Assignment 3, due Oct 23.

October 2, 2018

1. Let \mathfrak{g} be a two dimensional Lie algebra. Prove that $\text{rad}(B_\mathfrak{g}) \neq \text{rad}(\mathfrak{g})$.

2. Prove that if \mathfrak{g} is a finite dimensional nilpotent Lie algebra over \mathbb{R}, then the Killing form of \mathfrak{g} is identically 0.

3. Show that if \mathfrak{g} is a solvable Lie algebra over \mathbb{R}, and \mathfrak{n} is its largest nilpotent ideal, the $\mathfrak{g}/\mathfrak{n}$ is abelian.

4. Let \mathfrak{g} be a complex Lie algebra of complex matrices, and suppose that \mathfrak{g} is simple over \mathbb{C}. Let $C(X,Y) = \text{Tr}(XY)$ for $X,Y \in \mathfrak{g}$. Prove that C is a multiple of the Killing form of \mathfrak{g}.

5. Write a complete proof of the PBW theorem.

6. Prove that for a complex finite dimensional semi-simple Lie algebra \mathfrak{g}, $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$.

7. Recall that if A is a \mathbb{C}-algebra, then a derivation $D : A \to A$ is a linear map satisfying $D(X \cdot Y) = D(X) \cdot Y + X \cdot D(Y)$. The set of derivations, $\text{Der}(A)$ form a Lie subalgebra of $\text{End}(A)$. Now let $A = \mathfrak{g}$ be a complex semi-simple Lie algebra.
 a) Prove that for $X \in \mathfrak{g}$, $\text{ad}X$ is a derivation.
 b) Prove that every derivation of \mathfrak{g} is of the form $\text{ad}X$ for some $X \in \mathfrak{g}$.
 c) Conclude that ad induces a Lie algebra isomorphism between \mathfrak{g} and $\text{Der}(\mathfrak{g})$.

8. Write a complete proof of the PBW theorem.

9. Let \mathfrak{g} be a finite dimensional complex Lie algebra, $R = U(\mathfrak{g})$, and V an R-module. Let $X_n = R \otimes_\mathbb{C} \wedge^n \mathfrak{g}$. Prove that the sequence of homomorphisms $\partial_{n-1} : X_n \to X_{n-1}$ defined in class gives a free resolution of the R-module \mathbb{C}.