CS 3510
Practice Final
Time: 2hrs.
Write your name in the top left corner. Attempt all questions. You must show all work in order to obtain credit

1. (a) Find a tight upper bound for the function $T(n)$ satisfying the recurrence,

$$
T(n)=T(\sqrt{n})+1 .
$$

2. Compare the asymptotic rates of growth of the functions n ! and $F(n)$ where $F(n)$ is the n-th Fibonacci number defined by, $F(n)=F(n-$ $1)+F(n-2), F(1)=F(2)=1$.
(a) Describe an $O(n \log n)$ algorithm of or sorting. Prove that your algorithm runs in $O(n \log n)$ time.
(b) Show that any algorithm for sorting must take $\Omega(n \log n)$ time in the worst case in the comparison model. State clearly your assumptions on the algorithm.
3. Let $G=(V, E)$ be a weighted undirected graph with non-negative edge weights. Let $s \in V$. Prove or disprove that a shortest path tree with source s is always a minimum spanning tree.
4. Explain Dijkstra's algorithm on the following weighted graph.
5. (a) What are the 4 -th roots of unity ?
(b) Compute $\operatorname{DFT}_{\omega_{4}}(P)$ where P is the polynomial $1+X+X^{2}+X^{3}$.
(c) Compute the inverse $\mathrm{DFT}_{\omega_{4}^{-1}}$ of the vector you computed in the previous question. How does your result relate to the original polynomial P ?
6. Prove that a polynomial of degree d is uniquely determined by its values at $d+1$ distinct points. Underlying the sentence in your proof where you make use of the fact that the points are distinct.
7. Does the set of elements $\{1,2,3,4,5,6,7\}$ form a group under multiplication mod 8 ? Explain your answer.
8. (a) What is a primitive element in the group Z_{m}^{*} ?
(b) List the primitive elements in the group Z_{9}^{*}.
(c) What is the number of primitive elements in the group Z_{18}^{*} ?
9. Describe an efficient algorithm for the following problem. Given integers a, and n, the problem is to determine the congruence class of the multiplicative inverse of $a \bmod n$ if it exists. State the complexity of your algorithm in terms of the bit sizes of a and n.
10. Find all solutions (if any) to the modular equation,

$$
75 x \equiv 20(\bmod 55)
$$

11. Find the congruence class a mod 60 such that,

$$
\begin{aligned}
& a \equiv 1 \bmod 3, \\
& a \equiv 2 \bmod 4, \\
& a \equiv 3 \bmod 5
\end{aligned}
$$

12. Assuming that $3 S A T$ is NP-complete, prove that the CLIQUE problem is NP-complete.
