Throughout this assignment, unless otherwise stated, k is an algebraically closed field of char 0.

1. Let E be a finite dimensional k-vector space, u, v two diagonalizable endomorphisms of E, and suppose that u, v commute. Prove that $u \circ v$ is also diagonalizable.

2. Let E be a finite dimensional k-vector space and let F be a set of endomorphisms of E such that every pair of elements of F commute.
 (a) For each $u \in F$, and each eigenvalue λ of u, prove that the eigenspace of u belonging to λ is closed under each endomorphism of F.
 (b) Prove that the endomorphisms of F have a common eigenvector (with possibly different eigenvalues for different $u \in F$).
 (c) Use Part (2a) and an induction on the dimension of E to prove that there exists a basis of E consisting of common eigenvectors of F (in other words the endomorphisms of F are simultaneously diagonalizable).

3. Let E be a finite dimensional k-vector space and $u \in \text{End}(E)$. Consider $\text{End}(E)$ as a k-vector space, and denote by $\text{ad}(u)$ the element of $\text{End}(\text{End}(E))$ defined by $\text{ad}(u)(v) = u \circ v - v \circ u$.
 (a) Prove that (using the notation introduced in class for the additive Jordan decomposition)
 \[\text{ad}(u)_s = \text{ad}(u_s), \text{ad}(u)_n = \text{ad}(u_n). \]
 (b) Prove that $\text{ad}(u)$ is diagonalizable if and only if u is diagonalizable.

4. For every $n > 0$, let $M_n(k)$ denote the k-vector space of $n \times n$ matrices with entries in k. Prove that there exists a basis B of $M_n(k)$, having the property that for each $X \in B$, and every diagonal matrix H,
 \[[H, X] = HX - XH = \alpha(H)X, \]
 where α is a linear functional on the subspace of diagonal matrices. (Hint. Use the results of Problems (2) and (3)).

5. Let E be a finite dimensional complex vector space with an inner product.
 (a) Prove that for any subspace M of E, the orthogonal projection, p_M to M is self-adjoint as an endomorphism of E.
 (b) Conversely, show that if p is an endomorphism of E such that
 \[p = p^* = p^2, \]
 then there exists a subspace of M of E such that $p = p_M$.
 (c) Let M, N be two subspaces of E, and let M' (resp. N') be the space of all $x \in M$ (resp. $x \in N$) orthogonal to $M \cap N$. Prove that p_M, p_N commute if and only if M' and N' are orthogonal. If this condition is satisfied then, then show that
(i) \[p_{M \cap N} = p_M \circ p_N, \]

(ii) \[p_{M+N} = p_M + p_N - p_M \circ p_N. \]

6. (optional) Let \(V \) be a finite dimensional real vector space, and \(J \) and endomorphism of \(V \) such that \(J^2 = -1_V \). (Such a \(J \) is called a complex structure on \(V \))

(a) Prove that the dimension of \(V \) is even.

(b) Let \(V_C = V \otimes \mathbb{C} \) denote the complexification of \(V \). Here we consider \(\mathbb{C} \) as a two dimensional real vector space and define a \(\mathbb{C} \)-vector space structure on \(V \otimes \mathbb{C} \) by \(z \cdot (v \otimes w) = v \otimes (wz) \). The endomorphism \(J \) extends in an obvious way to an endomorphism of \(V_C \). Prove that \(V_C \) is a direct sum of the eigenspaces of \(J \).

(c) Prove that \(V \) as a basis of the form \(\{e_1, \ldots, e_n, Je_1, \ldots, Je_n\} \).