
Assignment 3 Solutions James Vanderhyde

1. Problem 15.2-1.
I calculated these out by hand. It was tedious, but kind of fun, in a “a computer
should really be doing this” sort of way.

2010
1655 1950

405 2430 1770
330 330 930 1860

150 360 180 3000 1500
0 0 0 0 0 0

2
4 2

2 2 4
2 2 4 4

1 2 3 4 5

We’re looking for an optimal parenthesization of A1A2A3A4A5A6. The result pyramid
shows us that the first split is after A2, so we have (A1A2)(A3A4A5A6). Recursing
on the list 3 through 6, the pyramid shows the optimal split is after A4, so the final
result is (A1A2)((A3A4)(A5A6)). This makes sense because to reduce the number of
multiplications we want to eliminate the large matrix dimensions (50, between A5 and
A6; 12, between A3 and A4; and 10, between A1 and A2) as soon as possible.

2. Problem 15.5-2.
For this one I wrote a short Java program using the pseudocode in the book.

3.12
2.44 2.61

1.83 1.96 2.13
1.34 1.41 1.48 1.55

1.02 0.93 1.04 1.01 1.20
0.62 0.68 0.57 0.57 0.72 0.78

0.28 0.30 0.32 0.24 0.30 0.32 0.34

5
3 5

3 5 5
2 3 5 6

2 3 4 5 6
2 3 3 5 6 7

1 2 3 4 5 6 7

The apex of the pyramid is 5, so the root is k5. It two children are the trees defined
by the subpyramids with bases 1 through 4 and 6 through 7. The apex of the left one

1



Assignment 3 Solutions James Vanderhyde

is 2 and the apex of the right one is 7, so k2 and k7 are the children of k5. Likewise, k1

and k3 are the children of k2, and k6 is the left child of k7. k3 has right child k4. The
rest of the tree is finished with d0 through d7, from left to right, as leaves.

3. Problem 15-2.
The problem defines “neatness,” but what we really want to minimize is the “sloppiness”—
the sum of the cubes of the leftover space on each line. So we define s(i), the min-
imum sloppiness of printing words i through n in a paragraph. To define it recur-
sively, we put e words on the current line and then compute s(i + e). We don’t
know what the optimal e is, so we try all possibilities that will fit on the line. Thus
s(i) = mine{s(i + e) + (M − (e− 1)−

∑i+e−1
k=i lk)

3}, where the min is over all possible

values of e such that (e− 1) +
∑i+e−1

k=i lk ≤M . The base case is the last line, which is
free: s(i) = 0 if (n − i) +

∑n
k=i lk ≤ M . The dynamic programming algorithm builds

up from the base case:

Input: l, n, M
Output: s, the sloppiness values; w, the number of words to print on a line
1: i← n
2: while (n− i) +

∑n
k=i lk ≤M do

3: s[i]← 0
4: w[i]← n− i + 1
5: Decrement i
6: while i > 0 do
7: e← 1
8: s[i]←∞
9: while (e− 1) +

∑i+e−1
k=i lk ≤M do

10: s′ ← s[i + e] + (M − (e− 1)−
∑i+e−1

k=i lk)
3

11: if s′ < s[i] then
12: s[i]← s′

13: w[i]← e
14: Increment e
15: Decrement i
16: return s and w

Input: sequence of words, w, n
Output: the neatly-printed paragraph
1: i← 1
2: while i ≤ n do
3: w′ = w[i]
4: for e← 1 to w′ do
5: Print word i
6: Increment i
7: Start new line

2



Assignment 3 Solutions James Vanderhyde

Now we analyze the time and space complexity of this algorithm. We’re storing an inte-
ger (the sloppiness value) and a number between 1 and M/2 (the number of words that
will fit on a line) for each word. This is Θ(n) space. The running time is determined
by the nested while loops. The outer loop runs n times in the worst case. The number
of times the inner loop runs is bounded by the number of words that can fit on a line;
this is bounded by M/2 and by n. So the total running time is Θ(n min{n, M/2}).
Presumably n > M/2 for most inputs, so we can safely say the running time is O(nM).
However, the sums of word lengths

∑
lk also take time to compute, up to the number

of words possible on a line. We can compute this on the fly for an additional factor of
min{n, M/2} time or precompute them for additional storage of n min{n, M/2}. So
the required resources are either O(nM) space and O(nM) time or O(n) space and
O(nM2) time.

4. Problem 16.3-2.

2

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

4

7

12

20

33

540

1

1

1

1

1

1

1

0

0

0

0

0

0

Let fn be the nth Fibonacci number, with f1 = f2 = 1. I will show by induction
that

∑n
i=1 fi = fn+2 − 1. Base case: f1 + f2 = 1 + 1 = 2 = 3 − 1 = f4 − 1. Now

assume the hypothesis holds for all positive integers less than n. Then
∑n

i=1 fi =
f1 + f2 +

∑n
i=3(fi−1 + fi−2) = 2 +

∑n
i=3 fi−1 +

∑n
i=3 fi−2 = 2 +

∑n−1
i=1 fi− f1 +

∑n−2
i=1 fi

= 1 + fn+1 − 1 + fn − 1 = fn+2 − 1. Therefore, when constructing the Huffman tree,
the current sum of frequencies will always be less than all the remaining leaves except
the smallest, and so the smallest leaf will always be combined with a running total.
Thus the code will be a single 1 for the most frequent letter and n− 1 0s for the least

3



Assignment 3 Solutions James Vanderhyde

frequent letter, and k 0s followed by a 1 for the letters in between, for k = 1, . . . , n−2,
from the most to the least frequent.

Problem 16.3-3.
The concept here is not really as complicated as I make it look below. For some reason
I just felt like I had to write it up formally. The basic idea is that if you draw a path
from a leaf to the root in the tree, the character for the leaf gets counted once for
each of the nodes on that path (excluding the leaf itself). The definition of the cost on
page 386 and the alternate computation described in this problem each has a different
way of counting this same number. Now, the formal proof: The total cost of a tree T
for a code is defined as B(T ) =

∑
c∈C f(c)dT (c), where C is the alphabet. We must

prove that the cost of the tree is also equal to B′(T ) =
∑

n∈I (f(left[n]) + f(right[n])),
where I is the set of internal nodes of T . The question refers to the frequency of a
node in the tree. This was not explicitly defined in the text, but they mean that if
n is a leaf node corresponding to a character c, f(n) = f(c), and if n is an internal
node, f(n) = f(left[n]) + f(right[n]). This boils down to the fact that the frequency
of a node n is the sum of the frequencies of all of n’s decendant characters. Now we
are ready to prove B′(T ) = B(T ), which we do by induction. First, if T is a single
node, then B(T ) = 0, since dT (c) = 0 for the only node in the tree. B′(T ) = 0
in this case as well, since there are no internal nodes to sum over. Now let T be a
code tree of height k. Let T1 and T2 be the left and right branches of T , respectively.
Since the heights of these two are each strictly less than k, we may assume inductively
that B′(T1) = B(T1) and B′(T2) = B(T2). Let r be the root node of T . Also let
Ci and Ii be the characters in the tree Ti and the internal nodes of Ti, respectively.
Thus, we have B′(T ) =

∑
n∈I (f(left[n]) + f(right[n])) = (f(left[r]) + f(right[r])) +∑

n∈I1
(f(left[n]) + f(right[n]))+

∑
n∈I2

(f(left[n]) + f(right[n])) = f(left[r])+f(right[r])+
B′(T1)+B′(T2) = f(left[r])+f(right[r])+B(T1)+B(T2) = f(left[r])+f(right[r])+∑

c∈C1
f(c)dT1(c) +

∑
c∈C2

f(c)dT2(c) = f(left[r]) + f(right[r]) +
∑

c∈C1
f(c)(dT (c) −

1)+
∑

c∈C2
f(c)(dT (c)−1) =

∑
c∈C1

f(c)+
∑

c∈C2
f(c)+

∑
c∈C f(c)dT (c)−

∑
c∈C1

f(c)−∑
c∈C2

f(c) = B(T ). This completes the proof.

5. Problem 23.1-1.
We want to show that a minimum-weight edge e in a graph G is in some minimum-
weight spanning tree of G. Let T be a MST of G. If T contains e, we are done.
Otherwise, add e to T . This forms a cycle. Since e is a minumum-weight edge in G,
there is an edge f 6= e on the cycle that has w(f) ≥ w(e). Remove f to form a spanning
tree T ′. Then w(T ) ≥ w(T ′) and T is minimum, so T ′ must also be minimum, and it
contains e.

Problem 23.1-8.
I got some inspiration for this proof from Prof. Huang’s solutions from USC. Suppose
L is not the sorted list of edges of T ′; let L′ be the sorted list. Then L and L′ differ
somewhere; let k be the index of the first place they differ (starting from the minimum).

4



Assignment 3 Solutions James Vanderhyde

Suppose that L[k] < L′[k] (for the other case the proof proceeds the same). Consider
the k − 1 weights the two trees have in common. The corresponding edges in T ′ form
a forest F ′. Any of the first k edges of T , when added to F ′, may or may not form
a cycle, but a cycle can only be formed when both vertices of the edge belong to the
same component of F ′. Also, a single component of F ′ with m edges can only have at
most m of the k edges of T , or else a cycle would exist in T . But F ′ has only k − 1
edges total, so it can only account for at most k− 1 edges of T . Therefore, there must
be at least one of the first k edges of T that does not form a cycle when added to
F ′. Add this edge e to T ′. This forms a cycle, and furthermore, some of the edges
in this cycle were not contained in F ′ and therefore have weight greater than or equal
to L′[k], by the construction of F ′. But e has weight strictly less than L′[k], by the
choice of k. Therefore, we can remove an edge of weight greater than e and decrease
the total weight of T ′. This contradicts the assumption that T ′ was minimum. Thus
two minimum spanning trees must have the same weight sequences.

5


