1. Let G be a finite group and, for each prime p, choose a p-Sylow subgroup of G. Prove that G is generated by these subgroups (that is every element of G is expressible as a product of some elements of these subgroups.) **Solution:**

Let H be the subgroup of G generated by the chosen Sylow subgroups. For every prime p dividing the order of G, H has a p-Sylow subgroup of G as a subgroup. Hence, $|H|$ is divisible by the maximum power of p dividing $|G|$. Hence, $H = |G|$ which implies that $H = G$.

2. If p and q are primes, prove that a group of order p^2q cannot be simple. **Solution:**

Let G be a group with $|G| = p^2q$. Assume $p \neq q$.

Otherwise, $|G| = p^3$ and G has a normal subgroup of order p^2.

Assume that G is simple.

The number of p-Sylow subgroups must be q and hence $q = 1 \mod p$. Hence, $q > p$.

The number of q-Sylow subgroups is either p or p^2. It cannot be p, because this would imply that $p = 1 \mod q$ implying $p > q$.

Hence, the number of q-Sylow subgroups must be p^2. But any pair of these subgroups can have only the identity as a common element. Hence, the total number of non-identity elements in the q-Sylow subgroups is $p^2(q - 1)$. On the other hand the intersection any two distinct p-Sylow subgroup can have size at most p (the intersection has to be a subgroup of each). Thus, the number of elements in the p-Sylow subgroups is at least $2p^2 - p$.

But then, $p^2(q - 1) + 2p^2 - p = p^2q + p(p - 1) > p^2q$ which is a contradiction.

3. Let G be a finite group with an automorphism φ such that $\varphi(x) = x$ if and only if $x = e$.

 (a) Show that every element of G can be written as $x^{-1}\varphi(x)$.

 (b) Suppose φ has order two, i.e., $\varphi^2(x) = x$ for all $x \in G$. Prove that $\varphi(x) = x^{-1}$ for all $x \in G$, and conclude that G is abelian.

Solution: (a) If $x^{-1}\varphi(x) = y^{-1}\varphi(y)$, then $yx^{-1} = \varphi(yx^{-1})$, and so we must have $yx^{-1} = e$, i.e., $y = x$. Consequently the map $f : G \to G$ with $f(x) = x^{-1}\varphi(x)$ is injective. Since G is finite, it must be surjective as well.

 (b) Note that

 $$\varphi(y^{-1}\varphi(y)) = \varphi(y^{-1})\varphi(y) = \varphi(y^{-1})y = (y^{-1}\varphi(y))^{-1}.$$

 Since every element $x \in G$ has the form $y^{-1}\varphi(y)$, it follows that $\varphi(x) = x^{-1}$ for all $x \in G$.

4. Let $p < q$ be prime numbers such that p divides $q - 1$. Show that there exists a non-abelian group of order pq.

1
Solutions to Assignment 3

Solution: Let $P = \mathbb{Z}/\langle p \rangle$ and $Q = \mathbb{Z}/\langle q \rangle$. Then $|\text{Aut}(Q)| = q - 1$, and since $p|(q - 1)$, there exists $\varphi \in \text{Aut}(Q)$ with $|\varphi| = p$. Consequently we have a non-trivial homomorphism

$$\alpha : P \longrightarrow \text{Aut}(Q) \quad \text{where} \quad \alpha(n \mod p) = \varphi^n \quad \text{for} \quad 0 \leq n \leq p - 1.$$

The semi-direct product $G = Q \rtimes_P P$ is a nonabelian group of order pq.

5. Let p, q be distinct prime numbers. Prove that a group of order p^2q is solvable.

Solution: Let $|G| = p^2q$ and P and Q be p-Sylow and q-Sylow subgroups respectively. Note that P and Q are abelian. Let s_p and s_q be the number of distinct p-Sylow and q-Sylow subgroups respectively. Since the conjugation action of G is transitive on the set of p-Sylow subgroups, we have $s_p = (G : N_P)$. This implies that $s_p|q$, and a similar argument shows that $s_q|p$.

If $s_p = 1$, then $\{e\} \triangleleft P \triangleleft G$ is an abelian tower for G, so for the rest of the proof we may assume $s_p = q$. Since $s_p \equiv 1 \mod p$, we note that $p|(q - 1)$.

If $s_q = 1$, then $\{e\} \triangleleft Q \triangleleft G$ is an abelian tower for G. The remaining cases are $s_q = p$ and $s_q = p^2$. Since $s_q \equiv 1 \mod q$, we have $q|(p^2 - 1)$ in either case.

Since $p|(q - 1)$, we may write $q = kp + 1$ for some positive integer k. But then $q = kp + 1$ divides $(p^2 - 1) = (p - 1)(p + 1)$, and the only possibility is $q = kp + 1$ divides $p + 1$, and so $k = 1$. Therefore in the remaining case we must have $p = 2$ and $q = 3$. But then $|G| = 12$, and we have observed in class that at least one of the Sylow subgroups of a group of order 12 is normal.

6. Let G be a finite group, $K \triangleleft G$ a normal subgroup, and P a p-Sylow subgroup of K. Prove that $G = KN_P$, where N_P is the normalizer of P in G.

Solution: Let $g \in G$. Then $gPg^{-1} < gKg^{-1} = K$, and so gPg^{-1} is a p-Sylow subgroup of K. Since p-Sylow subgroups of K are conjugate, there exists $k \in K$ such that $kPk^{-1} = gPg^{-1}$. But then $P = k^{-1}gPg^{-1}k$, and so $k^{-1}g \in N_P$. It follows that $g \in KN_P$ but, since g was an arbitrary element of G, we get $G = KN_P$.

7. Let $|G| = p^km$ where p is a prime number. Let S be the set of p^k-element subsets of G, and so

$$|S| = \binom{p^km}{p^k}, \quad \text{and therefore} \quad \frac{|S|}{m} = \binom{p^km - 1}{p^k - 1}.$$

(a) Show that $(1/m)|S| \equiv 1 \mod p$.

(b) Let G act on S by left translation. If $A \in S$, prove that the order of the isotropy group G_A divides p^k.

(c) Let $S_0 = \{A \in S : |G_A| = p^k\}$, and show that

$$|S| \equiv |S_0| \mod pm.$$

(Hint: Note that $S \setminus S_0$ is a disjoint union of orbits.)
Solutions to Assignment 3

(d) Prove that \(S_0 = \{ Hx : H \text{ is a subgroup of } G \text{ with } |H| = p^k, \text{ and } x \in G \} \).

(e) Conclude that the number of subgroups of \(G \) of order \(p^k \) is \(1 \mod p \). (This extends the Sylow theorems, since we did not assume that \(m \) is relatively prime to \(p \).)

Solution: (a) Note that we can write the binomial coefficient as a product

\[
\binom{p^k m - 1}{p^k - 1} = \frac{p^k m - 1}{p^k - 1} \cdots \frac{p^k m - i}{p^k - i} \cdots \frac{p^k m - (p^k - 1)}{p^k - (p^k - 1)}.
\]

An integer \(1 \leq i \leq p^k - 1 \) can be written as \(i = p^r t \) with \((p, t) = 1 \) and \(r < k \). Since

\[
\frac{p^k m - i}{p^k - i} = \frac{p^k m - p^r t}{p^k - p^r t} = \frac{p^k - r m - t}{p^k - r - t} \equiv 1 \mod p,
\]

we get

\[
\binom{p^k m - 1}{p^k - 1} \equiv 1 \mod p.
\]

(b) The isotropy group \(G_A \) acts on the set \(A \) by left translation. The orbit of an element \(x \in A \) is the right coset \(G_A x \), which has \(|G_A| \) elements. Consequently

\[
|A| = p^k = |G_A| \quad \text{(number of orbits for the action of } G_A \text{ on } A).
\]

(c) Let \(A_i \) and \(B_j \in S \) be representatives for orbits of the action of \(G \) on \(S \), such that \(|G_{A_i}| = p^k \) for all \(i \in I \), and \(|G_{B_j}| < p^k \) for all \(j \in J \). The set \(S_0 \) if the union of the orbits of \(A_i \) for \(i \in I \), and the set \(S \setminus S_0 \) if the union of the orbits of \(B_j \) for \(j \in J \). By (b), \(|G_{B_j}| \) is a power of \(p \) and since \(|G_{B_j}| < p^k \), we get \(pm | (G : G_{B_j}) \). This implies that \(pm \) divides

\[
\sum_{j \in J} (G : G_{B_j}) = |S \setminus S_0|.
\]

(d) If \(H \) is a subgroup of order \(p^k \), then the isotropy group of the right coset \(Hx \) is

\[
G_{Hx} = \{ g \in G : gHx = Hx \} = H,
\]

and so \(Hx \in S_0 \).

Conversely, if \(|G_A| = p^k \) for \(A \in S \), then for an element \(a \in A \) we have \(G_A a \subseteq A \). Since each of these sets have \(p^k \) elements, it follows that \(G_A a = A \).

(e) Let \(n \) be the number of subgroups of \(G \) of order \(p^k \). Such a subgroup has index \(m \), and since \(S_0 \) is the set of right cosets of subgroups of order \(p^k \), we have \(|S_0| = nm \). By (c) and (a),

\[
nm \equiv |S| \equiv m \mod pm,
\]

and so \(n \equiv 1 \mod p \).

8. Let \(K \) be an abelian group of order \(m \) and let \(Q \) be an abelian group of order \(n \). If \((m, n) = 1 \), then every extension \(G \) of \(K \) by \(Q \) is a semi-direct product.

Solution explained in class.