Throughout, A denotes a commutative ring with an identity element, and unless specified otherwise all modules referred to below are A-modules.

1. Let k be a field, E, F two finite-dimensional vector spaces over k, and $u \in \text{Hom}_k(E, F)$. Identifying u with an element of $E^* \otimes F$, prove that $\text{rk}(u) = \dim \text{Im}(u)$.

2. Let E, F, G, H be four finite dimensional vector spaces over a field k and $u : E \rightarrow F, v : F \rightarrow G, w : G \rightarrow H$ be linear mappings. Prove that $\text{rk}(v \circ u) + \text{rk}(w \circ v) \leq \text{rk}(v) + \text{rk}(w \circ v \circ u)$.

3. (Cauchy determinant). If $a_i, b_j \in k$ are such that $a_i + b_j \neq 0$ for every ordered pair (i, j), prove that
 $$\det\left(\frac{1}{a_i + b_j}\right) = \prod_{i < j} (a_j - a_i)(b_j - b_i) / \prod_{i,j} (a_i + b_j).$$

4. Let X be an $n \times m$ matrix, and Y a $p \times n$ matrix with entries in a field k, and let $Z = YX$. Using notation for minors used in class prove that the minors of Z is given by
 $$\det(Z_{L,H}) = \sum_K \det(Y_{L,K}) \det(X_{K,H}),$$
 where L, H have cardinality $q \leq n$, and K runs through subsets of $[1, n]$ of cardinality q.

5. Let Δ be the determinant of a square matrix X of order n, and Δ_p the determinant of the square matrix $\wedge^p X$ (of order $\binom{n}{p}$). Prove that,
 $$\Delta_p \Delta_{n-p} = \Delta_{\binom{n}{p}}.$$

6. Let X be a matrix over a field k. For X to be of rank p, it suffices that there exists a minor of X of order p which is $\neq 0$ and such that all the minors of order $p+1$ containing this minor of order p are zero. (Note that the rank of a matrix is defined to be the rank of the corresponding linear map with respect to the standard bases.)

7. (Cayley’s formula for the determinant) Let M be an $n \times n$ matrix with entries in A. Prove that $\det(M)$ equals the sum of the following terms. The determinant of the matrix M with the diagonal entries replaced by 0, for each n choice of a diagonal entry m_{ii}, the product of m_{ii} with the determinant of the complementary $(n-1) \times (n-1)$ minor with the diagonal entries replaced by 0, for each of the $\binom{n}{2}$ choices of $m_{ij}, m_{jj}, i \neq j$, the product of $m_{ii}m_{jj}$ with the determinant of the complementary minor with diagonal
entries replaced by 0 and so on. In the case $n = 3$, the formula is the following:

$$
\begin{align*}
\det \begin{bmatrix}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{bmatrix} &= \\
\det \begin{bmatrix}
0 & m_{12} & m_{13} \\
m_{21} & 0 & m_{23} \\
m_{31} & m_{32} & 0
\end{bmatrix} + \\
m_{11} \det \begin{bmatrix}
0 & m_{31} \\
m_{32} & 0
\end{bmatrix} + m_{22} \det \begin{bmatrix}
0 & m_{13} \\
m_{31} & 0
\end{bmatrix} + m_{33} \det \begin{bmatrix}
0 & m_{12} \\
0 & 0
\end{bmatrix} + m_{11} m_{22} m_{33}.
\end{align*}
$$

(Note that there is a break in the sequence while passing from $(n-2)$-tuples of diagonal elements directly to the n-tuple (the terms involving $(n-1)$-tuples is equal to 0).