ASSIGNMENT 8. DUE IN CLASS THUS MAR 21, 2019.

The goal of this multi-part assignment is to give a proof of the existence of \(p \)-Sylow subgroups. Recall from class, that if \(p \) is a prime number, and \(G \) a finite group, and \(r \) the largest power of \(p \) that divides \(|G|\), then a subgroup of \(G \) of order \(p^r \) is called a \(p \)-Sylow subgroup of \(G \). For the rest of the assignment \(p \) is a fixed prime number.

1. Let \(G \) be a finite group, \(H \) a normal subgroup of \(G \) of order \(p \). Suppose that \(G/H \) has a subgroup of order \(n \). Prove that \(G \) has a subgroup of order \(pn \). (Hint. Let \(K \) be the subgroup of \(G/H \) of order \(n \), and \(f : G \to G/H \) the canonical surjection. Consider the inverse image of \(K \) under \(f \).)

2. Prove that if \(Z \) is a finite abelian group, and \(p \) divides \(|Z|\), then \(Z \) contains an element whose order is \(p \). (Hint. Use induction on the order of \(Z \). Start with a non-identity element \(z \in Z \), and consider the subgroup \(Z' \) generated by \(z \). If this subgroup is equal to \(Z \), then ... Otherwise, if \(p \) divides \(|Z'|\), you can use the inductive hypothesis. If \(p \) does not divide \(|Z'|\), then consider the quotient group \(Z/Z' \), but be careful about what you conclude from the induction hypothesis in this case.)

3. Let \(G \) be a finite group such that \(p \) divides \(|G|\). Prove that \(G \) has a \(p \)-Sylow subgroup. (Hint. Use induction on \(|G|\). If \(|G| = p \), then there is nothing to prove. Otherwise, use the class equation discussed in class (unintended pun here). There are two cases. If there exists a stabilizer subgroup \(G_x, x \notin Z(G) \), whose order is divisible by \(p^r \) (where \(r \) is the largest power of \(p \) dividing \(G \)), then we are done since \(|G_x| < |G| \) (why ?). Else, prove that \(G \) has a non-trivial center whose order is divisible by \(p \). Apply part (2) to deduce that there exists a subgroup of order \(p \) contained in \(Z(G) \). This subgroup is a normal subgroup of \(G \) (why ?). Now proceed again using induction and part (1).)