1. Arrange the following list of functions in ascending order of growth rate, i.e. if function $g(n)$ immediately follows $f(n)$ in your list then, it should be the case that $f(n)=$ $O(g(n))$.

$$
\begin{gathered}
g_{1}(n)=2^{\sqrt{\log n}} \\
g_{2}(n)=2^{n} \\
g_{3}(n)=n^{4 / 3} \\
g_{4}(n)=n(\log n)^{3} \\
g_{5}(n)=n^{\log n} \\
g_{6}(n)=2^{2^{n}} \\
g_{7}(n)=2^{n^{2}}
\end{gathered}
$$

2. Using Stirling's formula prove that,

$$
n!=o\left(n^{n}\right)
$$

3. Problems 4-1 and 4-4 (pp. 85-86, CLRS).
4. Problem 5.2-5 (pp. 99, CLRS).
5. Problem 6-3 (pp 143, CLRS).
