Throughout, A denotes a commutative ring with an identity element, and unless specified otherwise all modules referred to below are A-modules.

1. Let a_1, \ldots, a_p be ideals, $a = \sum_{i=1}^p a_i$, and for $1 \leq i \leq p$, $E_i = A/a_i$. Prove that,
\[E_1 \otimes_A \cdots \otimes_A E_p \cong A/a \]
as A-modules.

2. Suppose that $a_1 \subset \cdots \subset a_n$ is an ascending sequence of ideals of A, E the A-module $A/a_1 \oplus \cdots \oplus A/a_n$, and $1 \leq p \leq n$. Using Part (1) prove that, a_p is the annihilator ideal of $\wedge^p E$.

3. Let A be a PID, and let $U = (a_{ij}) \in A^{m \times n}$.
 (a) Suppose that the entries of U are set-wise coprime. Show that there exists two invertible matrices P and Q with entries in A such that one of the entries in the matrix PUQ is equal to 1.
 (b) If δ_1 is a gcd of the entries of U, show that there exist two invertible matrices P_1 and Q_1 such that
 \[P_1 U Q_1 = \begin{bmatrix} \delta_1 & 0 \\ 0 & U_1 \end{bmatrix}, \]
 where all entries of U_1 are divisible by δ_1 (use Part (3a)).
 (c) For $A = \mathbb{Z}$, use Part (3b) to obtain a method of calculating the invariant factors of an explicit matrix with entries in \mathbb{Z}. Apply this method to the matrix,
 \[
 \begin{bmatrix}
 6 & 8 & 4 & 24 \\
 12 & 12 & 18 & 30 \\
 18 & 4 & 4 & 10
 \end{bmatrix}.
 \]

4. Let C be a PID. Consider a finite system of linear equations $Ax = b$, where $A \in C^{m \times n}$. Prove that the system has at least one solution in C^n if and only if the following conditions are satisfied.
 (i) The matrices A and $B = [A|b]$ have the same rank p.
 (ii) The gcd of all minors of order p of A is equal to the gcd of all minors of order p of B.