
Assignment 1 Solutions James Vanderhyde

1. Arrange the following list of functions in ascending order of growth rate, i.e. if function
g(n) immediately follows f(n) in your list then, it should be the case that f(n) =
O(g(n)).

g1(n) = 2
√

log n

g2(n) = 2n

g3(n) = n4/3

g4(n) = n(log n)3

g5(n) = nlog n

g6(n) = 22n

g7(n) = 2n2

The correct order is g1, g4, g3, g5, g2, g7, g6. The easiest ones to tell are the polynomially-
bounded functions and the purely exponential functions. n(log n)3 = o(n4/3), 2n =
o(2n2

), 2n2
= o(22n

). When exponents and logarithms are combined, you have to be
careful. Assuming all the logarithms are base 2, 2

√
log n = o(2log n) but 2log n = n, so

2
√

log n is actually sublinear. It is clear that n4/3 = o(nlog n) since 4/3 = o(log n). To
compare it to the exponential functions, note that nlog n = 2log(nlog n) = 2log n log n =
2(log n)2 = o(2n).

2. Using Stirling’s formula prove that

n! = o(nn).

Proof: First note that n! =
√

2πn(n
e
)n(1+Θ( 1

n
)) = O(

√
2πn(n

e
)n). Now limn→∞

√
2πn(n

e
)n

nn =

lim
√

2πn
en , and we use l’Hospital’s rule to get lim

√
2π

(2
√

n)en = 0. Thus n! = o(nn).

3. Problems 4-1 and 4-4.
4-1

(a) Master method: a = 2, b = 2, f(n) = n3, af(n
b
) = 1

4
n3. Case 3⇒ T (n) = Θ(n3).

(b) Master method: a = 1, b = 10
9
, f(n) = n, af(n

b
) = 9

10
n. Case 3⇒ T (n) = Θ(n).

(c) Master method: a = 16, b = 4, f(n) = n2. Case 2⇒ T (n) = Θ(n2 lg n).

(d) Master method: a = 7, b = 3, f(n) = n2, af(n
b
) = 7

9
n2. Case 3⇒ T (n) = Θ(n2).

(e) Master method: a = 7, b = 2, f(n) = n2. Case 1⇒ T (n) = Θ(nlog2 7).

(f) Master method: a = 2, b = 4, f(n) = n
1
2 . Case 2⇒ T (n) = Θ(

√
n lg n).

(g) T (n) = T (n−1)+n = T (n−2)+(n−1)+n = T (n−3)+(n−2)+(n−1)+n = . . . =

T (0)+1+2+3+. . .+(n−2)+(n−1)+n = T (0)+
∑n

i=1 i = T (0)+ n(n+1)
2

= Θ(n2).
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(h) By expanding as in part (g) above, we get T (n) = 1 + 1 + 1 + . . . + 1 + T (2). The
question is how many ones there are in this equation. If we say n = 22k

for some
k,
√

n = 22k−1
. Therefore there are k ones by the time we get down to 2 = 220

, so
T (n) = 1(k) + T (2) = Θ(lg lg n). The substitution method can be used to verify
this.

4-4

(a) Master method: a = 3, b = 2, f(n) = n lg n. Case 1⇒ T (n) = Θ(nlog2 3).

(b) Master method does not apply since n
lg n

6= O(n1−ε) and n
lg n

6= Ω(n1+ε). We can

find some bounds, however, as follows. Let T1(n) = 5T1(
n
5
) + n and T2(n) =

5T2(
n
5
) + n1−ε for any 0 < ε < 1. By the master method, T1 = Θ(n lg n) and

T2 = Θ(n). But T (n) ≤ T1(n) and T (n) = Ω(T2(n)), so we may conclude
T (n) = O(n lg n) and T (n) = Ω(n).

(c) Master method: a = 4, b = 2, f(n) = n5/2, af(n
b
) = 1√

2
n5/2. Case 3⇒ T (n) =

Θ(n2
√

n).

(d) Master method does not apply because of the +5 in the recursion. We guess that
the +5 doesn’t add much, however, and we may use the substitution method to
show that T (n) ≤ n lg n for sufficiently large n. First note that lg(n

3
+ 5) ≤ lg(n

2
)

for n ≥ 30. So T (n) ≤ 3(n
3

+ 5) lg(n
3

+ 5) + n
2
≤ (n + 15) lg n

2
+ n

2
= n lg n− n +

15 lg n− 15 + n
2
≤ n lg n if n ≥ 15 lg n + n

2
, which occurs when n ≥ 256. Note also

T (n) ≥ 3T (n
3
) + n

2
= Ω(n lg n). Thus T (n) = Θ(n lg n).

(e) Same as part (b) above with 2 instead of 5.

(f) If we assume T (n) = 8n, we can use the substitution method to show T (n) =
8(n

2
) + 8(n

4
) + 8(n

8
) + n = 4n + 2n + n + n = 8n. Thus T (n) = Θ(n).

(g) T (n) = T (n − 1) + 1
n

= 1
n

+ 1
n−1

+ 1
n−2

+ . . . + 1 + T (0) = Hn + T (0) = Θ(lg n).
This is the harmonic series.

(h) T (n) = T (n − 1) + lg n = lg n + lg(n − 1) + lg(n − 2) + . . . + lg 2 + T (1) =∑n
i=2 lg i + T (1) ≤

∑n
i=2 lg n + T (1) ≤ n lg n + T (1) = O(n lg n). Note also

T (n) =
∑n/2

i=2 lg i +
∑n

i=n/2 lg i + T (1) ≥
∑n

i=n/2 lg i ≥
∑n

i=n/2 lg n
2

= n
2

lg n
2

=

Ω(n lg n). Thus T (n) = Θ(n lg n).

(i) T (n) = T (n−2)+2 lg n = 2 lg n+2 lg(n−2)+2 lg(n−4)+. . .+2 lg 2 ≥ lg n+lg(n−
1)+lg(n−2)+lg(n−3)+lg(n−4)+lg(n−5)+. . .+lg 2+lg 1 =

∑n
i=1 lg i = Ω(n lg n).

But also T (n) = 2 lg n + 2 lg(n− 2) + 2 lg(n− 4) + . . . + 2 lg 2 ≤ 2 lg n + 2 lg(n−
1) + 2 lg(n − 2) + 2 lg(n − 3) + 2 lg(n − 4) + 2 lg(n − 5) + . . . + 2 lg 2 + 2 lg 1 =
2
∑n

i=1 lg i = O(n lg n). Thus T (n) = Θ(n lg n).

(j) We can use the substitution method to prove that T (n) ≤ cn lg lg n. T (n) =√
nT (

√
n) + n ≤

√
nc
√

n lg lg
√

n + n = cn lg lg n
1
2 + n = cn lg(1

2
lg n) + n =

2
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cn lg 1
2

+ cn lg lg n + n = cn lg lg n− cn + n ≤ cn lg lg n if c ≥ 1. We can likewise
show T (n) ≥ cn lg lg n for some c. Thus T (n) = Θ(n lg lg n).

4. Problem 5.2-5.
Let Xij indicate that the pair (i, j) is an inversion. Then by linearity of expectation,
E[

∑
i,j Xij] =

∑
i,j E[Xij] =

∑n
i=1

∑n
j=i+1 pij, where pij is the probability that the pair

(i, j) is an inversion. If you consider a permutation at random, it is plausible that the
probability of any given pair being flipped or not is 50-50. To make sure of this, we
calculate pij by conditioning on the value of A[i], which will be exactly one of 1, . . . , n.
So pij = Pr[A[j] < A[i]] =

∑n
a=1 Pr[A[j] < a|A[i] = a]Pr[A[i] = a] =

∑n
a=1

a−1
n−1

· 1
n

=
1

n(n−1)

∑n
a=1(a − 1) = 1

n(n−1)
· n(n−1)

2
= 1

2
. So

∑n
i=1

∑n
j=i+1

1
2

= 1
2

∑n
i=1

∑n
j=i+1 1 =

1
2

∑n
i=1(n− i) = 1

2
n(n−1)

2
= 1

4
n(n− 1).

5. Problem 6-3.

(a) Remember ∞ is used to represent empty cells so that the less than or equal as
you move right or down relationship may be maintained.

2 4 8 9
3 14 ∞ ∞
5 16 ∞ ∞
12 ∞ ∞ ∞


(b) If a cell is ∞, then everything to the right of it must also be ∞. Thus if Y [1, 1] is

∞, the whole top row is ∞. If a cell is ∞, then everything below it must also be
∞. Thus if the whole top row is ∞, the whole matrix is ∞. Conversely, if a cell
is finite, then everything above it must also be finite. Thus if Y [m, n] is finite, the
whole last column is finite. If a cell finite, then everything to the left of it must
be finite. Thus if the whole last column is finite, the entire matrix is finite.

(c) The Young tableau is actually very similar in concept to a heap. The minimum
element is always Y [1, 1], so we return that for Extract-Min. To “re-Youngify”
the matrix, insert an ∞ at Y [1, 1] and bubble it downward and rightward until
you hit the edge of the array or another ∞ (as far as possible in each direction).
At worst it will end up in the lower-right corner, and this would take m+n steps.

(d) Again this is similar to a heap. In this case, insert your new element into Y [m, n].
This is necessarily ∞ because the Young tableau is nonfull, and if there’s an ∞
anywhere it will be here. Then bubble the element up and to the left until you hit
the edge of the array or an element smaller than the new entry (as far as possible
in each direction).

(e) Note that Extract-Min and Insert are O(n) for this problem since n = m in
a square tableau. Take the list of n2 numbers and insert them one at a time into
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the tableau; this is n2O(n) = O(n3). Then repeatedly use Extract-Min to get
the next element in sorted order; this is also n2O(n) = O(n3). The total time is
O(n3).

(f) We want to find a given number k in a Young tableau. In order to achieve
O(n + m) time, we need to eliminate either an entire row or an entire column
at every step. We start in the upper right corner, Y [i, j] with i = 1 and j = n,
and proceed left and down. If k = Y [i, j], we’re done. If k < Y [i, j], the rest of
column i is also greater than k, so this column is eliminated and we decrement j.
If k > Y [i, j], then nothing to the left can be greater than or equal to k, so this
row is eliminated and increment i. The loop invariant that shows this works is
that at any point i, j, we’ve already eliminated everything above and to the right.
If i becomes n + 1 or j becomes 0, everything was eliminated and k is not in Y .
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