Exercises 10.3

1. Let $V = \mathbb{R}^3$ with the standard inner product and let

$$S = \{ u_1, u_2, u_3 \} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Use routine \texttt{gschmidt} in Matlab to obtain an orthonormal basis T and then find the coordinates of $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ relative to T. Record the orthonormal basis and the coordinates of x below.

2. Let $V = \mathbb{R}^4$ with the standard inner product and let

$$S = \{ u_1, u_2, u_3, u_4 \} = \left\{ \begin{bmatrix} -1 \\ 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

Use routine \texttt{gschmidt} in Matlab to obtain an orthonormal basis T and then find the coordinates of $x = \begin{bmatrix} 4 \\ 0 \\ 2 \\ 1 \end{bmatrix}$ relative to T. Record the orthonormal basis and the coordinates of x below.

3. Let $V = \mathbb{R}^4$ with the standard inner product and let
\[S = \{u_1, u_2, u_3, u_4\} = \left\{ \begin{bmatrix} .5 \\ .5 \\ .5 \\ .5 \end{bmatrix}, \begin{bmatrix} .5 \\ -.5 \\ -.5 \\ .5 \end{bmatrix}, \begin{bmatrix} -.5 \\ -.5 \\ -.5 \\ .5 \end{bmatrix}, \begin{bmatrix} -.5 \\ -.5 \\ -.5 \\ .5 \end{bmatrix} \right\} \]

a) Is \(S \) an orthonormal basis?

Circle one: Yes No

Explain your answer.

b) In MATLAB form the matrix \(T \) whose columns are the vectors in \(S \). Generate a random vector in \(\mathbb{R}^4 \) using command \(x = \text{rand}(4,1) \) and then compute \(\| x \| \) and \(\| Tx \| \). How are the values of the norms related? Repeat the experiment for another arbitrary vector.

4. Let \(v_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \). In MATLAB form the matrix \(A = [v_1 \ v_2] \) and then use command \(\text{gschmidt}(A) \). Explain the meaning of the display generated.

5. Let \(A = \begin{bmatrix} 1 & i & 0 \\ i & 0 & 1 \end{bmatrix} \).

a) In MATLAB use command \(A' \). Record the result.

\[A' = \]

b) In MATLAB use command \(C = A'A \). Record the result.

\[C = \]

c) What is the relation between \(C \) and \(C' \)?
d) Experiment with other complex matrices A to confirm or reject your answer in part c).

Circle one: confirmed not confirmed.

6. A complex matrix A is called Hermitian if it is equal to its conjugate transpose. The command A' gives the conjugate transpose in MATLAB.

a) How can you use MATLAB to determine if the matrix A below is Hermitian?

$$A = \begin{bmatrix} 2 & 3 - 3i \\ 3 + 3i & 5 \end{bmatrix}$$

b) Compute $r = x' \times A \times x$ for the complex vector below.

$$x = \begin{bmatrix} i \\ 1 - i \end{bmatrix} \quad r = \text{_________________________}$$

Is r a real number? (Circle one:) YES NO

c) Experiment with other complex vectors x to determine whether $x'Ax$ will always be a real number. (Circle one:)

Always a real number for this matrix A. Not always a real number.

d) Experiment with another Hermitian matrix A and arbitrary vector x to see if $r = x' \times A \times x$ is always a real number.

(Circle one:) Always a real number. Not always a real number.

7. Let $V = R^4$ with the standard inner product and let

$$v_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \\ -1 \end{bmatrix}.$$

a) Find an orthonormal basis for R^4 containing scalar multiples of the vectors v_1 and v_2. Record your result below.
b) Find an orthonormal basis for \(\mathbb{R}^4 \) containing scalar multiples of the vectors \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \). Record your result below.