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Abstract. We prove that toric cubes, which are images of [0, 1]d under mono-
mial maps, are the closures of graphs of monotone maps, and in particular
semi-algebraically homeomorphic to closed balls.

1. Introduction

In [3] Engström, Hersh and Sturmfels introduced a class of compact semi-algebraic
sets which they call toric cubes.

The following definition is adapted from [3].

Definition 1.1. Let A = {a1, . . . ,an} ⊂ Nd, and fA : [0, 1]d → [0, 1]n be the map

t = (t1, . . . , td) 7→ (ta1 , . . . , tan),

where tai := t
ai,1
1 · · · tai,d

d for ai = (ai,1, . . . , ai,d). The image of fA is called a toric
cube.

We call the image of the restriction of fA to (0, 1)d an open toric cube. The
closure of an open toric cube is a toric cube. Note that an open toric cube is not
necessarily an open subset of Rn, and need not be contained in (0, 1)n (if some
ai = 0).

In [1, 2] the authors introduced a certain class of definable subsets of Rn (called
semi-monotone sets) and definable maps f : X → Rk (called monotone maps),
where X ⊂ Rn is a semi-monotone set. Here “definable” means “definable in an
o-minimal structure over R”, for example, real semi-algebraic.

These objects are meant to serve as building blocks for obtaining a conjectured
cylindrical cell decomposition of definable sets into topologically regular cells, with-
out changing the coordinate system in the ambient space Rn (see [1, 2] for a more
detailed motivation behind these definitions).

The main result of this note is the following theorem.

Theorem 1.2. An open toric cube C ⊂ Rn is the graph of a monotone map.

As a result we obtain

Corollary 1.3. An open toric cube C ⊂ [0, 1]n, with dim(C) = k, is semi-
algebraically homeomorphic to a standard open ball. The pair (C, C) is semi-
algebraically homeomorphic to the pair ([0, 1]k, (0, 1)k), in particular, a toric cube
is semi-algebraically homeomorphic to a standard closed ball.
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Remark 1.4. Note that the first statement in Corollary 1.3 is also proved in [3,
Proposition 1]. In conjunction with Theorem 2 in [3], Corollary 1.3 implies that
any CW-complex in which the closures of each cell is a toric cube, must be a regular
cell complex, and this answers in the affirmative the Conjecture 1 in [3].

2. Proof of Theorem 1.2 and Corollary 1.3

We begin with a few preliminary definitions.

Definition 2.1. Let Lj,σ,c := {x = (x1, . . . , xn) ∈ Rn| xjσc} for j = 1, . . . , n,
σ ∈ {<,=, >}, and c ∈ R. Each intersection of the kind

C := Lj1,σ1,c1 ∩ · · · ∩ Ljm,σm,cm
⊂ Rn,

where m = 0, . . . , n, 1 ≤ j1 < · · · < jm ≤ n, σ1, . . . , σm ∈ {<,=, >}, and
c1, . . . , cm ∈ R, is called a coordinate cone in Rn.

Each intersection of the kind

S := Lj1,=,c1 ∩ · · · ∩ Ljm,=,cm
⊂ Rn,

where m = 0, . . . , n, 1 ≤ j1 < · · · < jm ≤ n, and c1, . . . , cm ∈ R, is called an affine
coordinate subspace in Rn.

In particular, the space Rn itself is both a coordinate cone and an affine coordi-
nate subspace in Rn.

Definition 2.2 ([1]). An open (possibly, empty) bounded set X ⊂ Rn is called
semi-monotone if for each coordinate cone C the intersection X ∩ C is connected.

Remark 2.3. In fact, in Definition 2.2 above, it suffices to consider intersections
with only affine coordinate subspaces (see [2, Theorem 4.3] or Theorem 2.5 below).

Notice that any convex open subset of Rn is semi-monotone.
The definition of monotone maps is given in [2] and is a bit more technical. We

will not repeat it here but recall a few important properties of monotone maps
that we will need. In particular, Theorem 2.5 below, which appears in [2], gives
a complete characterization of monotone maps. For the purposes of the present
paper this characterization can be taken as the definition of monotone maps.

Definition 2.4 ([2], Definition 1.4). Let a bounded continuous map f = (f1, . . . , fk)
defined on an open bounded non-empty set X ⊂ Rn have the graph F ⊂ Rn+k. We
say that f is quasi-affine if for any coordinate subspace T of Rn+k, the projection
ρT : F → T is injective if and only if the image ρT (F) is n-dimensional.

The following theorem is proved in [2].

Theorem 2.5 ([2], Theorem 4.3). Let a bounded continuous quasi-affine map f =
(f1, . . . , fk) defined on an open bounded non-empty set X ⊂ Rn have the graph
F ⊂ Rn+k. The following three statements are equivalent.

(i) The map f is monotone.
(ii) For each affine coordinate subspace S in Rn+k the intersection F ∩ S is

connected.
(iii) For each coordinate cone C in Rn+k the intersection F ∩ C is connected.

Remark 2.6. In view of Theorem 2.5, it is natural to identify any semi-monotone
set X ⊂ Rn with the graph of an identically constant function f ≡ c on X, where
c is an arbitrary real.
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Definition 2.7. A definable bounded open set U ⊂ Rn is called (topologically)
regular cell if U is definably homeomorphic to a closed ball, and the frontier U \U is
definably homeomorphic (n−1)-sphere. In other words, the pair (U,U) is definably
homeomorphic to the pair ([0, 1]n, (0, 1)n).

Theorem 2.8 ([2], Theorem 5.1). The graph F ⊂ Rn+k of a monotone map f :
X → Rk on a semi-monotone set X ⊂ Rn is definably homeomorphic to a regular
cell.

Proof of Theorem 1.2. Let C ⊂ [0, 1]n be an open toric cube and suppose that
C = fA((0, 1)d) for a monomial map fA (see Definition 1.1).

Make the coordinate change zi = log(ti) for every i = 1, . . . , d, and take the
logarithm of every component of the map fA expressed in coordinates zi. Denote
the resulting map by log fA. Then log fA is the restriction of a linear map, namely

log fA : (−∞, 0)d → (−∞, 0)n,

defined by
z = (z1, . . . , zd) 7→ (a1 · z, . . . ,an · z).

Observe that log (the component-wise logarithm) maps the open cube, (0, 1)d

(resp. (0, 1)n) homeomorphically onto (−∞, 0)d (resp. (−∞, 0)n). It follows that
the fiber of the orthogonal projection of C to any k-dimensional coordinate subspace
is the pre-image under the log map of an affine subset of (−∞, 0)n, and is a single
point if it is zero-dimensional. Hence C is a graph of a quasi-affine map (choose
any set of k coordinates such that the image of C under the orthogonal projection
to the coordinate subspace of those coordinates is full dimensional).

Similarly, the intersection of C with any affine coordinate subspace is the pre-
image under the log map, of an affine subset of (−∞, 0)n and hence connected.

We proved that C satisfies the conditions of Theorem 2.5, hence C is the graph
of a monotone map. �

Proof of Corollary 1.3. Immediate consequence of Theorem 1.2 and Theorem 2.8.
�
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