigcup_{j \in J} \text{Ann}(S_j, \varepsilon_1, \varepsilon_2)^c.$$

There are only a finite number (depending on T) of topological types amongst $S^J(\varepsilon_1, \varepsilon_2)$. Restricting all the sets to V in the above argument, we obtain that there are only finitely many (depending on T and V) of topological types amongst the sets $A^J(\varepsilon_1, \varepsilon_2) = S^J(\varepsilon_1, \varepsilon_2) \cap V.$
Thus, there exists a constant $C(T, V)$ such that

$$C(T, V) \geq \max_{J \subset \{1, \ldots, n\}} \left(b_{i+j-1}(A_J^{i}(\varepsilon_1, \varepsilon_2)) + b_{k'}(V) \right) + b_{k'}(V).$$

It follows from the previous Proposition that

$$\sum_{D \in C(A, V)} b_i(D) \leq C \cdot n^{k'-i}.$$
Thus, there exists a constant $C(T, V)$ such that

$$C(T, V) \geq \max_{J \subset \{1, \ldots, n\}} \left(b_{i+j-1}(A^J(\varepsilon_1, \varepsilon_2)) + b_{k'}(V) \right) + b_{k'}(V).$$

It follows from the previous Proposition that

$$\sum_{D \in C(A, V)} b_i(D) \leq C \cdot n^{k'-i}.$$
Key proposition:

Proposition

Let $\mathcal{A} = \{S_1, \ldots, S_n\}$ be a collection of closed definable subsets of \mathbb{R}^k and let $V \subset \mathbb{R}^k$ be a closed, and bounded definable set and let S be an (\mathcal{A}, V)-closed set. Then, for all sufficiently small $1 \gg \varepsilon_1 \gg \varepsilon_2 \cdots \gg \varepsilon_n > 0$,

\[b(S) \leq \sum_{D \in \mathcal{C}(\mathcal{B}, V)} b(D), \]

where

\[\mathcal{B} = \bigcup_{i=1}^{n} \{ S_i, \text{BT}(S_i, \varepsilon_i), \text{OT}(S_i, 2\varepsilon_i)^c \}. \]
For each $i, 1 \leq i \leq n$, let

$$A_i = \pi_{2\ell}^{<\ell} (\pi_{2\ell}^{\ell-1}(y_i) \cap F),$$

and $\mathcal{G} = \{A_i \mid 1 \leq i \leq n\}$. Note that \mathcal{G} is a $(R, \pi_{2\ell}^{<\ell}, \pi_{2\ell}^{\ell})$-family.

We now use the Clarkson-Shor random sampling technique (using Theorem on cdcd instead of vertical decomposition). Applying Theorem on quantitative cdcd to some sub-family $\mathcal{G}_0 \subset \mathcal{G}$ of cardinality r, we get a decomposition of R^ℓ into at most $Cr^{2(2^\ell-1)} = r^{O(1)}$ definable cells, each of them defined by at most $2(2^\ell - 1) = O(1)$ of the y_i’s.
For each $i, 1 \leq i \leq n$, let

$$A_i = \pi_{2^\ell}^{< \ell} (\pi_{2^\ell}^{> \ell} - 1 (y_i) \cap F),$$

and $\mathcal{G} = \{A_i \mid 1 \leq i \leq n\}$. Note that \mathcal{G} is a $(R, \pi_{2^\ell}^{< \ell}, \pi_{2^\ell}^{> \ell})$-family.

We now use the Clarkson-Shor random sampling technique (using Theorem on cdcd instead of vertical decomposition). Applying Theorem on quantitative cdcd to some sub-family $\mathcal{G}_0 \subset \mathcal{G}$ of cardinality r, we get a decomposition of R^ℓ into at most $Cr^{2(2^\ell - 1)} = r^{O(1)}$ definable cells, each of them defined by at most $2(2^\ell - 1) = O(1)$ of the y_i's.
Let $S \subset \mathbb{R}^{k_1+k_2}$ be a definable set, and let $\pi : \mathbb{R}^{k_1+k_2} \to \mathbb{R}^{k_2}$ be the projection map on the last k_2 co-ordinates. We denote by $\pi_S = \pi|_S$.

For $z \in \mathbb{R}^{k_2}$, let $S_z = S \cap \pi^{-1}(z)$.

Question: How many “topological types” occur amongst the S_z’s as z varies over \mathbb{R}^{k_2}?

As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d in k variables?
Fibers of a definable map

Let $S \subset \mathbb{R}^{k_1+k_2}$ be a definable set, and let $\pi : \mathbb{R}^{k_1+k_2} \to \mathbb{R}^{k_2}$ be the projection map on the last k_2 co-ordinates. We denote by $\pi_S = \pi|_S$.

For $z \in \mathbb{R}^{k_2}$, let $S_z = S \cap \pi^{-1}(z)$.

Question: How many “topological types” occur amongst the $S_z’s$ as z varies over \mathbb{R}^{k_2}?

As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d in k variables?
Let $S \subset \mathbb{R}^{k_1+k_2}$ be a definable set, and let $\pi : \mathbb{R}^{k_1+k_2} \to \mathbb{R}^{k_2}$ be the projection map on the last k_2 co-ordinates. We denote by $\pi_S = \pi|_S$.

For $z \in \mathbb{R}^{k_2}$, let $S_z = S \cap \pi^{-1}(z)$.

Question: How many “topological types” occur amongst the S_z’s as z varies over \mathbb{R}^{k_2}?

As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d in k variables?
Let $S \subset \mathbb{R}^{k_1+k_2}$ be a definable set, and let $\pi : \mathbb{R}^{k_1+k_2} \to \mathbb{R}^{k_2}$ be the projection map on the last k_2 co-ordinates. We denote by $\pi_S = \pi|_S$.

For $z \in \mathbb{R}^{k_2}$, let $S_z = S \cap \pi^{-1}(z)$.

Question: How many “topological types” occur amongst the S_z’s as z varies over \mathbb{R}^{k_2}?

As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d in k variables?
Hardt’s theorem is a corollary of the existence of *cylindrical cell decompositions* for definable sets. This implies a double exponential (in $k_1 k_2$) upper bound on the cardinality of I.

Open problem: prove a single exponential upper bound on the number of homeomorphism types of the fibres of π_S.

Saugata Basu

Combinatorial Complexity in O-minimal Geometry
Hardt’s theorem is a corollary of the existence of *cylindrical cell decompositions* for definable sets.

This implies a double exponential (in $k_1 k_2$) upper bound on the cardinality of I.

Open problem: prove a single exponential upper bound on the number of homeomorphism types of the fibres of π_S.
Hardt’s theorem is a corollary of the existence of *cylindrical cell decompositions* for definable sets.

This implies a double exponential (in k_1k_2) upper bound on the cardinality of I.

Open problem: prove a single exponential upper bound on the number of homeomorphism types of the fibres of π_S.

Saugata Basu

Combinatorial Complexity in O-minimal Geometry
Theorem (B., Vorobjov, 2007)

Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_{k_1}, Y_1, \ldots, Y_{k_2}]$, with $\deg(P) \leq d$ for each $P \in \mathcal{P}$ and $\#\mathcal{P} = n$, and let $\pi : \mathbb{R}^{k_1+k_2} \to \mathbb{R}^{k_2}$ be the projection map on the Y-coordinates. Then, for any fixed \mathcal{P}-semi-algebraic set S the number of different homotopy types of fibers $\pi^{-1}(y) \cap S, y \in \pi(S)$ is bounded by

$$(2^{k_1} nk_2 d)^{O(k_1k_2)}.$$

Open Problem: Can one prove a single exponential bound like the one above on the number of homeomorphism types?
The Semi-algebraic Case

Theorem (B., Vorobjov, 2007)

Let \(P \subset \mathbb{R}[X_1, \ldots, X_{k_1}, Y_1, \ldots, Y_{k_2}] \), with \(\deg(P) \leq d \) for each \(P \in \mathcal{P} \) and \(\#\mathcal{P} = n \), and let \(\pi : \mathbb{R}^{k_1+k_2} \to \mathbb{R}^{k_2} \) be the projection map on the Y-coordinates. Then, for any fixed \(\mathcal{P} \)-semi-algebraic set \(S \) the number of different homotopy types of fibers \(\pi^{-1}(y) \cap S, y \in \pi(S) \) is bounded by

\[
(2^{k_1} nk_2 d)^{O(k_1 k_2)}.
\]

Open Problem: Can one prove a single exponential bound like the one above on the number of homeomorphism types?
The Semi-algebraic Case

Theorem (B., Vorobjov, 2007)

Let \(P \subset \mathbb{R}[X_1, \ldots, X_{k_1}, Y_1, \ldots, Y_{k_2}] \), with \(\deg(P) \leq d \) for each \(P \in P \) and \(\#P = n \), and let \(\pi : \mathbb{R}^{k_1+k_2} \to \mathbb{R}^{k_2} \) be the projection map on the \(Y \)-coordinates. Then, for any fixed \(P \)-semi-algebraic set \(S \) the number of different homotopy types of fibers \(\pi^{-1}(y) \cap S, y \in \pi(S) \) is bounded by

\[
(2^{k_1} nk_2 d)^{O(k_1k_2)}.
\]

Open Problem: Can one prove a single exponential bound like the one above on the number of homeomorphism types?
The Semi-algebraic Case

Theorem (B., Vorobjov, 2007)

Let $\mathcal{P} \subset \mathbb{R}[X_1, \ldots, X_{k_1}, Y_1, \ldots, Y_{k_2}]$, with $\deg(P) \leq d$ for each $P \in \mathcal{P}$ and $\# \mathcal{P} = n$, and let $\pi : \mathbb{R}^{k_1+k_2} \to \mathbb{R}^{k_2}$ be the projection map on the Y-coordinates. Then, for any fixed \mathcal{P}-semi-algebraic set S the number of different homotopy types of fibers $\pi^{-1}(y) \cap S$, $y \in \pi(S)$ is bounded by

$$(2^{k_1} nk_2 d)^{O(k_1 k_2)}.$$

Open Problem: Can one prove a single exponential bound like the one above on the number of homeomorphism types?
Let $S(R)$ be an o-minimal structure over R, $T \subset R^{k_1+k_2+\ell}$ a closed definable set, and

\[\pi_1 : R^{k_1+k_2+\ell} \rightarrow R^{k_1+k_2}, \]
\[\pi_2 : R^{k_1+k_2+\ell} \rightarrow R^\ell, \]
\[\pi_3 : R^{k_1+k_2} \rightarrow R^{k_2} \]

the projection maps as depicted below.

\[R^{k_1+k_2+\ell} \xrightarrow{\pi_1} R^{k_1+k_2} \]
\[\pi_2 \downarrow \quad \pi_3 \downarrow \]
\[R^\ell \quad R^{k_2} \]
Theorem (B. 2007)

For any collection \(\mathcal{A} = \{A_1, \ldots, A_n\} \) of subsets of \(\mathbb{R}^{k_1+k_2} \), and \(z \in \mathbb{R}^{k_2} \), let \(\mathcal{A}_z \) denote the collection of subsets of \(\mathbb{R}^{k_1} \),

\[
\{A_1,z, \ldots, A_n,z\},
\]

where \(A_{i,z} = A_i \cap \pi_3^{-1}(z), \ 1 \leq i \leq n \). Then, there exists a constant \(C = C(T) > 0 \), such that for any family \(\mathcal{A} = \{A_1, \ldots, A_n\} \) of definable sets, where each \(A_i = \pi_1(T \cap \pi_2^{-1}(y_i)) \), for some \(y_i \in \mathbb{R}^\ell \), and any fixed \(\mathcal{A} \)-set \(S \), the number of homotopy types of the fibers \(S \cap \pi_3^{-1}(z), \ z \in \mathbb{R}^{k_2} \), is bounded by \(C \cdot n^{(k_1+3)k_2} \).
Open problems

1. Try to prove all the known results on combinatorial complexity of arrangements in the o-minimal setting. (Note that we are not allowed to use “general position” assumptions such as transversality etc., or other tricks such as “linearization” which strongly depend on the semi-algebraicity of the objects.)

2. Prove a singly exponential upper bound on the number of homeomorphism types (not just homotopy types) of the fibers of a definable map. This would be interesting in the special cases of semi-algebraic or semi-Pfaffian sets.
1. Try to prove all the known results on combinatorial complexity of arrangements in the o-minimal setting. (Note that we are not allowed to use “general position” assumptions such as transversality etc., or other tricks such as “linearization” which strongly depend on the semi-algebraicity of the objects.)

2. Prove a singly exponential upper bound on the number of homeomorphism types (not just homotopy types) of the fibers of a definable map. This would be interesting in the special cases of semi-algebraic or semi-Pfaffian sets.