1. (10 pts) Let G be a group H,N subgroups of G and let N be a normal subgroup G.
 (a) Prove that $H \cap N$ is a normal subgroup of H.
 (b) Let $NH = \{nh | n \in N, h \in H\}$ and $HN = \{hn | h \in H, n \in N\}$. Prove that $NH = HN$ and that HN is a subgroup of G.
 (c) Observe that N is a subgroup of HN. Prove that N is a normal subgroup of HN. (Notice that if G' is a subgroup of G containing N, then N is also a subgroup of G', but not necessarily a normal subgroup of G'. Why ?)
 (d) (Optional) Prove that HN/N is isomorphic to $H/H \cap N$. (This often goes by the name “Second Isomorphism Theorem”).

2. (10 pts) Let G be a group. For $a,b \in G$, we denote by $[a,b]$ the element $aba^{-1}b^{-1}$ (called the commutator of a and b) of G. Let $[G,G]$ denote the set of elements of G which are each a product of a finite number of commutators. Thus, every element of $[G,G]$ is of the form $[a_1,b_1] \cdots [a_m,b_m]$ for some $m \geq 0$, and $a_1,b_1,\ldots,a_m,b_m \in G$.
 (a) Prove that the inverse of a commutator is again a commutator.
 (b) Prove that $[G,G]$ is a normal subgroup of G (this subgroup is called the commutator subgroup of G, or sometimes the first derived group, $D^0(G)$, of G).
 (c) What is the subgroup $[G,G]$ in the case G is abelian ?
 (d) Prove that the quotient group $G/[G,G]$ is always abelian. (The group $G/[G,G]$ is often called the abelianization of G. The next two exercises show that $[G,G]$ is the smallest normal subgroup of G such that quotienting by it gives an abelian group.)
 (e) Prove that if $\phi : G \to A$ is a group homomorphism of G to an abelian group A, then $[G,G] \subseteq \ker(\phi)$.
 (f) Suppose that N is a normal subgroup of G such that G/N is abelian. Prove that $[G,G] \subseteq N$.
 (g) Let G be the dihedral group, D_8, of order 8. Compute $[G,G]$ and $G/[G,G]$.

3. (10 pts) Let U be the subset of $GL(3,\mathbb{R})$ consisting of all elements which are upper triangular and with 1’s on the diagonal. Thus,

$$ U = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid a,b,c \in \mathbb{R} \right\}, $$
and let

\[V = \left\{ \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mid b \in \mathbb{R} \right\}. \]

(a) Prove that \(U \) is a subgroup of \(\text{GL}(3, \mathbb{R}) \).

(b) Prove that \(V \) is a normal subgroup of \(U \), and the quotient group \(U/V \) is isomorphic to the additive group \(\mathbb{R}^2 \). (Hint. Use the first isomorphism theorem).

4. (10 pts) Consider the action by conjugation of the group \(D_8 \) on itself. Thus, using the notation used in class, \(G = D_8 \), \(X = D_8 \), and the action is defined by \(g \cdot x = gxg^{-1} \) for all \(g \in G, x \in x \). List all the orbits of this action.