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Abstract. Toda [36] proved in 1989 that the (discrete) polynomial
time hierarchy, PH, is contained in the class P#P, namely the class of
languages that can be decided by a Turing machine in polynomial time
given access to an oracle with the power to compute a function in the
counting complexity class #P. This result which illustrates the power of
counting is considered to be a seminal result in computational complex-
ity theory. An analogous result in the complexity theory over the reals
(in the sense of Blum-Shub-Smale real Turing machines [10]) has been
missing so far. In this paper we formulate and prove a real analogue of
Toda’s theorem. Unlike Toda’s proof in the discrete case, which relied
on sophisticated combinatorial arguments, our proof is topological in
nature. As a consequence of our techniques we are also able to relate
the computational hardness of two extremely well-studied problems in
algorithmic semi-algebraic geometry – namely the problem of deciding
sentences in the first order theory of the reals with a constant num-
ber of quantifier alternations, and that of computing Betti numbers of
semi-algebraic sets. We obtain a polynomial time reduction of the com-
pact version of the first problem to the second. This latter result might
be of independent interest to researchers in algorithmic semi-algebraic
geometry.

1. Introduction and Main Results

1.1. History and Background. In this paper we study the relationship
between the computational hardness of two important classes of problems in
algorithmic semi-algebraic geometry. Algorithmic semi-algebraic geometry
is concerned with designing efficient algorithms for deciding geometric as
well as topological properties of semi-algebraic sets. There is a large body
of research in this area (see [3] for background). If we consider the most
important algorithmic problems studied in this area (see for instance the
survey article [2]), it is possible to classify them into two broad sub-classes.
The first class consists of the problem of quantifier elimination, and its
special cases such as deciding a sentence in the first order theory of the reals,
or deciding emptiness of semi-algebraic sets (also often called the existential
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theory of the reals). The existence of algorithms for solving these problems
was first proved by Tarski [35] and later research has aimed at designing
algorithms with better complexities [29, 24, 23, 5].

The second class of problems in algorithmic semi-algebraic geometry that
has been widely investigated consists of computing topological invariants
of semi-algebraic sets, such as counting the number of connected compo-
nents, computing the Euler-Poincaré characteristic, and more generally all
the Betti numbers of semi-algebraic sets [14, 25, 22, 1, 7, 4]. Note that
the properties such as connectivity or the vanishing of some Betti number
of a semi-algebraic set is not expressible in first-order logic, and thus the
existence of algorithms for deciding such properties, is not an immediate
consequence of Tarski’s result but usually requires some additional topolog-
ical ingredients such as semi-algebraic triangulations or Morse theory etc.
Even though the most efficient algorithms for computing the Betti numbers
of a semi-algebraic set uses efficient algorithms for quantifier elimination in
an essential way [4, 6], the exact relationship between these two classes of
problems has not been clarified from the point of view of computational
complexity and doing so is one of the motivations of this paper.

The primary motivation for this paper comes from classical (i.e. discrete)
computational complexity theory. In classical complexity theory, there is a
seminal result due to Toda [36] linking the complexity of counting with that
of deciding sentences with a fixed number of quantifier alternations.

More precisely, Toda’s theorem gives the following inclusion (see Section
1.2 below or refer to [28] for precise definitions of the complexity classes
appearing in the theorem).

Theorem 1.1 (Toda [36]).

PH ⊂ P#P.

In other words, any language in the (discrete) polynomial hierarchy can
be decided by a Turing machine in polynomial time, given access to an oracle
with the power to compute a function in #P.

Remark 1.2. The proof of Theorem 1.1 in [36] is quite non-trivial. While it
is obvious that the classes P,NP, coNP are contained in P#P, the proof for
the higher levels of the polynomial hierarchy is quite intricate and proceeds
in two steps: first proving that the PH ⊂ BP · ⊕ ·P (using previous results
of Schöning [30], and Valiant and Vazirani [37]), and then showing that
BP · ⊕ · P ⊂ P#P. Aside from the obvious question about what should
be a proper analogue of the complexity class #P over the reals, because of
the presence of the intermediate complexity class in the proof, there seems
to be no direct way of extending such a proof to real complexity classes in
the sense of Blum-Shub-Smale model of computation [10, 31]. The proof of
the main theorem (Theorem 1.17) of this paper, which can be seen as a real
analogue of Theorem 1.1, proceeds along completely different lines and is
mainly topological in nature.
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In the late eighties Blum, Shub and Smale [10, 31] introduced the no-
tion of Turing machines over more general fields, thereby generalizing the
classical problems of computational complexity theory such as P vs NP
to corresponding problems over arbitrary fields (such as the real, complex,
p-adic numbers etc.) If one considers languages accepted by a Blum-Shub-
Smale machine over a finite field one recovers the classical notions of discrete
complexity theory. Over the last two decades there has been a lot of research
activity towards proving real as well as complex analogues of well known the-
orems in discrete complexity theory. The first steps in this direction were
taken by the authors Blum, Shub, and Smale (henceforth B-S-S) themselves,
when they proved the NPR-completeness of the problem of deciding whether
a real polynomial equation in many variables of degree at most four has a
real solution (this is the real analogue of Cook-Levin’s theorem that the sat-
isfiability problem is NP-complete in the discrete case), and subsequently
through the work of several researchers (Koiran, Bürgisser, Cucker, Meer
to name a few) a well-established complexity theory over the reals as well
as complex numbers have been built up, which mirrors closely the discrete
case.

From the point of view of computational complexity theory of real B-
S-S machines the classes PH and #P appearing in the two sides of the
inclusion in Theorem 1.1 can be identified with the two broad classes of
problems in algorithmic semi-algebraic geometry discussed previously, viz.
the polynomial hierarchy with the problem of deciding sentences with a
fixed number of quantifier alternations, and the class #P with the problem
of computing certain topological invariants of semi-algebraic sets, namely
their Betti numbers which generalize the notion of cardinality for finite sets.
(This naive intuition is made more precise in Section 1.2.2.) It is thus quite
natural to seek a real analogue of Toda’s theorem. Indeed, there has been
a large body of recent research on obtaining appropriate real (as well as
complex) analogues of results in discrete complexity theory, especially those
related to counting complexity classes (see [27, 11, 13, 12]).

In order to formulate such a result it is first necessary to define precisely
real counter-parts of the discrete polynomial time hierarchy PH and the
discrete complexity class #P, and this is what we do next.

1.2. Real counter-parts of PH and #P. For the rest of the paper R
will denote a real closed field (there is no essential loss in assuming that
R = R). By a real Turing machine we will mean a machine in the sense of
Blum-Shub-Smale [10]) over the ground field R.

Notational convention. Since in what follows we will be forced to deal with
multiple blocks of variables in our formulas, we follow a notational conven-
tion by which we denote blocks of variables by bold letters with superscripts
(e.g. Xi denotes the i-th block), and we use non-bold letters with subscripts
to denote single variables (e.g. Xi

j denotes the j-th variable in the i-th
block). We use xi to denote a specific value of the block of variables Xi.
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1.2.1. Real analogue of PH. We recall the definition of the polynomial hi-
erarchy for the reals. It mirrors the discrete case very closely (see [34]).

Definition 1.3 (The class PR). Let k(n) be any polynomial in n. A se-
quence of semi-algebraic sets (Tn ⊂ Rk(n))n>0 is said to belong to the class
PR if there exists a Turing machine M over R (see [10, 9]), such that for all
x ∈ Rk(n), the machine M tests membership of x in Tn in time bounded by
a polynomial in n.

Definition 1.4. Let k(n), k1(n), . . . , kω(n) be polynomials in n. A sequence
of semi-algebraic sets (Sn ⊂ Rk(n))n>0 is said to be in the complexity class
ΣR,ω, if for each n > 0 the semi-algebraic set Sn is described by a first order
formula

(1.1) (Q1Y1) · · · (QωYω)φn(X1, . . . , Xk(n),Y
1, . . . ,Yω),

with φn a quantifier free formula in the first order theory of the reals, and
for each i, 1 ≤ i ≤ ω, Yi = (Y i

1 , . . . , Y
i
ki(n)) is a block of ki(n) variables,

Qi ∈ {∃,∀}, with Qj 6= Qj+1, 1 ≤ j < ω, Q1 = ∃, and the sequence of semi-
algebraic sets (Tn ⊂ Rk(n)+k1(n)+···+kω(n))n>0 defined by the quantifier-free
formulas (φn)n>0 belongs to the class PR.

Similarly, the complexity class ΠR,ω is defined as in Definition 1.4, with
the exception that the alternating quantifiers in (1.1) start with Q1 = ∀.
Since, adding an additional block of quantifiers on the outside (with new
variables) does not change the set defined by a quantified formula we have
the following inclusions:

ΣR,ω ⊂ ΠR,ω+1, and ΠR,ω ⊂ ΣR,ω+1.

Note that by the above definition the class ΣR,0 = ΠR,0 is the familiar
class PR, the class ΣR,1 = NPR and the class ΠR,1 = co-NPR.

Definition 1.5 (Real polynomial hierarchy). The real polynomial time hi-
erarchy is defined to be the union

PHR
def=

⋃
ω≥0

(ΣR,ω ∪ΠR,ω) =
⋃
ω≥0

ΣR,ω =
⋃
ω≥0

ΠR,ω.

For technical reasons (see Remark 2.13) we need to restrict to compact
semi-algebraic sets, and for this purpose, we will now define a compact
analogue of PHR that we will denote PHc

R.

Definition 1.6. We call K ⊂ Rn a semi-algebraic compact if it is a
closed and bounded semi-algebraic set. (Note that if R 6= R, K is not
necessarily compact in the order topology.)

Notation 1.7. We denote by Bk(0, r) the closed ball in Rk of radius r
centered at the origin. We will denote by Bk the closed unit ball Bk(0, 1).
Similarly, we denote by Sk(0, r) the sphere in Rk+1 of radius r centered at
the origin, and by Sk the unit sphere Sk(0, 1).
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We now define our compact analogue PHc
R of the real polynomial hier-

archy PHR. Unlike in the non-compact case, we will assume all variables
vary over certain compact semi-algebraic sets (namely spheres of varying
dimensions).

Definition 1.8 (Compact real polynomial hierarchy). Let

k(n), k1(n), . . . , kω(n)

be polynomials in n. A sequence of semi-algebraic sets (Sn ⊂ Sk(n))n>0 is
in the complexity class Σc

R,ω, if for each n > 0 the semi-algebraic set Sn is
described by a first order formula

(Q1Y1 ∈ Sk1(n)) · · · (QωYω ∈ Skω(n))φn(X0, . . . , Xk(n),Y
1, . . . ,Yω),

with φn a quantifier-free first order formula defining a closed semi-algebraic
subset of Sk1(n) × · · · × Skω(n) × Sk(n) and for each i, 1 ≤ i ≤ ω, Yi =
(Y i

0 , . . . , Y
i
ki

) is a block of ki(n) + 1 variables, Qi ∈ {∃, ∀}, with Qj 6=
Qj+1, 1 ≤ j < ω, Q1 = ∃, and the sequence of semi-algebraic sets (Tn ⊂
Sk1(n)× · · · ×Skω(n)×Sk(n))n>0 defined by the formulas (φn)n>0 belongs to
the class PR.

Example 1.9. The following is an example of a language in Σc
R,1 (i.e. the

compact version of NPR).
Let k(n) =

(
n+4

4

)
− 1 and identify Rk(n)+1 with the space of homogeneous

polynomials in R[X0, . . . , Xn] of degree 4. Let Sn ⊂ Sk(n) ⊂ Rk(n)+1 be
defined by

Sn = {P ∈ Sk(n) | ∃x = (x0 : · · · : xn) ∈ PnR with P (x) = 0};

in other words Sn is the set of (normalized) real forms of degree 4 which
have a zero in the real projective space PnR. Then

(Sn ⊂ Sk(n))n>0 ∈ Σc
R,1,

since it is easy to see that Sn also admits the description:

Sn = {P ∈ Sk(n) | ∃x ∈ Sn with P (x) = 0}.

Note that it is not known if (Sn ⊂ Sk(n))n>0 is NPR-complete (see Re-
mark 1.10), while the non-compact version of this language i.e. the language
consisting of (possibly non-homogeneous) polynomials of degree at most four
having a zero in An

R (instead of PnR), has been shown to be NPR-complete
[9].

We define analogously the class Πc
R,ω, and finally define the compact

real polynomial time hierarchy to be the union

PHc
R

def=
⋃
ω≥0

(Σc
R,ω ∪Πc

R,ω) =
⋃
ω≥0

Σc
R,ω =

⋃
ω≥0

Πc
R,ω.
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Notice that the semi-algebraic sets belonging to any language in PHc
R are

all semi-algebraic compact (in fact closed semi-algebraic subsets of spheres).
Also, note the inclusion

PHc
R ⊂ PHR.

Remark 1.10. Even though the restriction to compact semi-algebraic sets
might appear to be only a technicality at first glance, this is actually an
important restriction. For instance, it is a long-standing open question
in real complexity theory whether there exists an NPR-complete problem
which belongs to the class Σc

R,1 (the compact version of the class NPR, see
Example 1.9). (This distinction between compact and non-compact versions
of complexity classes does not arise in discrete complexity theory for obvious
reasons.) It is an interesting question whether the main theorem of this
paper can be extended to the full class PHR. For technical reasons which
will become clear later in the paper (Remark 2.13) we are unable to achieve
this presently.

1.2.2. Real Analogue of #P. Before defining the real analogue of the class
#P, let us recall its definition in the discrete case which is well known.

km

Lm+n

knx

Lm+n,x

Figure 1. The fibers Lm+n,x of the language L

Definition 1.11. Let k = Z/2Z. We say that a sequence of functions

(fn : kn → N)n>0

is in the class #P if there exists a language

L =
⋃
n>0

Ln, Ln ⊂ kn, with L ∈ P

as well as a polynomial m(n), such that

fn(x) = card(Lm+n,x)



7

for each x ∈ kn, where Lm+n,x = Lm+n ∩ π−1(x) and π : km+n → kn is the
projection along the first m co-ordinates.

In other words, fn counts the number of points in the fibers, Lm+n,x, of
a language L belonging to the (discrete) complexity class P (see Figure 1).
(The geometric language used above might look unnecessary but it is very
helpful towards obtaining the right analogue in the real case.)

In order to define real analogues of counting complexity classes of discrete
complexity theory, it is necessary to identify the proper notion of “counting”
in the context of semi-algebraic geometry. Counting complexity classes over
the reals have been defined previously by Meer [27], and studied extensively
by other authors [12]. These authors used a straightforward generalization
to semi-algebraic sets of counting in the case of finite sets – namely the
counting function took the value of the cardinality of a semi-algebraic set if
it happened to be finite, and ∞ otherwise. This is in our view not a fully
satisfactory generalization since the count gives no information when the
semi-algebraic set is infinite, and most interesting semi-algebraic sets have
infinite cardinality. Moreover, no real analogue of Toda’s theorem has been
proved using this definition of counting.

If one thinks of “counting” a semi-algebraic set S ⊂ Rk as computing a
certain discrete invariant, then a natural well-studied discrete topological
invariant of S is its Euler-Poincaré characteristic. For a closed and bounded
semi-algebraic set S the Euler-Poincaré characteristic, χ(S), is the alternat-
ing sum of the Betti numbers of S, and it is possible to extend this defi-
nition to the class of all semi-algebraic sets by additivity. This generalized
Euler-Poincaré characteristic gives an isomorphism from the Grothendieck
ring of semi-algebraic sets to Z, and thus corresponds to a mathemat-
ically natural notion of counting semi-algebraic sets. However, the Euler-
Poincaré characteristic fails to distinguish between empty and non-empty
semi-algebraic sets, since a non-empty semi-algebraic set (e.g. an odd di-
mensional sphere) can have have vanishing Euler-Poincaré characteristic.
This seems to immediately rule out using the Euler-Poincaré characteristic
as a substitute for the counting function. We make up for this deficiency
by replacing the Euler-Poincaré characteristic by the Poincaré polynomial
PS(T ) of the set S. We now recall the relevant definitions.

Notation 1.12. For any semi-algebraic set S ⊂ Rk we denote by bi(S)
the i-th Betti number (that is the rank of the singular homology group
Hi(S) = Hi(S,Z)) of S.

We also let PS ∈ Z[T ] denote the Poincaré polynomial of S, namely

(1.2) PS(T ) def=
∑
i≥0

bi(S) T i.

Notice that for S ⊂ Rk, deg(PS) ≤ k − 1. Also, it is easy to see
that the Poincaré polynomial, PS(T ), carries more complete information



8 SAUGATA BASU AND THIERRY ZELL

about S than its Euler-Poincaré characteristic. Indeed, the number of semi-
algebraically connected components, b0(S), of S is obtained by setting T to
0, and in case S is closed and bounded we also recover χ(S) by setting T
to −1 in PS(T ). Since b0(S) > 0 if and only if S is non-empty, PS , unlike
χ(S), can distinguish between empty and non-empty semi-algebraic sets. In
particular, in case S is a finite set of points, PS also contains the information
regarding the cardinality of S which in this case equals b0(S) = PS(0).

Remark 1.13. The connection between counting points of varieties and their
Betti numbers is more direct over fields of positive characteristic via the zeta
function. The zeta function of a variety defined over Fp is the exponential
generating function of the sequence whose n-th term is the number of points
in the variety over Fpn . The zeta function of such a variety turns out to be
a rational function in one variable (a deep theorem of algebraic geometry
first conjectured by Andre Weil [38] and proved by Dwork [18] and Deligne
[16, 17]), and its numerator and denominator are products of polynomials
whose degrees are the Betti numbers of the variety with respect to a certain
(`-adic) co-homology theory. The point of this remark is that the problems
of “counting” varieties and computing their Betti numbers, are connected
at a deeper level, and thus our choice of definition for a real analogue of #P
is not altogether ad hoc.

The above considerations motivate us to depart from the definition of
#PR considered previously in [27, 12]. We denote our class #P†R to avoid
any possible confusion with these authors’ work.

Definition 1.14 (The class #P†R). We say a sequence of functions

(fn : Rn → Z[T ])n>0

is in the class #P†R, if there exists a language

(Sn ⊂ Rn)n>0 ∈ PR,

as well as a polynomial m(n), such that

fn(x) = PSm+n,x

for each x ∈ Rn, where Sm+n,x = Sm+n ∩ π−1(x) and π : Rm+n → Rn is the
projection along the first m co-ordinates.

Remark 1.15. Notice the formal similarity between Definitions 1.14 and 1.11,
namely that in both cases the functions fn “counts” the fibers above x, but
the notion of counting is different in each case.

Remark 1.16. We make a few remarks about the class #P†R defined above.
First of all notice that the class #P†R is quite robust. For instance, given
two sequences (fn)n>0, (gn)n>0 ∈ #P†R it follows (by taking disjoint union
of the corresponding semi-algebraic sets) that (fn + gn)n>0 ∈ #P†R, and
also (fngn)n>0 ∈ #P†R (by taking Cartesian product of the corresponding
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semi-algebraic sets and using the multiplicative property of the Poincaré
polynomials, which itself is a consequence of the Kunneth formula in homol-
ogy theory.)

Secondly, note that while it is still an open question whether the Poincaré
polynomials of semi-algebraic sets can be computed in single exponential
time, there exists single exponential time algorithms to calculate its first
few (i.e. a constant number of) coefficients (or equivalently the first few
Betti numbers of a given semi-algebraic) [6]. Also, it is known that the
closely related invariant, namely the Euler-Poincaré characteristic can be
computed in single exponential time [1, 8]. The reader is referred to the
survey article [2] for a more detailed account of the state-of-the-art ragarding
these algorithmic problems.

1.3. Statements of the main theorems. We can now state the main
result of this paper.

Theorem 1.17 (Real analogue of Toda’s theorem).

PHc
R ⊂ P

#P†R
R .

Remark 1.18. We leave it as an open problem to prove Theorem 1.17 with
PHR instead of PHc

R on the left hand side. One possible approach would
be to use the recent results of Gabrielov and Vorobjov [20] on replacing
arbitrary semi-algebraic sets by compact semi-algebraic sets in the same
homotopy equivalence class using infinitesimal deformations. However, for
such a construction to be useful in our context, one would need to effectively
(i.e. in polynomial time) replace the infinitesimals used in the construction
by small enough positive elements of R, and at present we are unable to
achieve this.

As a consequence of our method, we obtain a reduction (Theorem 1.21)
that might be of independent interest. We first define the following two
problems:

Definition 1.19. (Compact general decision problem with at most ω quan-
tifier alternations (GDPc

ω))
Input. A sentence Φ in the first order theory of R

(Q1X1 ∈ Sk1) · · · (QωXω ∈ Skω)φ(X1, . . . ,Xω),

where for each i, 1 ≤ i ≤ ω, Xi = (Xi
0, . . . , X

i
ki

) is a block of ki + 1
variables, Qi ∈ {∃, ∀}, with Qj 6= Qj+1, 1 ≤ j < ω, and φ is a
quantifier-free formula defining a closed semi-algebraic subset S of
Sk1 × · · · × Skω .

Output. True or False depending on whether Φ is true or false in the first
order theory of R.

Definition 1.20. (Computing the Poincaré polynomial of semi-algebraic
sets (Poincaré))
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Input. A quantifier-free formula defining a semi-algebraic set S ⊂ Rk.
Output. The Poincaré polynomial PS(T ).

Theorem 1.21. For every ω > 0, there is a deterministic polynomial time
reduction in the Blum-Shub-Smale model of GDPc

ω to Poincaré.

1.4. Summary of the main ideas. Our main tool is a topological con-
struction described in Section 3, which, given a semi-algebraic set S ⊂ Rm+n,
p ≥ 0, and πY : Rm+n ⊂ Rn the projection along (say) the Y co-ordinates,
constructs efficiently a semi-algebraic set, Dp

Y(S), such that

(1.3) bi(πY(S)) = bi(D
p
Y(S)), 0 ≤ i < p

(in fact, for technical reasons we need two different constructions depending
on whether S is an open or a closed semi-algebraic set, but we prefer to
ignore this point in this rough outline). An infinitary version of such a
construction (and indeed some of the basic ideas behind this construction)
is described in [21]. However, the main goal in [21] was to obtain upper
bounds on the Betti numbers of semi-algebraic (as well as semi-Pfaffian)
sets defined by quantified formulas, and this is achieved by bounding the
Betti numbers of certain sets appearing in the E1 term of a certain (the so
called “descent”) spectral sequence which is guaranteed to converge to the
homology of the given set.

In this paper we need to be able to recover exactly (not just bound) the
Betti numbers of πY(S) from those of Dp

Y(S). Moreover, it is very important
in our context that membership in the semi-algebraic set Dp

Y(S) should be
checkable in polynomial time, given that the same is true for S. Notice that
even if there exists an efficient (i.e. polynomial time) algorithm for checking
membership in S, the same need not be true for the image πY(S).

We will now illustrate how the Dp
Y(S) construction connects decision

problems in the compact real polynomial hierarchy to the computation of
Betti numbers of semi-algebraic sets, by looking at the special case of one
and two quantifier alternations.

1.4.1. Case of one quantifier. First consider the class Σc
R,1. Consider a

closed semi-algebraic set S ⊂ Sk × S` defined by a quantifier-free formula
φ(X,Y) and let

πY : Sk × S` → Sk

be the projection map along the Y variables.
Then the formula

Φ(X) = ∃Y φ(X,Y)
is satisfied by x ∈ Sk if and only if b0(Sx) 6= 0, where Sx = S ∩ π−1

Y (x).
Thus, the problem of deciding the truth of Φ(x) is reduced to computing a
Betti number (the 0-th) of the fiber of S over x.

Now consider the class Πc
R,1. Using the same notation as above we have

that the formula
Ψ(X) = ∀Y φ(X,Y)
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is satisfied by x ∈ Sk if and only if the formula

¬Ψ(X) = ∃Y ¬φ(X,Y)

does not hold, which means, according to the previous case, that we have
b0(S` \ Sx) = 0, which is equivalent to b`(Sx) = 1. Notice that, as before,
the problem of deciding the truth of Ψ(x) is reduced to computing a Betti
number (the `-th) of the fiber of S over x.

1.4.2. Case of two quantifiers. Proceeding to a slightly more non-trivial
case, consider the class Πc

R,2 and let S ⊂ Sk × S` × Sm be a closed semi-
algebraic set defined by a quantifier-free formula φ(X,Y,Z) and let

πZ : Sk × S` × Sm → Sk × S`

be the projection map along the Z variables, and

πY : Sk × S` → Sk

be the projection map along the Y variables as before. Consider the formula

Φ(X) = ∀Y ∃Z φ(X,Y,Z).

This formula can be recast as:

Φ(X) = ∀Y (X,Y) ∈ πZ(S).

Thus, for any x ∈ Sk, Φ(x) holds if and only if we have the following
situation:

S
� � //

πZ
��

Sk × S` × Sm

πZ

��

{x} × S` � � //

πY

''NNNNNNNNNNN
πZ(S) � � //

πY
��

Sk × S`

πY

��

x ∈ πY,Z(S) � � // Sk

i.e. if and only if the πY fiber (πZ(S))x is equal to S`. This can be formulated
in terms of Betti numbers by the condition:

b` ((πZ(S))x) = 1.

The construction mentioned in (1.3) gives, for p = `+ 1, the existence of a
semi-algebraic set D`+1

Z (S) such that b`(D`+1
Z (S)) = b`(πZ(S)). Fortunately,

the construction of the set D`+1
Z (S) is compatible with taking fibers, so that

we have, for all x ∈ Sk,

b` ((πZ(S))x) = b`

(
D`+1

Z (S)x
)
.

Thus for any x ∈ Sk, the truth or falsity of Φ(x) is determined by a certain
Betti number of the fiber D`+1

Z (S)x over x of a certain semi-algebraic set
D`+1

Z (S) which can be constructed efficiently in terms of the set S. The
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idea behind the proof of the main theorem is a recursive application of the
above argument in case when the number of quantifier alternations is larger
(but still bounded by some constant) while keeping track of the growth in
the sizes of the intermediate formulas and also the number of quantified
variables.

The rest of the paper is organized as follows. In Section 2 we fix nota-
tion, and prove the topological results needed for the proof of the two main
theorems. In Section 3 we describe the semi-algebraic construction of the
sets Dp

Y(S) alluded to above and prove its important properties. We prove
the main theorems in Section 4.

2. Topological Ingredients

We first fix a notation.

Notation 2.1. For each p ≥ 0 we denote

∆p = {(t0, . . . , tp) | ti ≥ 0, 0 ≤ i ≤ p,
p∑
i=0

ti = 1}

the standard p-simplex.

We now describe some constructions in algebraic topology which will be
useful later in the paper.

2.1. Properties of the join. We first recall the definition of the join of
two topological spaces X and Y .

Definition 2.2. The join J(X,Y ) of two topological spaces X and Y is
defined by

(2.1) J(X,Y ) def= X × Y ×∆1/ ∼,
where

(x, y, t0, t1) ∼ (x′, y′, t0, t1)
if t0 = 1, x = x′ or t1 = 1, y = y′.

X

Y

J(X, Y )

Figure 2. Join of two segments

Intuitively, J(X,Y ) is obtained by joining each point of X with each point
of Y by a unit interval (see Figure 2).
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Example 2.3. It is easy to check from the above definition that the join,
J(Sm,Sn), of two spheres is again (homeomorphic to) a sphere, namely
Sm+n+1.

By iterating the above definition with the same space X we obtain

Definition 2.4. For p ≥ 0 the (p+ 1)-fold join Jp(X) of X is

(2.2) Jp(X) def= X × · · · ×X︸ ︷︷ ︸
(p+1) times

×∆p/ ∼,

where
(x0, . . . , xp, t0, . . . , tp) ∼ (x′0, . . . , x

′
p, t0, . . . , tp)

if for each i with ti 6= 0, xi = x′i.

Example 2.5. Using Example 2.3 it is easy to see that the (p+1)-fold join,
Jp(S0), of the zero dimensional sphere is homeomorphic to Sp.

We will need the fact that the iterated join of a topological space is highly
connected. In order to make this statement precise we first define

Definition 2.6 (p-equivalence). A map f : A→ B between two topological
spaces is called a p-equivalence if the induced homomorphism

f∗ : Hi(A)→ Hi(B)

is an isomorphism for all 0 ≤ i < p, and an epimorphism for i = p, and
we say that A is p-equivalent to B. (Note that p-equivalence is not an
equivalence relation : e.g. for any p ≥ 0, the map taking Sp to a point is a
p-equivalence, but no map from a point into Sp is one).

Observe from Example 2.5 that Jp(S0) ∼= Sp is p-equivalent to a point.
In fact, this holds much more generally and we have that

Theorem 2.7. Let X be a compact semi-algebraic set. Then, the (p+1)-fold
join Jp(X) is p-equivalent to a point.

Proof. This is classical (see for instance [26, Proposition 4.4.3]). �

2.2. Join over a map. In our application we need the join construction
over certain class of maps (to be specified later). We first recall the notion
of a fibered product of a topological space.

Notation and definition 2.8. Let f : A→ B be a map between topological
spaces A and B. For each p ≥ 0, We denote by W p

f (A) the (p + 1)-fold
fiber product of A over f . In other words

W p
f (A) = {(x0, . . . , xp) ∈ Ap+1 | f(x0) = · · · = f(xp)}.

Definition 2.9 (Topological join over a map). Let f : A → B be a map
between topological spaces A and B. For p ≥ 0 the (p+ 1)-fold join Jpf (A)
of A over f is

(2.3) Jpf (A) def= W p
f (A)×∆p/ ∼,
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where
(x0, . . . , xp, t0, . . . , tp) ∼ (x′0, . . . , x

′
p, t0, . . . , tp)

if for each i with ti 6= 0, xi = x′i.

We now impose certain conditions on the map f .

2.3. Compact Coverings. Recall that we call K ⊂ Rn a semi-algebraic
compact if it is a closed and bounded semi-algebraic set.

Notation 2.10. For any semi-algebraic A ⊂ Rn, we denote by K(A) the
collection of all semi-algebraic compact subsets of A.

Definition 2.11. Let f : A → B be a semi-algebraic map. We say that
f covers semi-algebraic compacts if for any L ∈ K(f(A)), there exists
K ∈ K(A) such that f(K) = L.

The following theorem relates the topology of Jp(A) to that of the image
of f in the case when f covers semi-algebraic compacts and is crucial for
what follows.

Theorem 2.12. Let f : A → B be a semi-algebraic map that covers semi-
algebraic compacts. Then for every p ≥ 0, the map f induces a p-equivalence
J(f) : Jpf (A)→ f(A).

Proof. We begin with the case A ∈ K(Rn). Let J(f) : Jpf (A)→ f(A) be the
map given by

J(f)(x0, . . . , xp, t0, . . . , tp) = f(x0).
The map J(f) is well defined since (x0, . . . , xp) ∈ W p

f (A), and is closed
since Jpf (A) is a semi-algebraic compact. Moreover, the fibers of J(f) are
p-equivalent to a point by Theorem 2.7.

Thus, by the Vietoris-Begle theorem [32], the map J(f) induces isomor-
phisms

J(f)∗ : Hi(J
p
f (A))→ Hi(f(A));

for 0 ≤ i < p. Note that in the case R 6= R, the validity of the Vietoris-
Begle theorem can be seen as a corollary of the existence of a semi-algebraic
co-homology that satisfies the Eilenberg-Steenrod axioms for a Čech theory
(see [19]).

In the general case, consider K1 ⊂ K2 two semi-algebraic compacts in
K(A). The inclusion gives rise to the following diagram,

Jpf (K1) � � i //

J(f |K1
)

��

Jpf (K2)

J(f |K2
)

��

f(K1) � � j
// f(K2)

where the vertical maps are p-equivalence by the previous case. We have
a similar diagram at the homology level; if we take the direct limit as K
ranges in K(A), we obtain the following:
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lim
−→

Hi(J
p
f (K)) ∼= //

lim
−→

J(f |K)

��

Hi(J
p
f (A))

J(f)

��

lim
−→

Hi(f(K)) ∼= // Hi(f(A))

The isomorphism on the top level comes from the fact that homology and
direct limit commute [33], along with the fact that for a semi-algebraic
set, one can compute the homology using chains supported exclusively on
semi-algebraic compacts [15]. For the bottom isomorphism, we need the
additional fact that since we assume that f covers semi-algebraic compacts,
we have

lim
−→
{Hi(f(K)) | K ∈ K(A)} = lim

−→
{Hi(L) | L ∈ K(B)}.

Since each J(f |K) is a p-equivalence, the vertical homomorphisms are iso-
morphisms for 0 ≤ i < p, and an epimorphisms for i = p. �

Remark 2.13. Theorem 2.12 requires that the map f covers semi-algebraic
compacts. This condition is satisfied for a projection in the case the set A
is either open or compact. Note also that Theorem 2.12 is not true without
the assumption that f covers semi-algebraic compacts, which is why, in this
paper, we restrict our attention to the compact polynomial hierarchy.

2.4. Alexander-Lefshetz duality. We will also need the classical Alexander-
Lefshetz duality theorem in order to relate the Betti numbers of a compact
semi-algebraic subset of a sphere to those of its complement.

Theorem 2.14 (Alexander-Lefshetz duality). Let K ⊂ Sn be a compact
semi-algebraic subset with n ≥ 2. Then

b0(K) = 1 + bn−1(Sn −K)− bn(Sn −K),
bi(K) = bn−i−1(Sn −K), 1 ≤ i ≤ n− 2,

bn−1(K) = b0(Sn −K)− 1 + max(1− b0(Sn −K), 0),
bn(K) = 1−min(1, b0(Sn −K)).

Proof. Lefshetz duality theorem [33] gives for each i, 0 ≤ i ≤ n,

bi(Sn −K) = bn−i(Sn,K).

The theorem now follows from the long exact sequence of homology,

· · · → Hi(K)→ Hi(Sn)→ Hi(Sn,K)→ Hi−1(K)→ · · ·

after noting that Hi(Sn) = 0, i 6= 0, n and H0(Sn) = Hn(Sn) = Z. �
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3. Semi-algebraic Constructions

In this section we describe the semi-algebraic construction that lies at the
heart of the proof of our main theorem, and prove its important properties.

Let S ⊂ Sk×S` be a subset defined by a first-order formula Φ(X,Y), and
let πY denote the projection along the Y co-ordinates. Note that X and
Y are the free variables in Φ, the formula being considered may have any
number of quantified blocks of variables (Z1, . . . ,Zω). This will be addressed
explicitly in Lemma 3.6.

We now define semi-algebraic sets having the same homotopy type as
the join space JπY(S) in the case when S is a closed (respectively open)
semi-algebraic subset of Sk × S`.

Notation and definition 3.1. Let S ⊂ Sk × S`, Φ(X,Y), and πY be as
above. If S is closed, we denote by Dp

Y,c(S) the semi-algebraic set defined
by

Dp
Y,c(S) def= {(u,x,y0, . . . ,yp, t) | x ∈ Sk, t ∈ ∆p,

for each i, 0 ≤ i ≤ p,yi ∈ B`+1, (ti = 0) ∨ Φ(x,yi),(3.1)

u2 + |x|2 +
p∑
i=0

|yi|2 + |t|2 = p+ 4, and u ≥ 0}.

Notice that Dp
Y,c(S) is a closed semi-algebraic subset of the upper hemi-

sphere of the sphere SN (0, p+ 4), where N = (k + 1) + (p+ 1)(`+ 2).
We will denote by Dp

Y,c(Φ) the first-order formula defining the semi-
algebraic set Dp

Y,c(S), namely

(3.2) Dp
Y,c(Φ) def= Θ1(T )∧Θ2(X,Y0, . . . ,Yp,T)∧Θ3(U0,X,Y0, . . . ,Yp,T)

where

Θ1
def= (

p∧
i=0

Ti ≥ 0) ∧ (
p∑
i=0

Ti = 1),

Θ2
def= ((|X|2 = 1)

p∧
i=0

((|Yi|2 ≤ 1) ∧ ((Ti = 0) ∨ Φ(X,Yi))),

Θ3
def= (U2

0 + |X|2 +
p∑
i=0

|Yi|2 + |T|2 = p+ 4) ∧ (U0 ≥ 0).

We have a similar construction in case S is an open subset of Sk ×S`. In
this case we thicken the various faces of the standard simplex ∆p (see Figure
3) so that they become convex open subsets of Rp+1, but maintaining the
property that a subset of these thickened faces have a non-empty intersection
if and only if the closures of the corresponding faces in ∆p had a non-empty
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intersection. In this way we ensure that our construction produces an open
subset of a sphere, while having again the homotopy type of the join space.

T0

T1

∆1

Thickened 1-simplex

Thickened 0-simplices

Figure 3. Thickening of the simplex ∆1.

Notation and definition 3.2. Let S ⊂ Sk × S` be an open subset defined
by the first-order formula Φ(X,Y), and let πY denote the projection along
the Y co-ordinates.

We will denote by Dp
Y,o(Φ) the following first-order formula.

(3.3) Dp
Y,o(Φ) def= Θ1(T)∧Θ2(X,Y0, . . . ,Yp,T)∧Θ3(U0,X,Y0, . . . ,Yp,T)

where

Θ1
def= (

p∧
i=0

Ti > 0) ∧ (1− 1
2(p+ 1)

<

p∑
i=0

Ti < 1 +
1

2(p+ 1)
),

Θ2
def=

p∧
i=0

((|Yi|2 < 3/2) ∧ ((Ti <
1

2(p+ 1)
∨ Φ+(X,Yi))),

Θ3
def= (U2

0 + |X|2 +
p∑
i=0

|Yi|2 + |T|2 = 2p+ 4) ∧ (U0 > 0)

and

Φ+(X,Y) def= (1/2 < |X|2 < 3/2) ∧ (1/2 < |Y|2 < 3/2) ∧ Φ(X/|X|,Y/|Y|).

We will denote by Dp
Y,o(S) the semi-algebraic set defined by Dp

Y,o(Φ). No-
tice that Dp

Y,o(S) is an open subset of the upper hemisphere of the sphere
SN (0, 2p+ 4), where N = (k + 1) + (p+ 1)(`+ 2).

We now prove some important properties of the sets Dp
Y,c(S), Dp

Y,o(S)
defined above as well as of the formulas Dp

Y,c(Φ), Dp
Y,o(Φ) defining them.



18 SAUGATA BASU AND THIERRY ZELL

Proposition 3.3 (Polynomial time computability). Suppose there exists a
polynomial time real Turing machine M which recognizes the sequence of
semi-algebraic sets (Sn)n>0 defined by the sequence of first order formulas

(Φn(X0, . . . , Xk(n), Y0, . . . , Y`(n))n>0, k, ` = nO(1))

where for each n > 0, Φn defines a closed (respectively open) semi-algebraic
subset Sn of Sk(n) × S`(n). Then there exists a polynomial time real Turing
machine M ′ recognizing the semi-algebraic sets defined by (Dp

Y,c(Φn))n>0

(respectively (Dp
Y,o(Φn))n>0).

Proof. Clear from the construction of the formulas (Dp
Y,c(Φn))n>0 (respec-

tively (Dp
Y,o(Φn))n>0). �

We now prove an important topological property of the semi-algebraic
sets Dp

Y,c(S), Dp
Y,o(S) defined above.

Proposition 3.4 (Homotopy equivalence to the join). Let S ⊂ Sk × S`

be a closed (respectively, open) subset of Sk × S` defined by a first-order
formula Φ(X,Y), and let πY denote the projection along the Y co-ordinates.
Then for all p ≥ 0, JpπY(S) is homotopy equivalent to Dp

Y,c(S) (respectively,
Dp

Y,o(S) ).

Proof. Suppose S is a closed subset of Sk × S` and let

g : Dp
Y,c(S)→ JpπY(S)

be the map which takes a point (u,x,y0, . . . ,yp, t) ∈ Dp
Y,c(S) to the equiva-

lence class represented by the point ((x,y0), . . . , (x,yp), t) in JpπY(S). From
the definition of the spaces Dp

Y,c(S) and JpπY(S), we have that the inverse
image under g of a point represented by ((x,y0), . . . , (x,yp), t) in JpπY(S) is
given by

g−1(((x,y0), . . . , (x,yp), t)) = {(u,x, z0, . . . , zp, t) | for each i, 0 ≤ i ≤ p,

zi ∈ B`+1 and zi = yi if ti 6= 0, u2 + |x|2 +
p∑
i=0

|zi|2 + |t2| = p+ 4, u ≥ 0}.

It is easy to see from the above formula that the inverse image under g
of each point of JpπY(S) is homeomorphic to a product of balls and hence
contractible. The proposition now follows from the Vietoris-Begle theorem.

The open case is proved analogously after an infinitesimal retraction re-
ducing it to the closed case. �

As an immediate corollary we obtain

Corollary 3.5. Let S ⊂ Sk × S` be a closed (respectively, open) subset of
Sk×S` defined by a first-order formula Φ(X,Y), and let πY denote the pro-
jection along the Y co-ordinates. Then for all p ≥ 0, Dp

Y,c(S) (respectively,
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Dp
Y,o(S)) is p-equivalent to πY(S), and

bi(D
p
Y,c(S)) = bi(πY(S))

(respectively, bi(D
p
Y,o(S)) = bi(πY(S)) ) for 0 ≤ i < p.

Proof. Since S is either an open or closed subset of Sk × S` it is clear that
the projection map πY covers semi-algebraic compacts. Now apply Theorem
2.12. �

We now show how the formulas Dp
Y,c(Φ) and Dp

Y,o(Φ) can be rewritten
when the formula Φ involves quantified blocks of variables.

Lemma 3.6. Suppose the first-order formula Φ(X,Y) is of the form

Φ def= (Q1Z1 ∈ Sk1)(Q2Z2 ∈ Sk2) . . . (QωZω ∈ Skω)Ψ(X,Y,Z1, . . . ,Zω)

with Qi ∈ {∃, ∀}, and Ψ a quantifier-free first order formula. Let πY denote
the projection along the Y coordinates. Then, for each p ≥ 0 the formula

Dp
Y,∗(Φ)(X,Y0, . . . ,Yp,T)

(where ∗ denotes either c or o) is equivalent to the formula

D̄p
Y,∗(Φ) def= (Q1Z1,0 ∈ Sk1 , . . . , Q1Z1,p ∈ Sk1)

(Q2Z2,0 ∈ Sk2 , . . . , Q2Z2,p ∈ Sk2)
...

(QωZω,0 ∈ Skω , . . . , QωZω,p ∈ Skω)
(Dp

Y,∗(Ψ)(X,Y0, . . . ,Yp,Z1,0, . . . ,Zω,p, T0, . . . , Tp)),

where Yi = (Y i
0 , . . . , Y

i
` ) and Zj,i = (Zj,i0 , . . . , Zj,ikj

) for 0 ≤ i ≤ p, 1 ≤ j ≤ ω,
and πY is the projection along the Y co-ordinates.

Proof. It follows from the structure of the formulaDp
Y,∗(Φ)(X,Y0, . . . ,Yp,T)

that the inner most quantifiers can be pulled outside at the cost of intro-
ducing (p+ 1) copies of the quantified variables. �

4. Proof of the main theorems

Notation 4.1. Let Φ(X) be a first-order formula with free variables X =
(X1, . . . , Xn). We let R(Φ(X)) denote the realization of the formula Φ,

R(Φ(X)) = {x ∈ Rn | Φ(x)}.

We are now in a position to prove Theorem 1.17. The proof depends on
the following key proposition. (Note that we are going use Proposition 4.2
in the special case when the set of variables Y is empty).
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Proposition 4.2. Let m(n), k1(n), . . . , kω(n) be polynomials, and let

(Φn(X,Y))n>0

be a sequence of formulas

Φn(X,Y) def= (Q1Z1 ∈ Sk1) · · · (QωZω ∈ Skω)φn(X,Y,Z1, . . . ,Zω),

having free variables (X,Y) = (X0, . . . , Xk(n), Y0, . . . , Ym(n)), with

Q1, . . . , Qω ∈ {∃,∀}, Qi 6= Qi+1,

and φn a quantifier-free formula defining a closed (respectively open) semi-
algebraic subset of

Sk × Sm × Sk1 × · · · × Skω .

Suppose that there exists a real Turing machine M such that for all n > 0,
M tests membership in R(φn(X,Y,Z1, . . . ,Zω)) in polynomial time.

Then, there exists N = N(m) a fixed polynomial in n, variables V =
(V0, . . . , VN ) and a sequence of quantifier-free first order formulas

(Θn(X,V))n>0

such that for each x ∈ Sk(n), Θn(x,V) describes a closed (respectively open)
semi-algebraic subset Tn of SN . To this sequence (Θn(X,V))n>0, we can
associate polynomial-time computable maps

Fn : Z[T ]≤N → Z[T ]≤m

such that the Poincaré polynomials of the fibers over x verify

PR(Φn(x,Y)) = Fn(PR(Θn(x,V))).

Moreover, there exists a real Turing machine M ′ testing membership in
R(Θn(X,V)) in polynomial time.

Proof. The proof is by an induction on ω. We assume that the formula φn
defines a closed semi-algebraic set. The open case can be handled analo-
gously.

If ω = 0 then we let Θn = Φn and M ′ = M , N = m, and Fn to be
the identity map. Since there are no quantifiers, for each n ≥ 0 the semi-
algebraic set recognized by M and M ′ are the same and thus the Betti
numbers of the sets recognized by M and M ′ agree.

If ω > 0, we have the following two cases.

(A) Case 1, Q1 = ∃: In this case consider the sequence of formulas
Φ′n

def= D̄n
πZ1 ,c(Ψn) (cf. Lemma 3.6), where Ψn is the following formula

with free variables Y,Z1

(4.1)
Ψn(X,Y,Z1) def= (Q2Z2 ∈ Sk2) · · · (QωZω ∈ Skω)φn(X,Y,Z1, . . . ,Zω).
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The formula D̄m
Z1,c(Ψn) is given by

D̄m
πZ1 ,c(Ψn) def= (Q2Z2,0 ∈ Sk2 , . . . , Q2Z2,m ∈ Sk2)

(Q3Z3,0 ∈ Sk3 , . . . , Q3Z3,m ∈ Sk3)
...

(QωZω,0 ∈ Skω , . . . , QωZω,m ∈ Skω)
(Dm

Z1,c(φn)(X,Y,Z1,0, . . . ,Z1,m,Z2,0, . . . ,Zω,m, T0, . . . , Tm)).

Note that the quantifier-free inner formula in the above expression,

Dm
Z1,c(φn)(X,Y,Z1,0, . . . ,Z1,m,Z2,0, . . . ,Zω,m, T0, . . . , Tm)

has

N =
ω∑
j=1

(kj + 1)(m+ 1) + 2(m+ 1) = nO(1)

free variables, and it is clear from the definition of the formula
Dm

Z1,c(φn) (cf. Eqn. 3.2), that there exists a polynomial time Turing
machine (say M1) to evaluate it since we have a polynomial time Tur-
ing machine M for evaluating φn. Moreover, the formula D̄m

πZ1 ,c(Ψn)
has one less quantifier alternation than the formula Φn.

We now apply the proposition inductively to obtain a machine
M2 evaluating (Θn)n>0, and a polynomial time computable maps
(Gn)n>0. By inductive hypothesis we can suppose that for each
i, 0 ≤ i ≤ m we have for each x ∈ Sk(n)

PR(D̄m
Z1,c

(Ψn(x,Y,Z1))) = Gn(PR(Θn(x,·))).

But by Corollary 3.5, we have that for 0 ≤ i ≤ m,

bi(R(Φn(x,Y))) = bi(πZ1(R(Ψn(x,Y,Z1)))) = bi(R(D̄n
Z1,c(Ψn(x,Y,Z1)))).

We set M ′ = M2 and

Fn = Gn.

which completes the induction in this case.
(B) Case 2, Q1 = ∀: In this case consider the sequence of formulas

Φ′n
def= D̄m

Z1,o(¬Ψn) (cf. Lemma 3.6), where Ψn is defined as in the
previous case (Eqn (4.1)).

We now apply the proposition inductively as above to obtain a
machine M2 evaluating (Θn)n>0, and maps (Gn)n>0. By inductive
hypothesis we can suppose that for each x ∈ Sn we have

PR(D̄m
Z1,o

(¬Ψn(x,Y,Z1))) = Gn(PR(Θn(x,·))).

By Corollary 3.5, we have for 0 ≤ i ≤ m,

bi(Sm\R(Φn(x,Y)) = bi(πZ1(R(¬Ψn(x,Y,Z1))) = bi(R(D̄m
Z1,o(¬Ψn(x,Y,Z1))).
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The setK = R(Φn(x,Y)) is a semi-algebraic compact, so by Alexander-
Lefshetz duality (Theorem 2.14), we have

b0(K) = 1 + bm−1(Sm −K)− bm(Sm −K),
bi(K) = bm−i−1(Sm −K), 1 ≤ i ≤ m− 2,

bm−1(K) = b0(Sm −K)− 1 + max(1− b0(Sn −K), 0),
bm(K) = 1−min(1, b0(Sm −K)).

We set M ′ = M2 and Fn defined by

Fn,0(P ) = 1 +Gn,m−1(P )−Gn,m(P ),
Fn,i(P ) = Gn,m−i−1(P ), 1 ≤ i ≤ m− 2,

Fn,m−1(P ) = Gn,0(P )− 1 + max(1−Gn,0(P ), 0),
Fn,m(P ) = 1−min(1, Gn,0(P ))

where we denote by Fn,i(P ) (respectively Gn,i(P )) the coefficient of
T i in Fn(P ) (respectively Gn(P )). This completes the induction in
this case as well.

�

Proof of Theorem 1.17. Follows immediately from Proposition 4.2 in the
special case when the set of variables Y is empty. In this case the sequence
of formulas (Φn)n>0 correspond to a language in the polynomial hierarchy
and for each n, x = (x0, . . . , xk(n)) ∈ Sn ⊂ Sk(n) if and only if

Fn(PR(Θn(x,·)))(0) > 0

and this last condition can be checked in polynomial time with advice from
the class #P†R. �

Remark 4.3. It is interesting to observe that in complete analogy with the
proof of the classical Toda’s theorem the proof of Theorem 1.17 also requires
just one call to the oracle at the end.

Proof of Theorem 1.21. Follows from the proof of Proposition 4.2 since the
semi-algebraic the formula Θn is clearly computable in polynomial time from
the given formula Φn as long as the number of quantifier alternations ω is
bounded by a constant. �
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