1. (20 pts)
 (i) Let G be a group, H be a subgroup of G and $g \in G$. Suppose that $gHg^{-1} \subset H$.
 Is it always true that in this case $gHg^{-1} = H$?
 (ii) Is the group $GL(3, \mathbb{R})$ abelian?
 (iii) Is the group $GL(3, \mathbb{R})/SL(3, \mathbb{R})$ abelian?
 (iv) How many distinct subgroups does the group Z_{24} have?
 (v) How many elements of $Z_{10000000}$ have order 20?
 (vi) Let p be a prime number. Can a group of order p^3 be non-abelian?
 (vii) Is it always true that the center, $Z(G)$, of a group G is a normal subgroup of G?
 (viii) Is it true that every non-abelian group has a nontrivial center?
 (ix) Let p be a prime. Is it true that every group of order p^5 has a non-trivial center?
 (x) Let G be a finite abelian group. Is it true that the number of conjugacy classes of
 G is always strictly smaller than the order of G?
 (xi) Is the image of a group homomorphism $f : G \to H$ always a normal subgroup of H?
 (xii) Is the kernel of a group homomorphism always a normal subgroup of H?
 (xiii) Is it true that every normal subgroup of a group G is the kernel of some homo-
 morphism $f : G \to H$?
 (xiv) Is the quotient of a group of G by its center always an abelian group?
 (xv) Is the quotient of a group of G by its commutator subgroup always an abelian
 group?
 (xvi) Is the group of inner automorphisms of a group always an abelian group?
 (xvii) Let G be a acting on a set X, and $x, x' \in X$ such that $x \in \text{orbit}(x')$. Is it true that
 $G_x = G_{x'}$?
 (xviii) Let G be a acting on a set X, and $x, x' \in X$ such that $G_x = G_{x'}$?. Is it true that
 then $x = x'$?
 (xix) Let G be a finite group acting on a set X. Is it true that the number of orbits has
 to always divide the order of the group.
 (xx) Let G be a acting on a set X, and $x \in X$. Is it always true that G_x is a normal
 subgroup of G?

2. (2+8 pts)
 (a) State the class equation.
 (b) Using the class equation prove that if p is a prime, then every group whose order is
 a positive power of p has a nontrivial center.
3. (10 pts) Let G be a finite group acting on a set X. Prove that the number of orbits equals the quantity $\frac{1}{|G|} \sum_{g \in G} |X^g|$, where for $g \in G$, X^g denotes the number of fixed points of G.

4. (10 pts) Prove that for every $n \geq 1,$

$$n = \sum_{k|n} \phi(k),$$

where ϕ denotes the Euler totient function.

5. (2+8 pts) Let G be a group.
 (a) Define the groups of automorphisms and inner automorphisms of G.
 (b) Prove that the group of inner automorphisms of G is isomorphic to the quotient of G by its center.