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Abstract. In this paper we introduce analogues of the discrete complex-

ity classes VP and VNP of sequences of functions in the Blum-Shub-Smale
model. The functions in the new definitions are constructible functions on

Rn. We define a class of sequences of constructible functions that play a role

analogous to that of VP in the discrete theory. The class analogous of VNP
is defined using Euler integration. We discuss several examples and pose a

conjecture analogous to the VP vs VNP conjecture in the discrete case. In

the second part of the paper we extend the notions of complexity classes to
sequences of constructible sheaves over Rn (or its one point compactification).

We introduce a class of sequences simple constructible sheaves, that could be

seen as the sheaf theoretic analog of the Blum-Shub-Smale class PR. We also
define a hierarchy of complexity classes of sheaves mirroring the polynomial

hierarchy, PHR in the more classical theory. We prove singly exponential up-
per bounds on the topological complexity of the sheaves in this hierarchy. We

obtain as a result a singly exponential complexity upper bound on the sheaf-

theoretic version of quantifier elimination. We pose the natural sheaf theoretic
analogues of the classical P vs NP question and also discuss a connection with

Toda’s theorem from discrete complexity theory.

1. Introduction

This paper is divided into two parts. The first part is motivated by the problem
of finding a proper analog of the complexity classes VP and VNP introduced by
Valiant [45, 43, 44] and which has proved very influential in subsequent development
of the theory of computational complexity, in the Blum-Shub-Smale (henceforth
abbreviated to “B-S-S”) model [15] of real number computation (see [14, 21, 19] for
precise definitions of this model). Valiant’s definition concerned classes of functions
as opposed to sets ([20] for results on the exact relationship between Valiant’s
conjecture and the classical complexity questions between complexity classes of
sets). The class VP and its variants (see [19] for many subtle details) are supposed
to represent functions that are easy to compute and plays a role analogous to the
role of class P in the case of complexity classes of sets. While the class of functions,
VNP, was supposed to play a role analogous to that of the class of languages
NP. Two remarks are in order. Firstly, the classes VP and VNP as defined
by Valiant are non-uniform. The circuits or formulas whose sizes measure the
complexity of functions are allowed to be very different for different sizes of the
input. Also, as remarked earlier unlike in the classical theory, the elements of the
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classes VP and VNP are not languages but sequences of functions. In Valiant’s
work the emphasis was on functions f : {0, 1}n → k (for some field k). Since any
function on {0, 1}n can be expressed as a polynomial, it makes sense to consider only
polynomial functions. In particular, characteristic functions of subsets of {0, 1}n
are also expressible as polynomials – and this provides a crucial link between the
function viewpoint and the classical question about languages.

Valiant’s theory leads to an elegant reduction of the question whether VP =
VNP to a purely algebraic one – namely, whether the polynomial given by the
permanent of an n × n matrix (with indeterminate entries) can be expressed as
the determinant of another (possibly polynomially larger) matrix whose entries are
are linear combinations of the entries of the original matrix. Thus, the question of
whether VP = VNP reduces to a purely mathematical question about polynomials
and mathematical tools from representation theory and algebraic geometry can be
made to bear on this subject (see [37, 23]).

In this paper we formulate analogues of Valiant’s non-uniform algebraic ana-
logues for the B-S-S model. The first point to notice is that unlike in the classical
(Boolean) case, when the underlying field is infinite (say k = R or C), the charac-
teristic function of a definable set (i.e. a constructible set in the case k = C and a
semi-algebraic set in case k = R) is no longer expressible as polynomials. In fact, we
argue that sequences of polynomial functions are not the right objects to consider
in this setting. But a class of functions that appears very naturally in the algebraic
geometry over real and complex numbers are the so called constructible functions.
We will see later that many discrete valued functions that appear in complexity
theory including functions such as the characteristic functions of constructible as
well as semi-algebraic sets, ranks of matrices and higher dimensional tensors, topo-
logical invariants such as the Betti numbers or Euler-Poincaré characteristics, local
dimensions of semi-algebraic sets are all examples of such functions. Constructible
functions in the place of so called “counting” functions have already appeared in B-
S-S style complexity theory over R and C. For example, in [13] (respectively, [11]) a
real (respectively, complex) analogue of Toda’s theorem of discrete complexity the-
ory was obtained. The notion of counting the number of satisfying assignments of
a Boolean equation was replaced in these papers by the problem of computing the
Poincaré polynomial of a semi-algebraic/constructible set (see also [18, 22]). A first
goal of this paper is to build up a (non-uniform) complexity theory for constructible
functions over real as well as complex numbers that mirror Valiant’s theory in the
discrete case.

The choice of constructible functions as a “good” class of functions is also mo-
tivated from another direction. First recall that in the case of languages, the lan-
guages in the class NP can be thought of as the images under projection maps of
the languages in the class P (see Section 3.3 for more precise definitions of these
classes). For classes of functions such as the class VP, in order to define an analog
of the class NP one needs a way of “pushing forward” a function under a projec-
tion map. It is folklore that functions (or more generally maps) can be pulled-back
tautologically, but pushing forward requires some effort. The standard technique
in mathematics is to define such a push-forward using “fiber-wise integration”. In
Valiant’s original definition of the class VNP this push-forward was implemented
by taking the sum of the function to be integrated over the Boolean cube {0, 1}n.
This operation is not very geometric and thus not completely satisfactory in the
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B-S-S setting. On the other hand in the B-S-S model over C or R, integration
against most normal measures (other than finite atomic ones such as the one used
by Valiant in his definition) will not be computable exactly as the results will not
be algebraic. It thus becomes a subtle problem to choose the right class of functions
and the corresponding push-forward. It turns out that the class of constructible
functions is particularly suited for this purpose, where a discrete notion of integra-
tion (with respect to the Euler-Poincaré characteristic) already exists. It makes
sense now to put these together and develop an analogue of Valiant theory for this
class, which is what we begin to do in this paper. The complexity classes of con-
structible functions and their corresponding “P vs NP”-type questions that will
arise in these new models, should be considered as the non-uniform versions of
the corresponding questions in the B-S-S model (just as the VP vs VNP is to be
considered as a non-uniform version of the P vs NP question in the classical (i.e.
discrete) setting. We define formally these new classes, give some examples, and
finally pose a “constructible” analogue of the VP vs VNP question.

The second part of the paper has no analogue in discrete complexity theory but is
strongly motivated by the first part, and prior results on algorithmic complexity of
various problems in semi-algebraic geometry. One way that constructible functions
appear in various applications is as the fiber-wise Euler-Poincaré characteristic of
certain sheaves of complexes with bounded cohomology. The right generality to
consider these objects – namely a bounded derived category of sheaves of modules,
which are locally constant on the strata of a definable (semi-algebraic) stratification
of the ambient manifold – lead naturally to the category of constructible sheaves.
Constructible sheaves are a particularly simple kind of sheaves arising in algebraic
geometry [1] and have found many applications in mathematics (in the theory of
linear systems of partial differential equations and micro-local analysis [34], in the
study of singularities that appear in linear differential equations with meromorphic
coefficients [27, 39], study of local systems in algebraic geometry [26], intersection
cohomology theory [17] amongst many others) but to our knowledge they have
not been studied yet from the structural complexity point of view. Constructible
functions have also being studied by many authors from different perspectives, such
as [35, 24, 25]. Recently they have also found applications in more applied areas
such as signal processing and data analysis [3], but to our knowledge they have not
being studied from the point of view of complexity.

The category of constructible sheaves are closed under the so called “six opera-
tions of Grothendieck” – namely ⊗,RHom, Rf∗, Rf!, f

−1, f ! [1] (see [28, Theorem
4.1.5]). The closure under these operations is reminiscent of the closure of the
class of semi-algebraic sets under similar operations – namely, set theoretic oper-
ations, direct products, pull-backs and direct images under semi-algebraic maps.
Of this the closure under the last operation – that is the fact that the image of a
semi-algebraic set is also semi-algebraic – is the most non-trivial property and is
equivalent to the Tarski-Seidenberg principle (see for example, [9, Chapter 2] for an
exposition). The computational difficulty of this last operation – i.e. elimination of
an existential block of quantifiers – is also at the heart of the PR vs NPR problem
in the B-S-S theory [15, 14] .

As mentioned above the category of constructible sheaves is closed under taking
direct sums, tensor products, and pull-backs. These should be considered as the
“easy” operations. The statement analogous to the Tarski-Seidenberg principle is
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the stability under taking direct images. These observations hint at a complexity
theory of such sheaves that would subsume the ordinary set theoretic complexity
classes as special cases. Starting with a properly defined class, PR, of “simple”
sheaves, a conjectural hierarchy can be built up by taking successive direct images
followed by truncations, tensor products etc. which resembles the polynomial hier-
archy in the B-S-S model. The class PR corresponds roughly to the sequences of
constructible sheaves for which there is a compatible stratification of each under-
lying ambient space (which we will assume to be spheres of various dimensions in
this paper) which is singly exponential in size, and where the membership testing
can be accomplished in polynomial time (see Definition 3.51 below for a precise
definition). In this paper we lay the foundations of such a theory. We give sev-
eral examples and also prove a result on the topological complexity of sequences of
sheaves belonging to such a hierarchy.

Even though constructible sheaves can be defined over any fields – for the pur-
poses of this paper we restrict ourselves to the field of real numbers.

The rest of the paper is organized as follows. In Section 2 we define new complex-
ity classes of constructible functions, give some basic examples and pose a question
analogous to the VP vs VNP conjecture in the discrete case. In Section 3, we
extend these notions to the category of constructible sheaves. We begin by giv-
ing in Section 3.2 a brief introduction to the basic definitions and results of sheaf
theory, especially those related to cohomology of sheaves, and derived category of
complexes of sheaves with bounded cohomology, that we will need. The reader is
referred to the texts [34, 28, 33, 17] for the missing details. In Section 3.3 we recall
the definitions of the main complexity classes in the classical B-S-S setting. In Sec-
tion 3.4 we define the new sheaf theoretic complexity class PR. In Section 3.5, we
extend the definition of PR to a hierarchy, PHR, which mirrors the compact poly-
nomial hierarchy PHc

R. We also formulate the conjectures on separations of sheaf
theoretic complexity classes analogous to the classical one and prove a relationship
between these conjectures in Section 3.6. In Section 4, we prove a complexity result
(Theorem 4.6) bounding from above the topological complexity (see Definition 4.4
below) of a sequence in the class PHR. More precisely, we prove that the topo-
logical complexity of sheaves in PHR is bounded singly exponentially, mirroring a
similar result in the classical case. As a result we also obtain a singly exponential
upper bound on the complexity of the “direct image functor” (Theorem 4.14) which
is analogous to singly exponential upper bound results for effective quantifier elim-
ination in the first order theory of the reals. This last result might be of interest
independent of complexity theory because of its generality. Finally, in Section 5,
we revisit Toda’s theorem in the discrete as well as B-S-S setting, and conjecture a
similar theorem in the sheaf theoretic setting.

2. Constructible functions

2.1. Main definitions. Our first goal is to develop a complexity theory for con-
structible functions on Rn in the style of Valiant’s algebraic complexity theory.
In particular, we define two new complexity classes of sequences of such functions
which should be considered as “constructible analogues” of the classes defined by
Valiant.

We begin with a few definitions.
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Definition 2.1 (Real constructible functions). A function f : Rn → R is said to be
a constructible function if it is a R-linear combination of the characteristic functions
of some constructible subsets of Rn.

Remark 2.2. Since the sum, product and constant multiples of constructible func-
tions are again constructible, the set of constructible functions on Rn is an (infinite-
dimensional) R-algebra.

Example 2.3. The constant function 1Rn (the characteristic function of Rn), as
well as any multiple of it, is constructible.

Example 2.4 (Rank function on matrices and tensors). The function rkm,n :
Rm×n → R which evaluates to the rank of an m × n matrix with entries in R is
constructible. Similarly, the rank function on higher order tensors is constructible.

We next define a notion of size of a formula defining a constructible function
that will be used in defining different complexity classes. We first need a notation.

Notation 2.5. Let P ⊂ Rn be a finite family. We call σ ∈ {0, 1,−1}P to be a
sign condition on P. Given a sign condition σ ∈ {0, 1,−1} and any semi-algebraic
subset S ⊂ Rn, we denote by R(σ, S) the semi-algebraic set defined by

R(σ, S) = {x ∈ S | sign(P (x)) = σ(P ),∀P ∈ P},

and call R(σ, S) the realization of σ on S. We say that a sign condition σ is
realizable on S is R(σ, S) 6= ∅.

More generally, for any first order formula φ with atoms of the form P{=, >,<
}0, P ∈ P, we denote by R(φ, S) (the realization of φ on S) the semi-algebraic set
defined by

R(φ, S) = {x ∈ S | φ(x)}.

Definition 2.6 (Formulas defining constructible functions). Formulas are defined
inductively as follows.

(A) If φ is a first-order formula in the language of the field k (i.e. either, a first
order formula in the language of ordered fields) then 1φ is a formula (which
defines the characteristic function of the constructible set R(φ) := {x ∈
Rn | φ(x)}).

(B) If F1, F2 are formulas, and c ∈ R, then so are F1 + F2, F1F2, c · F1.

We now define the size of a formula defining a constructible function. We begin
by defining the size of a quantifier-free first- order formula over the reals.

Definition 2.7 (Size of a first-order formula φ). For P ∈ R[X1, . . . , Xn] we define
the size(P ) as the length of the smallest straight-line program computing P . The
size of a first order formula φ is defined inductively as follows.

(A) For P ∈ R[X1, . . . , Xn], the size of the atomic formulas P = 0, P < 0, P > 0
are defined to be size(P ) + 1.

(B) If φ = φ1 ∧ φ2 or φ = φ1 ∨ φ2, then size(φ) = size(φ1) + size(φ2) + 1.
(C) The size of the complement of φ is size(φ) + 1.

We can now define a notion of size of a formula defining a constructible function.

Definition 2.8 (Size of a formula defining a constructible function). Size of a
formula defining a constructible function is defined inductively as follows.
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(A) If φ is a first-order formula in the language of the reals, then

size(1φ) = size(φ) + 1.

(B) If F1, F2 are formulas and c ∈ R then

size(F1 + F2), size(F1F2) = size(F1) + size(F2),

and
size(c · F1) = size(F1).

2.2. The class VP†R. We now define sequences of constructible functions that will
play a role similar to that of VP in the discrete theory.

Definition 2.9 (The class VP†R). Letm(n) ∈ Z[n] be any non-negative polynomial.

We say that a sequence of constructible functions (fn : Rm(n) → R)n>0 is in the

class VP†R if for each n > 0 there exists a formula Fn defining fn whose size is
bounded polynomially in n.

Remark 2.10. We denote the class by VP†R (instead of VPR) in order to distinguish
it from the more commonly considered classes of polynomials VPR.

An illustrative example of the power of this class is given by the following ex-
ample.

Example 2.11. For 0 ≤ i ≤ n, let Sn,i ⊂ Rn be the set of points of Rn with
exactly i non-zero co-ordinates. Then the sequence of functions(

fn = 1Sn,dn/2e
)
n>0

belongs to the class VP†R. To see this observe that fn is defined by a short (i.e.
polynomial sized) formula, namely,

fn = an
∏

0≤i≤n,i6=dn/2e

(gn − i · 1)

where

gn =

n∑
i=1

1(Xi 6=0),

and
an =

∏
0≤i≤n,i 6=dn/2e

(i− dn/2e)−1
.

We next define the B-S-S analogue of the class the VNP.

2.3. The class VNP†R. We now define a B-S-S analogue of the class VNP. In
order to do so we first need the notion of the (generalized) Euler-Poincaré charac-
teristic of semi-algebraic sets.

Definition 2.12. The generalized Euler-Poincaré characteristic, χ(S), of a semi-
algebraic set S ⊂ Rk is uniquely defined by the following properties [46, Chapter
4]:

(A) χ is invariant under homeomorphisms.
(B)

χ({pt}) = χ([0, 1]) = 1.

(C) χ is multiplicative, i.e. χ(A×B) = χ(A) · χ(B).
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(D) χ is additive, i.e. χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).

Remark 2.13. Note that the generalized Euler-Poincaré characteristic is a homeo-
morphism (but not a homotopy) invariant. For a locally, closed semi-algebraic set
X,

χ(X) =
∑
i≥0

(−1)i dimQ Hi
c(X,Q),

where Hi
c(X,Q) is the the i-th co-homology group of X with compact support.

Thus, the definition agrees with the usual Euler-Poincaré characteristic as an al-
ternating sum of the Betti numbers for locally closed semi-algebraic sets.

A few illustrative examples are given below.

Notation 2.14. We denote by Bn(0, r) the open ball in Rn of radius r centered at
the origin. We will denote by Bn the open unit ball Bn(0, 1). Similarly, we denote
by Sn−1(0, r) the sphere in Rn of radius r centered at the origin, and by Sn−1 the
unit sphere Sn−1(0, 1).

Example 2.15. For every n ≥ 0,

(A)

χ(Bn) = χ([0, 1]n) = χ([0, 1])n = 1.

(B)

χ(Bn) = χ((0, 1)n) = (χ(0, 1))n = (χ([0, 1])− χ(0)− χ(1))n = (−1)n.

(C)

χ(Sn−1) = χ(Bn)− χ(Bn) = 1− (−1)n.

As mentioned in the introduction, the generalized Euler-Poincaré characteristic,
because of its additive and multiplicative properties, can be used for constructible
functions as a discrete measure to integrate against (see [47]).

More precisely:

Definition 2.16 (Integration with respect to the Euler-Poincaré characteristic).
Let f : Rn → R be a constructible function defined by

f =

N∑
i=1

ai1Xi .

We define the integral of f with respect to the Euler-Poincaré characteristic (fol-
lowing [47]) to be ∫

Rn
fdχ :=

N∑
i=1

aiχ(Xi).

Remark 2.17. The fact that the definition of
∫
Rn fdχ is independent of the partic-

ular representation of the constructible function f (which is far from being unique)
is a classical fact [47]. The integral defined above satisfies all the usual properties
(of say the Lebesgue integral) such as additivity, Fubini-type theorem etc. [47], and
in particular can be used to define “push-forwards” of (constructible) functions via
fiber-wise integration.
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It was mentioned in the introduction that one difficulty in defining a push-
forward of functions in the B-S-S model had to do with the impossibility of com-
puting exactly integrals with respect to usual measures on Rn (such as the Lebesgue
measure), since such integrals could be transcendental numbers or might not con-
verge. In contrast, we have the following effective upper bound on the complexity
of computing integrals with respect to the Euler-Poincaré characteristic.

Theorem 2.18. There exists an algorithm that takes as input a formula F de-
scribing a constructible function f : Rn → R, and computes∫

Rn
fdχ.

The complexity of the algorithm measured as the number of arithmetic operations
over R as well as comparisons is bounded singly exponentially in n and the size of
the formula F .

Proof. It is easy to verify from by an induction on the size of the formula F , that
there exists a family of polynomials PF ⊂ R[X1, . . . , Xn], such that card(PF ) is
bounded by size(F ), and the degrees of the polynomials in PF are bounded singly
exponentially in size(F ), and moreover that f can be as a linear combination of
the characteristic functions of the realizations of the various sign conditions on PF .
More precisely, there is an expression

f =
∑

σ∈{0,1,−1}PF

aσR(σ,Rn),

where the aσ ∈ R. Moreover, the set of aσ’s can be computed from F with com-
plexity singly exponential in size(F ). From Definition 2.16 it follows that∫

Rn
fdχ =

∑
σ∈{0,1,−1}PF

aσχ(R(σ,Rn)).

It follows from them main result in [8] (see also [9, Algorithm 13.5]) that the list

(χ(R(σ,Rn))σ∈{0,1,−1}PF ,R(σ,Rn) 6=∅

can be computed with complexity

(card(PF ) max
P∈PF

deg(P ))O(n).

Since, card(PF ) ≤ size(F ) and the degrees of the polynomials in PF is bounded
singly exponentially in size(F ), the result follows. �

Definition 2.19 (The class VNP†R).
We say that a sequence of constructible functions (fn : Rn → R)n>0 is in the class

VNP†R if there exists a a sequence of constructible functions (gn : Rn → R)n>0

belonging to the class VP†R, and a polynomial m(n) such that for each n > 0 and
x ∈ Rn

(2.1) fn(x) =

∫
Rm

gm+n(·, x)dχ.

As an example of a sequence in the class VNP†R we have the following. We first
introduce a notation.
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Notation 2.20. For m,n ≥ 0, let rkm,n : Rm×n → R be the function that maps
an m× n matrix A to its rank. Note that rkm,n is a constructible function.

Example 2.21.

Theorem 2.22. The sequence of functions (rkn,n : Rn×n → R)n>0 belongs to the
class VNPR.

Proof. Let A = (ai,j) be an n× n matrix with entries in R. Let

V0(A) = Rn,m0(A) = n,

and for each i, 1 ≤ i ≤ n, let

Vi(A) = ker(Ai),mi(A) = dim(Vi(A)),

where Ai denotes the sub-matrix consisting of the first i rows of A. Then, for
1 ≤ i ≤ n, we have

mi−1(A)− 1 ≤ mi(A) ≤ mi−1(A).

Also notice that rkn,n(A) is equal to the number of times there is a strict decrease
in the sequence (m0(A), . . . ,mn(A)) i.e.,

rkn,n(A) = card{i | 1 ≤ i ≤ n,mi(A) = mi−1(A)− 1}.

It follows that

rkn,n(A) =
1

2

n∑
i=1

(1− (−1)mi−1(A)−mi(A))

=
1

2

n∑
i=1

(1− (−1)mi−1(A)+mi(A))

=
1

2

n∑
i=1

(1− (−1)mi−1(A) · (−1)mi(A))

=
1

2

n∑
i=1

(1− χ(Vi−1(A))χ(Vi(A)))

=
1

2

n∑
i=1

(1− χ(Vi−1(A)× Vi(A)))

=
1

2

n∑
i=1

(

∫
R2n

1R2ndχ−
∫
R2n

1Vi−1(A)×Vi(A)dχ)

=

∫
R2n

1

2

(
n∑
i=1

(1R2n − 1Vi−1(A)×Vi(A))

)
dχ.(2.2)

Defining gn : Rn×n × Rn × Rn → R by

gn(A, u, v) =
1

2

(
n∑
i=1

(1− 1Vi−1(A)×Vi(A)(u, v))

)
,

it is easy to see that the sequence(
gn : Rn×n × Rn × Rn → R

)
n>0
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is in VP†R. It now follows from Definition 2.19 and (2.2) that the sequence of

functions (rkn,n : Rn×n → R)n>0 belongs to the class VNP†R. �

A second example of a sequence in VNP†R is as follows.

Notation 2.23. Given any polynomial P ⊂ R[X1, . . . , Xn] and a semi-algebraic
set S ⊂ Rn, we will denote by Z(P, S) the set of real zeros of P in S. More generally,
for any finite family of polynomials P ⊂ R[X1, . . . , Xn] we will denote by Z(P, S)
the set of common real zeros of P in S.

Example 2.24. For each n, d > 0 let Vn,d ∼= R(n+d
d ) denote the vector-space of

polynomials in R[X1, . . . , Xn] of degree at most d, and let En,d : Vn,d → R be the
constructible function defined by

(2.3) En,d(P ) = χ(Z(P,Rn)).

It is an easy exercise to show that the sequence of functions (En,4 : Vn,4 → R)n>0

is in VNP†R.

We can now formulate the conjecture analogous to that of Valiant’s.

Conjecture 2.25 (B-S-S Analogue of Valiant’s Conjecture).

VP†R 6= VNP†R.

Remark 2.26. It would be nice to have some complete problems for the classes
defined above and reduce Conjecture 2.25 to an algebraic problem in analogy with
the famous complexity of the “determinant” vs the “permanent” question in the
traditional set-up. Unfortunately, we do not have at present such completeness
results.

3. Sheaf theoretic reformulation of complexity questions

3.1. Motivation. Constructible functions on a semi-algebraic sets are intimately
related to constructible sheaves. In fact, one way constructible functions on a
semi-algebraic set S appear is by taking the Euler-Poincaré characteristic of stalks
of some constructible sheaf on S (see Proposition 5.4 below). This already hints
that the language of sheaves (or more accurately, constructible sheaves) might be
useful in formulating certain questions in complexity theory in a more direct and
geometric fashion. At the same time such an approach could generalize the existing
questions to a more general, geometric setting.

Before delving into sheaf theory (or at least the fragment of it that would be
relevant for us) let us consider an example that we formulate more precisely later.
Let Φ(Y,X) be a first order formula in the language of the reals that defines a semi-
algebraic subset S ⊂ Rm × Rn. Let π : Rm × Rn → Rn be the projection map to
the second factor. Now consider the two semi- algebraic subsets T,W ⊂ Rn defined
by the formulas (∃Y )Φ(Y,X) and (∀Y )Φ(Y,X). The basic problem of separating
the complexity classes PR from the class NPR (respectively, co-NPR) is related
to proving that while testing membership in S could be easy (in polynomial time),
testing membership in T (respectively, W ) could be hard. The B-S-S polynomial
time hierarchy, PHR (whose precise definition appears later in the paper, see Section
3) is built up by taking alternating blocks of existential and universal quantifiers,
and it is conjectured that each new quantifier alternation allowed strictly increases
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the corresponding complexity class. The increase in complexity caused by taking
image under a projection (of any easy to compute” semi-algebraic map) is at the
heart of these complexity questions.

While the number of quantifier alternation is a well known measure of the com-
plexity of a logical formula, quantifiers are not completely geometric in the following
sense. Using the notation of the previous paragraph, for any fixed set S ⊂ Rm×Rn,
the existential and universal quantifiers can only characterize points in x ∈ Rn,
whose corresponding fibers Sx = π−1(x) ∩ S are either empty or equal to Rm.
However, one might want to characterize the set of points x ∈ Rn, whose corre-
sponding fiber Sx has a certain topological property for example, non-vanishing
homology groups of a certain dimension. More generally, it would be useful to in-
clude in the study of complexity of projection maps, the complexity of the coarsest
possible partition of Rn such that the fibers Sx are locally topologically constant
over each element of the partition. The word topological can be used to denote sev-
eral notions – the strictest notion being that of “semi-algebraic homeomorphism”.
In the formulation, that we define in this paper we will use the much weaker notion
of homological equivalence. Going back to the notions of PR, NPR and co-NPR,
the sheaf-theoretic interpretation is the following. We can identify a given semi-
algebraic set S (which we will assume to be compact in this paper), with a very
special kind of constructible sheaf – namely, the constant sheaf QS (see Definition
3.2 and Example 3.11). The constructible sheaves QT , QW corresponding to the
compact sets T and W defined by (∃Y )Φ(Y,X) and (∀Y )Φ(Y,X) respectively, have
sheaf theoretic descriptions. Namely,

QT = τ≥0τ≤0Rπ∗QJπ(S),(3.1)

QW = τ≥mτ≤mRπ!QS [m].

The definitions of the, fibered join Jπ(S), the truncation functors τ , and the
direct image functors Rπ∗, Rπ! in the derived category of constructible sheaves is
given later (see Section 2.1 below). But Eqn. (3.1) contains the crux of the idea
behind defining sheaf-theoretic complexity classes. We first define a class of simple
sheaves (an analogue of the set theoretic B-S-S class PR) which contain in particular
the class of constant sheaves QS for all S belonging to the class PR (see Definition
3.51 below). We show that this class of constructible sheaves is stable under certain
sheaf-theoretic operations mirroring the stability of the class PR under operations
such as union, intersections, products and pull-backs. We then show how to build
(conjecturally) more complicated sheaves using the direct image and truncation
functors. We build a hierarchy of sequences of sheaves, mirroring that of PHR,
where the place of a sequence in the hierarchy depends on the number of direct
image functors used in the definition of the sheaves in the sequence (in lieu of the
number quantifier alternations in the set-theoretic case).

3.2. Background on sheaves and sheaf cohomology. We give here a brief
redux of the definitions and main results from sheaf theory that would be necessary
for the rest of the paper. We refer the reader to [31] for more details concerning
sheafs including the basic definitions, and to the books [33, 30, 17, 34] for details
regarding derived categories and hypercohomology. In particular, the book [34] is
a good reference for constructible sheaves in the context of the current paper.



12 SAUGATA BASU

Let A be a fixed commutative ring. Later on for simplicity we will specialize to
the case when A = Q.

Definition 3.1. (Pre-sheaf of A-modules) A pre-sheaf F of A-modules over a
topological space X associates to each open subset U ⊂ X an A-module F(U),
such that that for all pairs of open subsets U, V of X, with V ⊂ U , there exists a
restriction homomorphism rU,V : F(U)→ F(V ) satisfying:

(A) rU,U = IdF(U),
(B) for U, V,W open subsets of X, with W ⊂ V ⊂ U ,

rU,W = rV,W ◦ rU,V .

(For open subsets U, V ⊂ X, V ⊂ U , and s ∈ F(U), we will sometimes denote the
element rU,V (s) ∈ F(V ) simply by s|V .)

Definition 3.2. (Sheaf of A-modules) A pre-sheaf F of A-modules on X is said
to be a sheaf if it satisfies the following two axioms. For any collection of open
subsets {Ui}i∈I of X with U =

⋃
i∈I Ui;

(A) if s ∈ F(U) and s|Ui = 0 for all i ∈ I, then s = 0;
(B) if for all i ∈ I there exists si ∈ F(Ui) such that

si|Ui∩Uj = sj |Ui∩Uj
for all i, j ∈ I, then there exists s ∈ F(U) such that s|Ui = si for each i ∈ I.

Definition 3.3. Let F be a (pre)-sheaf of A-modules on X and x ∈ X. The stalk
Fx of F at x is defined as the inductive limit

Fx = lim−→
U3x
F(U).

For any U 3 x, there exists a canonical homomorphism F(U)→ Fx, and the image
of s ∈ F(U) under this homomorphism is denoted by sx. For s1, s2 ∈ F(U), we
have (s1)x = (s2)x if and only if there exists an open V ⊂ U with x ∈ V , such that
s1|V = s2|V .

The subset of X defined by {x ∈ X | Fx 6= 0} is called the support of the sheaf
F and denoted Supp(F). It is easy to check that this is always a closed subset of
X. In particular, if X is a compact semi-algebraic set, then so is Supp(F) for any
sheaf F on X.

There is a canonically defined sheaf associated to any pre-sheaf. This is im-
portant since certain operations on a sheaf such as taking co-kernels of a sheaf
morphism or the inverse image (see below) produces only a pre-sheaf which then
needs to sheafified if we are to stay within the category of sheaves.

Definition 3.4. (Sheaf associated to a pre-sheaf) Let F be a pre-sheaf of A-
modules over X. Then, the sheaf F ′ associated to F (the sheafification of F) is
defined by associating to each open subset U ⊂ X, the A-module F ′(U) consisting
of all maps

s : U →
⋃
x∈U
Fx

satisfying the condition that for every x ∈ U , and any open neighborhood U ′ of x
in U , there exists s′ ∈ F(U ′), such that for all x′ ∈ U ′, s(x′) = s′x′ .
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Notation 3.5. We will denote by Sh(X,A) the category whose objects are sheaves
of A-modules on X. For each open subset U ⊂ X, we denote by Γ(U, ·) the
functor from Sh(X,A) to the category A-mod of A-modules, obtained by setting
Γ(U,F) = F(U).

More generally, for any locally closed subset Z ⊂ X we set ΓZ(U, ·) to be the
functor from Sh(X,A) to the category A-mod of A-modules, obtained by setting
Γ(U,F) = ker(F(U) → F(U \ Z)), i.e. ΓZ(U,F) is the A-module of sections of
F(U) whose supports are contained in Z ∩ U . Notice that Γ(U, ·) defined earlier
coincides with ΓX(U, ·).

Moreover, we denote by ΓZ(F) the sheaf on X defined by ΓZ(F)(U) = ΓZ(U,F)
for each open subset U ⊂ X.

Example 3.6. The simplest sheaf of A-modules on a topological space X is the
constant sheaf (denoted AX) defined by setting AX(U) = A for every open subset
U ⊂ X. Each stalk (AX)x of AX is then isomorphic to A.

Definition 3.7. Let X,Y be topological spaces and f : X → Y a continuous map.
Let F (respectively, G) be a sheaf of A-modules on X (respectively, Y ).

• The association to each open set U ⊂ Y , the A-module F(f−1(U) defines
a sheaf of A-modules on Y , and this sheaf is denoted by f∗F and is called
the direct image of F under f .
• A sub-sheaf of f∗F , namely the direct image under f with proper support,

denoted f!F , will sometimes also be important for us. It is defined by
associating to each open set U ⊂ Y , the sub-module of the A-module
F(f−1(U), consisting only of those elements s ∈ F(f−1(U), such that
f |Supp(s) : Supp(s)→ U is a proper map (i.e. inverse image of any compact
set is compact). It is clear from the definition that f!F is a sub-sheaf of
f∗F .

• The association to each open set U of X, the A-module

lim←−
V⊃f(U)

G(V ),

defines a pre-sheaf on X. The sheaf associated to this pre-sheaf (Definition
3.4) is denoted by f−1(G) and is called the inverse image of G under f .

Definition 3.8. (Morphisms between sheaves) Let F ,G be two sheaves on X.
Then a morphism φ : F → G is given by associating to each open subset U of X,
an element φ(U) ∈ homA(F(U),G(U)) such that for all pairs of open subsets U, V
of X with V ⊂ U the following diagram commutes.

F(U)
rU,V

//

φ(U)

��

F(V )

φ(V )

��

G(U)
rU,V

// G(V )

If φ : F → G is a morphism, then for each x ∈ X there is an induced homomorphism
φx : Fx → Gx.

Definition 3.9. (Kernel, co-kernel of sheaf morphisms) If φ : F → G is a morphism
of sheaves on X, then the kernel of φ, denoted ker(φ), is the sheaf which associates
to each open subset U of X, the A-module ker(φ)(U) = ker(φU : F(U) → G(U)).
In particular, note that for each x ∈ X, the stalk (ker(φ))x = ker(φx : Fx → Gx).
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The co-kernel of φ, denoted coker(φ) is the sheaf associated to the pre-sheaf
(this pre-sheaf in general is not a sheaf) which associates to each open U ⊂ X, the
A-module G(U)/Im(φ(U)).

Definition 3.10. (Direct sum, tensor product and hom of two sheaves) If F ,G
are sheaves on X, then the sheaves F ⊕G,(respectively, F ⊗G, homA(F ,G)) is the
sheaf obtained by associating to any open U ⊂ X, the A-module F(U) ⊕ G(U)
(respectively, F(U)⊗A G(U), homA(F(U),G(U))).

Example 3.11. (The sheaf AX) The sheaf on X that associates to each open
subset U of X, the module A is denoted by AX and is called the constant sheaf on
X . More generally, if Z is a closed subset of X, and i : Z ↪→ X the corresponding
inclusion map, then will denote by AZ the sheaf on X defined by

AZ = i∗i
−1(AX).

Definition 3.12. A sheaf F on a semi-algebraic set X is called locally constant if
there exists an open cover of X by open semi-algebraic sets (Ui)i∈I such that for
each i ∈ I, F|Ui is a constant sheaf.

We will need the following proposition later in the paper.

Proposition 3.13. If X is contractible then any locally constant sheaf on X is
isomorphic to a constant sheaf.

Proof. See [33, Proposition 4.20] or [34, page 132]. �

Notation 3.14. We denote by Γ(Z, ·) the functor from Sh(X,A) to A-mod defined
by F 7→ AZ(X). This agrees with the prior definition of Γ(U, ·) when U is an open
subset of Z.

Warning 3.15. Note that the functor ΓZ(·) defined earlier in Notation 3.5 takes
objects in Sh(X,A) to objects in Sh(X,A), whereas the functor Γ(Z, ·) defined
above in Notation 3.14 takes objects in Sh(X,A) to A-modules.

Remark 3.16. The category Sh(X,A) is an abelian category [34, Proposition 2.2.4].
Roughly, this means that every morphism between φ : F → G between sheaves
admit a kernel and a co-kernel, and give rise to the following diagram in which the
induced morphism u is an isomorphism (see [34, Definition 1.2.1]).

0 // ker(φ) // F
φ

//

����

G // coker(φ) // 0

coimage(φ)
u // Im(φ)

OO

OO

In particular, this means we have the notion of exactness in the category Sh(X,A).

Recall that a sequence of morphisms F f−→ G g−→ H is exact if ker(g) = Im(f).

Remark 3.17. Since the category Sh(X,A) is an abelian category, it makes sense to
talk about exactness of the functors f−1, f∗, f!,Γ(Z, ·),ΓZ defined earlier. It turns
out that f−1 is an exact functor (i.e. it takes an exact sequence of sheaves to an
exact sequence), while the functors f∗, f!,Γ(Z, ·),ΓZ are only left exact (see [31,
page 15] for definition of exactness as well as left exactness of functors).
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3.2.1. Sheaf cohomology. The functors Γ(Z, ·),ΓZ defined above are left-exact but
not exact – i.e. they do not preserve exactness when applied to an exact sequence
of morphism on sheaves. Sheaf cohomology is a measure of this deviation from
exactness, and is defined by applying one of these (non-exact) functor to an injective
resolution ([31] of a given sheaf (which always exists since the category Sh(X,A)
has enough injective objects [34, II, 2.6]), and then taking the homology of the
resulting (not necessarily exact complex).

In this way we obtain functors Hi(Z, ·),Hi
Z(·) from the category of Sh(X,A)

to the categories A-mod and Sh(X,A) respectively. More accurately, Hi(Z, ·) =
RiΓ(Z, ·) is the i-th right derived functor [31] of Γ(Z, ·), and Hi

Z(·) = RΓiZ(·) is the

i-th right derived functor of ΓZ . It is very important to remember that Hi(Z,F) is
an A-module, whereas Hi

Z(F) is an object of Sh(X,A).
Now suppose that f : X → Y is a continuous semi-algebraic map. Then, f∗, f!

is a functor from Sh(X,A) to Sh(Y,A) which is left exact, and carries injectives to
injectives, and thus one obtains for any F ∈ Ob(Sh(X,A)) and i ≥ 0, the higher
direct image sheaves Rif∗(F), Rif!(F) ∈ Ob(Sh(Y,A)). The following example is
instructive.

Example 3.18. Let S be a compact semi-algebraic subset of Rm × Rn defined
by a first order formula Φ(Y,X), where Y = (Y1, . . . , Ym) and X = (X1, . . . , Xn).
Let T be the semi-algebraic subset of Rn defined by the formula (∀Y )Φ(Y,X). Let
π : Rm × Rn → Rn denote the projection map to the second factor, and for each
x ∈ Rn, let Sx = π−1(x) ∩ S. Then, notice that x ∈ T if and only if Sx = Rn , if
and only if Hm

c (Sx,Q) ∼= Q. This implies that the sheaf QT can also be expressed
as Rmπ!QS . Notice that the universal quantifier has been replaced by the higher
direct image functor Rmπ!.

It turns out that for our purposes we need to enlarge the category Sh(X,A) by
letting for each open U ⊂ X, F(U) to be not just an A-module, but a complex of
A-modules.

Recall that:

Definition 3.19. A complex C• of A-modules is a sequence of homomorphisms

(Ci
φi−→ Ci+1)i∈Z such that φi+1 ◦ φi = 0 for each i. Given a complex C•, the i-th

cohomology module Hi(C•) is defined as the quotient ker(φi)/Im(φi−1).

Definition 3.20. (Truncation and shift operators). Given a complex

C• =

(
· · · δ

i−1

−−−→ Ci
δi−→ Ci+1 δi+1−−−→ · · ·

)
of A-modules, we define for any n ∈ Z the truncated complex τ≤n(C•) to be the
complex

τ≤n(C•) =

(
· · · δ

n−3

−−−→ Cn−2 δn−2

−−−→ Cn−1 δn−1

−−−→ ker(δn)→ 0→ 0 · · ·
)
.

Similarly, we define the truncated complex τ≥n(C•) to be the complex

τ≥n(C•) =

(
· · · 0→ 0→ coker(δn)

δn−→ Cn+1 δn+1

−−−→ Cn+2 δn+2

−−−→ · · ·
)
.
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We define the shifted complex

C[n]• =

(
· · · δ[n]i−1

−−−−→ C[n]i
δ[n]i−−−→ C[n]i+1 δ[n]i+1

−−−−→ · · ·
)
,

by setting C[n]i = Ci+n and δ[n]i = δi+n.

Definition 3.21. The category Kom(A-mod) is defined as the category whose
objects are complexes of A-module and whose morphisms are morphisms of com-
plexes. We say that a morphism f• : C• → D• (i.e.f• ∈ homKom(A-mod)(C

•, D•))

is a quasi-isomorphism if the induced homomorphism, f i : Hi(C•)→ Hi(D•) is an
isomorphism for all i ∈ Z.

Definition 3.22. Two morphisms of complexes f•, g• : C• → D• are said to be
homotopically equivalent (f• ∼ g•) if there exists a collection of homomorphisms
hi : Ci → Di−1, i ∈ Z, such that

f i − gi = hi+1 ◦ δiC• + δi−1
D• ◦ h

i.

The homotopy category of complexes K(A-mod) is the category whose objects are
the same as the objects of Kom(A-mod), but whose morphisms are defined by

homK(A-mod)(C
•, D•) = homKom(A-mod)(C

•, D•)/ ∼ .

Finally (we are being slightly imprecise here in the interest of space and read-
ability; the reader should refer to [30, Chapter III] for a more precise definition):

Definition 3.23. The derived category of A-modules, D(A-mod), is the category
whose objects are the same as those of K(A-mod), but whose set of morphisms
homD(A-mod(C•, D•) are equivalence classes of diagrams of the form

E•

qis
}} !!

C• D•

where the left arrow is an quasi-isomorphism. The derived category D(A-mod)
is no longer an abelian category, but is an example of what is known as a trian-
gulated category [30, Chapter IV]. Finally, restricting to complexes with bounded
cohomology (i.e. complexes C• such that Hi(C•) = 0 for |i| � 0) we obtain the

corresponding categories, Komb(A-mod),Kb(A-mod),Db(A-mod).

Proposition 3.24. If F ∈ Db(A-mod), then we have the isomorphism (in the
derived category)

F ∼=
⊕
m∈Z

Hm(F )[−m]

Proof. See [34, Ex. 1.18]. �

3.2.2. The categories Komb(X,A), Kb(X,A) and Db(X,A). Passing to sheaves
over a semi-algebraic set X, the definitions of the last section gives successively
the category Komb(X,A) of sheaves of complexes of A-modules on X whose stalks
have bounded cohomology and which contains the category of Sh(X,A) as a sub-
category of sheaves of complexes concentrated in degree 0. Furthermore, considering
complexes only up to homotopy gives rise to the homotopy category Kb(X,A) of
sheaves of complexes on X whose stalks have bounded cohomology, and finally
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by a localization process, needed to formally invert arrows which are homotopy
equivalences, we arrive at the derived category Db(X,A) of sheaves on X. This
passage from Sh(X,A) to Db(X,A) while fairly standard, takes up a couple of
chapters in textbooks and we refer the reader to [34] for the details. While the
definition of the derived category might seem too cumbersome and unnecessary
at first glance, once its existence is taken for granted, it provides a very useful
and concise geometric language to express relationships especially pertaining to
cohomology of sheaves which is very useful in many applications

3.2.3. Extension of operations on sheaves to the derived category. The sheaf opera-
tions of taking direct sums, tensor products, hom, and direct and inverse images un-
der maps f : X → Y extend to the category Db(X,A) as follows. Since the functors
Γ(Z, ·), ΓZ(·) are left exact (see 3.17) and take injective objects to injective objects,
they induce corresponding derived functors RΓ(Z, ·), RΓZ(·) which take objects in
Db(X,A) to objects in Db(A) and Db(X,A) respectively. Similarly, for any map
f : X → Y , we have the derived functors Rf!, Rf∗ : Db(X,A) → Db(Y,A). The
functor f−1 being exact extends directly to a functor f−1 : Db(Y,A) → Db(X,A)
in the derived category.

Definition 3.25. The images of the higher derived functors, RiΓ of the global
section functor Γ : Sh(X,A) → A-mod, will be denoted by Hi(X,F) for F ∈
Ob(Db(X,A)) and call Hi(X,F) the i-th hypercohomology group of F .

Given F ∈ Ob(Db(X,A)), and x ∈ X, the stalk Fx is represented by complex
of A-modules (i.e. an object of the category Cb(A)). Thus, the cohomology groups
Hi(Fx) are A-modules and vanish for |i| � 0. Furthermore, recalling the definitions
of the truncation and shift operations on complexes of A-modules (Definition 3.20),
these operations extend naturally to F ∈ Ob(Db(X,A)), and we obtain for each
n ∈ Z, τ≤nF , τ≥nF ,F [n] respectively. It is an immediate consequence of the
definitions that:

Proposition 3.26. Suppose F ∈ Ob(D(X,A)). Then, for n ∈ Z and x ∈ X, we
have:

Hi((τ≤nF)x) = Hi(Fx) for i ≤ n,
Hi((τ≤nF)x) = 0 for i > n,

Hi((τ≥nF)x) = Hi(Fx) for i ≥ n,
Hi((τ≤nF)x) = 0 for i < n,

Hi((F [n])x) = Hi+n(Fx) for all i ∈ Z.

Proof. Follows immediately from Definition 3.20. �

There are two important isomorphisms in the derived category that will play a
role later in the paper. We record them here for convenience.

Let f : X → Y be a continuous semi-algebraic map, and suppose that X,Y
are compact. In particular, this means that f is proper. Suppose also that, Let
F ∈ Ob(Db(X,A)),G ∈ Ob(Db(Y,A)), x ∈ X,y = f(x).

Proposition 3.27. (Adjunction isomorphism) For every i ∈ Z
Hi((f−1(G)x)) ∼= Hi((G)y).
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Proof. See [33, II.4]. �

Proposition 3.28. (Proper base change theorem) For every i ∈ Z,

Hi((Rf∗(F))y) ∼= Hi(f−1(y),F).

Proof. See [33, Theorem 6.2]. �

We also have the following proposition about composition of maps and the direct
image functor.

Proposition 3.29. If f : X → Y , and g : Y → Z are continuous semi-algebraic
maps between compact semi-algebraic sets, and F ∈ Ob(Db(X,A)), then

R(g ◦ f)∗F ∼= Rg∗(Rf∗F).

Proof. See [34, Section 2.6, page 111]. �

Finally, we are going to use a Mayer-Vietoris spectral sequence for bounding the
dimensions of the hypercohomology groups. We assume familiarity with spectral
sequences in the following.

Proposition 3.30. (Leray-Serre spectral sequence) Let A be a field and let X be a
locally closed semi-algebraic set, and F ∈ Ob(Db(X,A). Then, there is a spectral
sequence abutting to to H∗(X,F) whose E2 term is given by

Ep,q2 = Hp(X,Hq(F)),

where Hq(F) ∈ Ob(Sh(X,A)) is the sheaf defined by: Γ(U,Hq(F)) = Hq(F(U))
for every open subset U of X. In particular, if H∗((Fx) is constant for x ∈ X, then
this spectral sequence degenerates at its E2-term, and we have

Hm(X,F) ∼=
⊕

p+q=m

Hp(X,A)⊗Hq((Fx)),

for all x ∈ X.

Proof. This is a standard fact. See for example [31, Theorem 4.6.1] or [28, Corollary
2.3.4]. �

Proposition 3.31. (Mayer-Vietoris spectral sequence) Let K be a compact semi-
algebraic set and C = {Ci}i∈I a finite covering of K by semi-algebraic closed subsets.
Let F ∈ Sh(K, A). Then, there is a spectral sequence abutting to H∗(X,F) whose
E2-term is give by

Ep,q2 =
⊕

(i0,...,ip)

Hq(Ci0,...,ip ,F|Ci0,...,ip ),

where Ci0,...,ip = Ci0 ∩ · · · ∩ Cip .

Proof. Follows from [34, Lemma 2.8.2] and standard arguments using spectral se-
quences arising from double complexes. �
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3.2.4. Constructible Sheaves.

Definition 3.32. Following [34], we call a complex C• of A-modules to be a perfect
complex if it is isomorphic (in the derived category) to a bounded complex of finitely
generated projective A-modules.

Definition 3.33 (Constructible Sheaves). Let X be a locally closed semi-algebraic
set. Following [34], an object F ∈ Ob(Db(X,A)) is said to be constructible if it
satisfies the following two conditions:

(A) There exists a finite partition X = ∪i∈ICi of X by locally closed semi-
algebraic subsets such that for j ∈ Z and i ∈ I, the Hj(F)|Ci are locally
constant. This means that for each i ∈ I, and j ∈ Z, the sheaf on Ci
associated to the pre-sheaf defined by U 7→ Hj(F|U ) is a constant sheaf (cf.
Definition 3.12). This is equivalent to saying that for each i ∈ I, and x ∈ Ci,
there exists an open neighborhood U of x in C, such that for every x′ ∈ U ,
the restriction map r induces isomorphisms r∗ : H∗(F(U)) → H∗((F)x′).
We call such a partition to be subordinate to F .

For each x ∈ X we denote by PFx ∈ Z[T ] the Poincaré polynomial of
the bounded complex H∗(Fx) (which is in fact a Laurent polynomial in this
case) defined by

PFx(T ) =
∑
i∈Z

(dimA Hi(Fx))T i.

(B) For each x ∈ X, the stalk Fx is a perfect complex. In particular, this means
that for j ∈ Z, the cohomology groups Hj(Fx) are finitely generated, and
and there exists N such that Hj(Fx) = 0 for all x ∈ X and |j| > N .

We will denote the category of constructible sheaves on X by Db
sa(X,A).

From now one we will fix A = Q for convenience. Then all A-modules are
projective, and in fact vector spaces over Q. We will henceforth drop in all the
notation the reference to the ring A, taking A = Q.

Example 3.34. Let X ⊂ Rn be a closed semi-algebraic subset. Then the sheaf
QX is a constructible sheaf on Rn.

3.2.5. Closure of the category of constructible sheaves under sheaf operations.

Lemma 3.35. Let X,Y be semi-algebraic sets, f : X → Y a semi-algebraic map,
and F ∈ Ob(Db

sa(X)),G ∈ Ob(Db
sa(Y )) constructible. Then,

(A) Then f−1G ∈ Db
sa(X).

(B) Suppose that f is proper restricted to Supp(F). Then, Rf∗(F), Rf!(F) ∈
Ob(Db

sa(Y )).

Proof. See [34, Propositions 8.4.8, 8.4.10]. �

The following is a key example.

Example 3.36. Let S ⊂ Rm × Rn be a compact semi-algebraic set and π : Rm ×
Rn → Rn the projection map to the second factor. Clearly the map π is proper
restricted to Supp(QS) = S. Then, for each x ∈ Rn, we have using Propositions
3.28 and 3.24 the following isomorphism (in the derived category):

(Rπ∗QS)x ∼= (Rπ!QS)x ∼=
⊕
n

Hn(Sx,Q)[−n],
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where Sx = π−1(x) ∩ S. In other words, the stalks of Rπ∗QS are isomorphic to
the cohomology groups (with coefficients in Q) of the fiber of S over x under the
map π. It follows from Hardts theorem of triviality of semi-algebraic map [16,
Theorem 9.3.2.], that there is a finite semi-algebraic partition of Rn into connected,
locally closed semi-algebraic sets, such that for each set C of the partition, the
homeomorphism type of the fibers Sx,x ∈ C and hence the stalks (Rπ∗QS)x stays
invariant. This is the sheaf theoretic analogue of quantifier elimination in the first
order theory of the reals. Later in the paper we prove an effective version of this
result (see Theorem 4.14 below).

3.3. Real analogue of PH. Our ultimate goal is to generalize the set theoretic
complexity classes to a more general sheaf theoretic context. Before doing so we
recall the definitions of the standard B-S-S complexity classes. In fact, we will need
to use the “compact versions” of these classes which were introduced in [13] in order
to avoid certain difficulties arising from non-proper projection maps.

We first recall the definition of the B-S-S the polynomial hierarchy for the reals.
It mirrors the discrete case very closely (see [41]).

Definition 3.37 (The class PR). Let k(n) be any polynomial in n. A sequence of
semi-algebraic sets (Tn ⊂ Rk(n))n>0 is said to belong to the class PR if there exists
a machine M over R (see [15] or [14, §3.2]), such that for all x ∈ Rk(n), the machine
M tests membership of x in Tn in time bounded by a polynomial in n.

Definition 3.38. Let k(n), k1(n), . . . , kp(n) be polynomials in n. A sequence of

semi-algebraic sets (Sn ⊂ Rk(n))n>0 is said to be in the complexity class ΣR,p, if
for each n > 0 the semi-algebraic set Sn is described by a first order formula

(3.2) (Q1Y
1) · · · (QpYp)φn(X1, . . . , Xk(n),Y

1, . . . ,Yp),

with φn a quantifier free formula in the first order theory of the reals, and for
each i, 1 ≤ i ≤ p, Yi = (Y i1 , . . . , Y

i
ki(n)) is a block of ki(n) variables, Qi ∈ {∃,∀},

with Qj 6= Qj+1, 1 ≤ j < p, Q1 = ∃, and the sequence of semi-algebraic sets

(Tn ⊂ Rk(n)+k1(n)+···+kp(n))n>0 defined by the quantifier-free formulas (φn)n>0

belongs to the class PR.

Similarly, the complexity class ΠR,p is defined as in Definition 3.38, with the
exception that the alternating quantifiers in (4.1) start with Q1 = ∀. Since, adding
an additional block of quantifiers on the outside (with new variables) does not
change the set defined by a quantified formula we have the following inclusions:

ΣR,p ⊂ ΠR,p+1, and ΠR,p ⊂ ΣR,p+1.

Note that by the above definition the class ΣR,0 = ΠR,0 is the familiar class PR,
the class ΣR,1 = NPR and the class ΠR,1 = co-NPR.

Definition 3.39 (Real polynomial hierarchy). The real polynomial time hierarchy
is defined to be the union

PHR
def
=
⋃
p≥0

(ΣR,p ∪ΠR,p) =
⋃
p≥0

ΣR,p =
⋃
p≥0

ΠR,p.

As mentioned before, in order to get around certain difficulties caused by non-
locally-closed sets and non-proper maps, a restricted polynomial hierarchy was
defined in [13]. We now recall the definition of this compact analogue, PHc

R, of
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PHR. Unlike in the non-compact case, we will assume all variables vary over certain
compact semi-algebraic sets (namely spheres of varying dimensions).

Definition 3.40 (Compact real polynomial hierarchy [13]). Let

k(n), k1(n), . . . , kp(n)

be polynomials in n. A sequence of semi-algebraic sets (Sn ⊂ Sk(n))n>0 is in the
complexity class Σc

R,p, if for each n > 0 the semi-algebraic set Sn is described by a
first order formula

(Q1Y
1 ∈ Sk1(n)) · · · (QpYp ∈ Skp(n))φn(X0, . . . , Xk(n),Y

1, . . . ,Yp),

with φn a quantifier-free first order formula defining a closed semi-algebraic subset

of Sk1(n) × · · · × Skp(n) × Sk(n) and for each i, 1 ≤ i ≤ p, Yi = (Y i0 , . . . , Y
i
ki

) is a
block of ki(n) + 1 variables, Qi ∈ {∃,∀}, with Qj 6= Qj+1, 1 ≤ j < p, Q1 = ∃, and

the sequence of semi-algebraic sets (Tn ⊂ Sk1(n) × · · · × Skp(n) × Sk(n))n>0 defined
by the formulas (φn)n>0 belongs to the class PR.

Example 3.41. The following example that appears in [13] is an example of a
language in Σc

R,1 (i.e., of the compact version of NPR).

Let k(n) =
(
n+4

4

)
− 1 and identify Rk(n)+1 with the space of homogeneous poly-

nomials in R[X0, . . . , Xn] of degree 4. Let Sn ⊂ Sk(n) ⊂ Rk(n)+1 be defined by

Sn = {P ∈ Sk(n) | ∃x = (x0 : · · · : xn) ∈ PnR with P (x) = 0};
in other words Sn is the set of (normalized) real forms of degree 4 which have a
zero in the real projective space PnR. Then

(Sn ⊂ Sk(n))n>0 ∈ Σc
R,1,

since it is easy to see that Sn also admits the description:

Sn = {P ∈ Sk(n) | ∃x ∈ Sn with P (x) = 0}.

Note that it is not known if (Sn ⊂ Sk(n))n>0 is NPR-complete (see Remark
3.42), while the non-compact version of this language, i.e., the language consisting
of (possibly non-homogeneous) polynomials of degree at most four having a zero in
AnR (instead of PnR), has been shown to be NPR-complete [14].

We define analogously the class Πc
R,p, and finally define the compact real poly-

nomial time hierarchy to be the union

PHc
R

def
=
⋃
p≥0

(Σc
R,p ∪Πc

R,p) =
⋃
p≥0

Σc
R,p =

⋃
p≥0

Πc
R,p.

Notice that the semi-algebraic sets belonging to any language in PHc
R are all

semi-algebraic compact (in fact closed semi-algebraic subsets of spheres). Also,
note the inclusion

PHc
R ⊂ PHR.

Remark 3.42. The restriction to compact sets in [13] was necessitated by the fact
that certain topological results used their needed certain maps to be proper, and
assuming compactness was an easy way to ensure properness of these maps. Sim-
ilarly, in this paper it will be convenient to assume that certain maps are proper
restricted to supports of some given sheaves on a semi-algebraic set X. Since the
support of a sheaf is always closed, the properness is ensured if we assume X is
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compact. In the absence of the compactness assumption, one would have to use
the derived functors Rf! and Rf !, instead of Rf∗ and f−1, and always consider
cohomology groups with compact supports. While this might indeed be worthwhile
to do in the future to have the fullest generality, we avoid complications in this
paper by making the compactness assumption.

However, note that even though the restriction to compact semi-algebraic sets
might appear to be only a technicality at first glance, this is actually an important
restriction. For instance, it is a long-standing open question in real complexity
theory whether there exists an NPR-complete problem which belongs to the class
Σc

R,1 (the compact version of the class NPR, see Example 3.41). See also [13] for
natural examples of sequences in the class Σc

R,1.

Remark 3.43. The topological methods used in this paper only require the sets to
be compact. Using spheres to achieve this compact situation is a natural choice
in the context of real algebraic geometry, since the inclusion of the space Rn into
its one-point compactification Sn is a continuous semi-algebraic map that sends
semi-algebraic subsets of Rn to their own one-point compactification (see [16, Def-
inition 2.5.11]).

3.3.1. Stability of the classes PR and Pc
R under certain operations. It is important

to note that the the B-S-S complexity class PR (as well as Pc
R) is stable under

certain operations. In fact, many results (such as the analogue of Toda’s theorem
in the B-S-S model proved in [13] as an illustrative example) depend only on these
stability properties of the class PR and not on its actual definition involving B-S-
S machines. We will formulate similar stability properties for the sheaf theoretic
generalization of the class Pc

R.

Remark 3.44. We note here that we will sometimes identify a compact subset of
S ⊂ Rn+1, with the corresponding subset of the one-point compactification of
Rn+ 1 which is homeomorphic to Sn and write S ⊂ Sn. For example, we write
Sm × Sn ⊂ Sm+n+1, the implied embedding is obtained by taking the product of
the standard embeddings Sm ↪→ Rm+1, Sn ↪→ Rn+1, and then taking the one-point
compactification of Rm+n+2.

We omit the proofs of the following two propositions which follow immediately
from the definition of the classes PR and Pc

R.

Proposition 3.45. Let m(n) ∈ Z[n] be a fixed non-negative polynomial. Let(
Xn ⊂ Rm(n)

)
n>0

and
(
Yn ⊂ Rm(n)

)
n>0

both belong to PR. Then, (Xn ∪ Yn)n>0,

(Xn ∩ Yn)n>0, (Xn × Yn)n>0,
(
Rm(n) \Xn

)
n>0

all belong to the class PR. More-

over, if
(
Xn ⊂ Sm(n)

)
n>0

and
(
Yn ⊂ Sm(n)

)
n>0

both belong to Pc
R, then (Xn ∪ Yn)n>0,

(Xn ∩ Yn)n>0, (Xn × Yn)n>0 all belong to the class Pc
R as well.

Even though the B-S-S complexity class PR is by definition a sequence of semi-
algebraic sets, sometimes it is also convenient to have a notion of a polynomial time
computable maps. We will use the following slight abuse of notation.

Notation 3.46. Let m1(n),m2(n) ∈ Z[n] two fixed non-negative polynomials and
let
(
fn : Rm1(n) → Rm2(n)

)
n>0

be a sequence of maps. We say that the sequence(
fn : Rm1(n) → Rm2(n)

)
n>0
∈ PR if the maps

(
fn : Rm1(n) → Rm2(n)

)
n>0

are com-
putable by a B-S-S machine in polynomial time.
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Proposition 3.47. Let m1,m2 ∈ Z[n] two fixed non-negative polynomials and let(
fn : Rm1(n) → Rm2(n)

)
n>0
∈ PR.

(A) For any sequence
(
Xn ⊂ Rm2(n)

)
n>0

belonging to PR, the sequence(
f−1
n (Xn) ⊂ Rm1(n)

)
n>0

also belongs to the class PR.
(B) For any two sequences

(
Xn ⊂ Rm1(n)

)
n>0

and
(
Yn ⊂ Rm1(n)

)
n>0

belong-

ing to PR, the sequence as well as
(
Xn ×fn Yn ⊂ Rm1(n) × Rm1(n)

)
n>0

also
belongs to the class PR.

Similar statements hold for Pc
R as well.

Proof. Immediate. �

Remark 3.48. One important special case of Proposition 3.47 is when the semi-
algebraic maps fn are just projection maps forgetting the first n co-ordinates. No-
tice also that Propositions 3.45 and 3.47 together imply that the B-S-S classes PR
and Pc

R are closed under usual set theoretic operations, as well under taking in-
verse images under and fiber-products over polynomially computable semi-algebraic
maps.

While the classes PR and Pc
R are closed under inverse images under polynomially

computable maps, the question whether the same is true under taking direct images
is equivalent to the famous PR vs NPR (respectively, Pc

R vs NPc
R) question and

the prevailing belief in fact is that this is not the case.
More formally:

Conjecture 3.49. [14] The class PR is strictly included in the class NPR.

We also make the compact version of the above conjecture.

Conjecture 3.50. The class Pc
R is strictly included in the class NPc

R.

3.4. Definition of the class PR of constructible sheaves. As noted previously
for reasons of expediency we are going to restrict to compact complexity classes from
now on. For set theoretic classes this means we only consider sequences of compact
subsets of spheres, and in the sheaf theoretic generalizations we will only consider
sequences of sheaves supported on spheres. Note that in this case the supports of
such sheaves are necessarily compact.

We now define the sheaf theoretic analogue of the complexity class Pc
R.

Definition 3.51. (The class PR) The class PR of constructible sheaves consists of

sequences
(
Fn ∈ Ob(Db

sa(Sm(n))
)
n>0

, where m(n) ∈ Z[n] is a non-negative poly-

nomial satisfying the following conditions. There exists a non-negative polynomial
m1(n) ∈ Z[n] such that:

(A) For each n > 0, there is an index set In of cardinality 2m1(n), and a semi-

algebraic partition, (Sn,i)i∈In , of Sm(n) into locally closed semi-algebraic
sets Sn,i indexed by In, which is subordinate to Fn.

(B) For each n > 0 and each x ∈ Sm(n),
(1) The dimensions dimQ Hj((Fn)x) are bounded by 2m1(n);

(2) Hj((Fn)x) = 0 for all j with |j| > m1(n).
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The two sequences of functions (in : S(m(n) → In)n>0, and (pn : Sm(n) →
Z[T ]) defined by

in(x) = i ∈ In, such that, x ∈ Sn,i
pn(x) = P(Fn)x

are computable by B-S-S machines in time polynomial in n (recall from
Definition 3.33 that PFx denotes the Poincaré polynomial of the stalk of F
at x) (Notice that the number of bits needed to represent elements of In,
and the coefficients of P(Fn)x are bounded polynomially in n.)

One immediate property of the class PR is the following.
In what follows it will be convenient to have the following notation.

Notation 3.52. For any finite family P ⊂ R[X1, . . . , Xn] and a semi-algebraic
set S ⊂ Rn, we will denote by Π(P, X) the partition of X into the connected
components of R(σ, S) for each realizable sign condition σ ∈ {0, 1,−1}P on S.

Proposition 3.53. Let
(
Fn ∈ Ob(Db

sa(Sm(n))
)
n>0

belong to the class PR. Then,

there exists for each n > 0 a family of polynomials Pn ⊂ R[X0, . . . , Xm(n)], such

that the semi-algebraic partition Π(Pn,Sm(n)) is subordinate to Fn, and moreover
card(Pn) as well as the degrees of the polynomials in Pn are bounded singly expo-
nentially as a function of n.

Proof. This is an immediate consequence of the fact that the sequence of functions
in is computable in polynomial time. �

One connection of PR with the standard B-S-S complexity class Pc
R is as follows.

Proposition 3.54. Let
(
Xn ⊂ Sm(n)

)
n>0

be a sequence of compact semi-algebraic

sets. Then,
(
Xn ∈ Sm(n)

)
n>0

∈ Pc
R if and only if the sequence of constructible

sheaves (QXn ∈ Ob(Db
sa(Sm(n))))n>0 ∈ PR.

Proof. For any compact semi-algebraic set X ⊂ Sm(n), the stalks (QX)x = 0 for
x 6∈ X. For x ∈ X,

Hj((QX)x) = 0 for j 6= 0,

= Q otherwise.

Now suppose that
(
Xn ∈ Sm(n)

)
n>0
∈ Pc

R. Then, letting for each n > 0, In =

{0, 1}, and

Sn,0 = Sm(n) \Xn,

Sn,1 = Xn,

it is easy to verify that (QXn ∈ Ob(Db
sa(Sm(n))))n>0 ∈ PR.

Conversely, if (QXn ∈ Ob(Db
sa(Sm(n))))n>0 ∈ PR, then for each n > 0, there is

an index set In of cardinality 2m1(n), and a semi-algebraic partition, (Sn,i)i∈In , of

Sm(n) into locally closed semi-algebraic sets Sn,i indexed by In, which is subordinate
to Fn satisfying the properties listed in Definition 3.51. Now, from the fact that

the sequence of functions (pn : Sm(n) → Z[T ]) defined by

pn(x) = P(Fn)x
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is computable by B-S-S machines in time polynomial in n, it follows immediately

that
(
Xn ∈ Sm(n)

)
n>0
∈ Pc

R. �

The class PR is stable under standard sheaf-theoretic operations. These closure
properties are reminiscent of the stability properties of the classes PR and Pc

R (cf.
Propositions 3.45 and 3.47).

Proposition 3.55. (Stability properties of the class PR) Let m(n) ∈ Z[n] be a
fixed non-negative polynomial.

(A) (Closure under direct sums and tensor products.) If(
Fn ∈ Ob(Db

sa(Sm(n))
)
n>0

,
(
Gn ∈ Ob(Db

sa(Sm(n))
)
n>0
∈ PR,

then (Fn ⊕ Gn)n>0, (Fn ⊗ Gn)n>0 ∈ PR.
(B) (Closure under pull-backs.) For any fixed non-negative polynomial m1(n) ∈

Z[n], let πn : Sm1(n) × Sm(n) → Sm(n) be the projection map on the second
factor, and (

Fn ∈ Ob(Db
sa(Sm(n))

)
n>0
∈ PR.

Then,
(
π−1
n (Fn)

)
n>0
∈ PR.

(C) (Closure under truncations.) For any non-negative polynomial m1(n) ∈
Z[n], and a sequence(

Fn ∈ Ob(Db
sa(Sm(n))

)
n>0

belonging to the class PR, we have(
τ≤m1(n)Fn

)
n>0
∈ PR,(

τ≥m1(n)Fn
)
n>0
∈ PR.

(D) (Closure under shifts.) For any non-negative polynomial m1(n) ∈ Z[n], and
a sequence (

Fn ∈ Ob(Db
sa(Sm(n))

)
n>0

belonging to the class PR, we have

(Fn[m1(n)])n>0 ∈ PR,

(Fn[−m1(n)])n>0 ∈ PR.

Proof. (A) Let for each n > 0, (S′n,i)i′∈I′n and (S′′n,i)i′′∈I′′n be semi-algebraic

partitions of Sm(n) subordinate to the Fn and Gn, and i′n, p
′
n, i
′′
n, p
′′
n the

corresponding functions (cf. Definition 3.51). Also, let m′1(n) (respectively,
m′′1(n)) be the polynomial appearing in the definition of the class PR for
the sequence (Fn)n>0 (respectively, (Gn)n>0). Let In = I ′n × I ′′n , and for
each i = (i′, i′′) ∈ In, let Sn = S′n,i′ ∩ S′′n,i′′ . Then,

(1) For each i = (i′, i′′) ∈ In, j ∈ Z, and x ∈ Sn,i
Hj((Fn ⊕ Gn)x) ∼= Hj((Fn)x)⊕Hj((Gn)x)

and is clearly locally are locally constant for x ∈ Sn,i, since H∗((Fn)x)
is locally constant for x ∈ S′n,i′ and H∗((Gn)x) is locally constant for

x ∈ S′′n,i′′ ;
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(2) We also have

dimQ Hj((Fn ⊕ Gn)x) = dimQ Hj((Fn)x) + dimQ Hj((Gn)x)

≤ 2m
′
1(n) + 2m

′′
1 (n);

Also using the Kunneth formula , and the definition of tensor products
of constructible sheaves, we have

dimQ Hj((Fn ⊗ Gn)x) = dimQ

 ⊕
p+q=j

Hp((Fn)x)⊗Hq((Gn)x)


=

∑
p+q=j

(dimQ Hp((Fn)x))(dimQ Hq((Gn)x)

≤
∑
p+q=j

2m
′
1(n)+m′′1 (n)

≤ 2(m1(n) +m2(n) + 1)2m
′
1(n)+m′′1 (n),

noting that

Hj((Fn)x),Hj((Gn)x) = 0

for all j with |j| > m′1(n) +m′′1(n).

(3) from the fact that the functions i′n : Sm(n) → I ′n and i′′n : Sm(n) → I ′′n
are computable in polynomial time it follows that it follows that the

function in : Sm(n) → In, defined by in(x) = (i′n(x), i′′n(x)) is also
computable in polynomial time.

(4) from the fact that the functions p′n : Sm(n) → Z[T ] and p′′n : Sm(n) →
Z[T ] are computable in polynomial time it follows that it follows that

the functions p⊕n : Sm(n) → Z[T ], p⊗n : Sm(n) → Z[T ], defined by

p⊕n (x) = p′n(x) + p′′n(x),

p⊗n (x) = p′n(x) · p′′n(x),

are also computable in polynomial time.
It follows from the above that both sequences (Fn ⊕ Gn)n>0, (Fn ⊗ Gn)n>0

belong to the class PR.

(B) Let for each n > 0, (S′n,i)i∈I′n be the semi-algebraic partition of Sm(n) cor-
responding to the Fn, and i′n, p

′
n the corresponding functions (cf. Definition

3.51). Also, let m′1(n) be the polynomial appearing in the definition of the
class PR for the sequence (Fn)n>0.

Let In = I ′n. Defining in : Sm1(n) × Sm(n) → In and pn : Sm1(n) ×
Sm(n) → Z[T ] by

in(y,x) = i′n(x)

pn(y,x) = p′n(x),

it follows from the fact that the sequences (i′n)n>0, (p
′
n)n>0 are computable

in polynomial time, that so are the sequences (in)n>0 and (pn)n>0.

Moreover, for each (y,x) ∈ Sm1(n)×Sm(n) we have for each j ∈ Z, using
Proposition 3.27 an isomorphism

Hj(π−1
n (Fn)(y,x)

∼= Hj((Fn)x.
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This shows that
(
π−1
n (Fn)

)
n>0
∈ PR.

The remaining parts of the proposition are immediate. �

We now give several illustrative examples of sequences of constructible sheaves
in the class PR other than those coming directly from a B-S-S complexity class Pc

R.
We first need a notation.

Notation 3.56. If X is a locally closed semi-algebraic set then we denote

bi(X) = dimQ Hi(X,Q),

bBMi (X) = dimQ Hi
c(X,Q),

b(X) =
∑
i

bi(X),

bBM (X) =
∑
i

bBMi (X).

We will also denote by PX ∈ Z[T ] the Poincaré polynomial of X defined by

PX =
∑
i≥0

bBMi (X)T i.

Example 3.57. (Rank stratification sheaf) For each n > 0, let Vn ⊂ Sn−1×Sn
2−1

be the semi-algebraic set (an incidence variety) defined by

Vn = {(x, A) | x ∈ Rn, A ∈ Rn×n, A · x = 0, ||A||2 = 1, ||x||2 = 1}.

Let πn : Sn−1 × Sn
2−1 → Sn

2−1 denote the projection to the second factor.

Proposition 3.58. The sequence of constructible sheaves(
Rπn,∗QVn ∈ Ob(Db

sa(Sn
2−1))

)
n>0

belongs to the class PR.

Proof. It is clear that the semi-algebraic partition by rank of the matricesA ∈ Sn
2−1

is subordinate to the constructible sheaf Rπn,∗QVn . Moreover, for each A ∈ Sn
2−1,

we have that

H∗((Rπn,∗QVn)A) ∼= H∗(Sn−1−rkn,n(A),Q).

The claim is now clear from the fact that the rank of a matrix is computable in
polynomial time by a B-S-S machine. �

This example should be compared with Example 2.21 in the previous Section 2.

The next example might look a little artificial at first glance but shows how index
sets with exponential cardinality, as well as Poincaré polynomials with coefficients
which are exponentially large in n could arise for a sequence in PR.

Example 3.59. For n > 0 let Pn ∈ R[X0, X1, . . . , Xn, Y0,Y1, . . . ,Yn], where each
Yi = (Yi,1, . . . , Yi,i) is a block of i variables, be defined by

Pn =

n∑
i=1

(X2
i − 1)2 +

1

N
(

i∑
j=1

Y 2
i,j + (1−Xi))

2

 ,
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with

N =

n∑
i=1

i =

(
n+ 1

2

)
,

and let Vn = Z(Pn,S
n × SNY0≥0) (cf. Notation 2.23) (recall that Sn and SN are

the unit spheres centered at the origin in Rn+1 and RN+1 respectively). Let πn :

Sn × SN → Sn be the projection to the first factor. Observe that

πn(Vn) = {(0, x1, . . . , xn) | xi ∈ {−1,+1}, 1 ≤ i ≤ n},
and for x = (0, x1, . . . , xn) ∈ πn(Vn), (Vn)x = π−1

n (x) ∩ Vn is described by

(Vn)x = SNY0≥0 ∩ (T1 × · · · × Tn),

where for each i, 1 ≤ i ≤ n,

Ti ∼= Si if xi = −1,
∼= {pt} if xi = 1.

Proposition 3.60. The sequence
(
Rπn,∗QVn ∈ Ob(Db

sa(Sn))
)
n>0

belongs to the
class PR.

Proof. Let for In = {+1,−1}n ∪ {0}, and for α = (α1, . . . , αn) ∈ {−1,+1}n

Sn,α = {x = (x0, x1, . . . , xn) ∈ Sn | xi = αi, 1 ≤ i ≤ n},
and let

S0 = Sn \
⋃

α∈{−1,+1}n
Sn,α.

Then the family (Sn,α)α∈In is a semi-algebraic partition of Sn into card(In) =

2n + 1 locally closed semi-algebraic sets. It is easy to check that H∗((Rπn,∗QVn)x)
is locally constant over each element of the partition, and

H∗((Rπn,∗QVn)x) = 0 if x ∈ Sn,0,
∼= H∗(T1 × · · · × Tn,Q) for x ∈ Sn,α with α ∈ {−1,+1}n,

where for each i, 1 ≤ i ≤ n,

Ti ∼= Si if αi = −1,
∼= {pt} if αi = 1.

By Kunneth formula we have that

PT1×···×Tn(T ) =

n∏
i=1

PTi

=

n∏
i=1

(
(1− αi)

2
(1 + T i)

)
(3.3)

(recall from Notation 3.56 that for any locally closed semi-algebraic set X we denote
by PX(T ) the Poincaré polynomial of X).

It follows from Eqn. (3.3) that the dimensions dimQ H∗((Rπn,∗QVn)x) are bounded
singly exponentially in n.

It is also clear that the sequence of maps (in : Sn → In)n>0 and (pn : Sn →
Z[T ]) are computable in polynomial time. Together with the above this shows that(
Rπn,∗QVn ∈ Ob(Db

sa(Sn))
)
n>0

belongs to the class PR. �



29

Remark 3.61. Notice that in the above example, it follows from the unique fac-
torization property of the polynomial ring Z[T ], that H∗((Rπn,∗QVn)x) is distinct
over each element, Sn,α, of the partition (Sn,α)α∈In , and this is the coarsest possible
partition which is subordinate to Rπn,∗QVn , and this partition has size 2n+1 which

is singly exponential in n. Moreover, the dimension
∑
i∈Z dimQ Hi((Rπn,∗QVn)x)

can be as large as 2n, and in fact
∑
i∈Z dimQ Hi((Rπn,∗QVn)x) = 2n for x =

(0,−1,−1, . . . ,−1) (seen by substituting T = 1 in the corresponding Poincaré poly-
nomial).

Example 3.62. Let d, t > 0 be fixed integers. Let for each n > 0, Pn ∈
R[X1, . . . , Xn] be a polynomial with deg(Pn) ≤ d, and such that the sequence of
functions (Pn : Rn → R)n>0 ∈ PR (see Notation 3.46). For example, we could take
for Pn the elementary symmetric polynomial ed,n of degree d in n variables. Let

Vn = Z(Pn,S
n−1) ⊂ Rn, and it is immediate that the sequence

(
Vn ⊂ Sn−1

)
n>0
∈

Pc
R. Now for each n > t, πn,t denote the projection map from Sn+t−1 ⊂ Rn+t to Sn

which forgets that last t variables, and where we have replaced Rn by its one-point
compactification (refer to Remark 3.44).

Proposition 3.63. The sequence (Rπn,t,∗QVn)n>0 belongs to the class PR.

Proof. First observe that the number of coefficients of the polynomial Pn+t is
bounded polynomially in n (for constant t and d), and more over from the fact
that the sequence of functions (Pn : Rn → R)n>0 ∈ PR it follows that these coef-
ficients can be computed in polynomially many steps by a B-S-S machine. Notice
that for each x ∈ Rn, the fiber (Vn+t)x = Vn+t ∩ π−1

n,t(x) can be identified with
the set of zeros of the polynomials Pn+t(x, Y1, . . . , Yt) intersected with the sphere
having the equation Y 2

1 + · · ·+Y 2
t + |x|2−1. Moreover the degree of the polynomial

Pn+t(x, Y1, . . . , Yt) in Y1, . . . , Yt is at most d. Now, it is a standard fact (see for
example [9]) that there exists a family of polynomials Qn ⊂ R[X1, . . . , Xn], such
that card(Qn) as well as the degrees of the polynomials in Qn are bounded by

d2O(t)

= O(1), such that for each x ∈ Rn the signs of the polynomials in Qn at x
determines the topological type of the fiber (Vn,t)x. The number of of realizable
sign conditions of this family Qn is bounded singly exponentially in n. Moreover,
for each i ∈ Z and x ∈ Rn,

Hi((Rπn,t,∗QVn)x) = Hi(Vn,t)x,Q).

From dimension considerations it follows that Hi(Vn,t)x,Q) = 0 for i 6∈ [0, t].
Moreover, it follows from standard bounds on the Betti numbers of real varieties
[38] that,

∑
i dimQ(Hi(Vn,t)x,Q)) ≤ O(d)t. It is also clear that given x ∈ Rn, the

signs of the polynomials in Qn at x as well as the dimensions, dimQ(Hi(Vn,t)x,Q))
of can be computed in polynomial time. This completes the proof that

(Rπn,t,∗QVn)n>0 ∈ PR.

�

In order to describe the next example we need a new notation.

Notation 3.64. We denote by Symn,d(R) the R-vector space of forms over R of

degree d in n + 1 variables. We will denote by Nn,d =
(
n+d
d

)
= dimR Symn, d.

Note that each form P ∈ Symn,d can be identified uniquely with a point on the

sphere aP ∈ SNn,d−1 obtained by intersecting the sphere SNn,d−1 with the half-ray
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consisting of the positive multiple of P . We will identify P with the point aP in
what follows.

Example 3.65.

Proposition 3.66. Let s > 0 be fixed, and consider the for each n > 0, the compact
set Vn ⊂ (SNn,d−1)s × Sn defined by

Vn = {(P1, . . . , Ps, x) | x ∈ Sn, P1(x) = · · · = Ps(x) = 0},

Let πn : (SNn,d−1)s × Sn → (SNn,d−1)s ↪→ Ss(Nn,d−1)+s be the projection on the
first factor. Then,

(A) The sequence (Vn)n>0 ∈ PR.

(B) The sequence
(
Rπn,∗(QVn) ∈ Ob(Db

sa(Ss(Nn,d−1)+s)
)
n>0
∈ PR.

Remark 3.67. Notice that unlike in Example 3.62 above, the dimensions of the
fibers of the map πn grows with n. However, the degrees of the polynomials used
in the definition of the sets Vn is restricted to 2.

Proof. The proof of the proposition is somewhat similar to that of Proposition 3.63
and we outline it here omitting details. It follows from the main results in [7] that
for each n > 0 there exists a family of polynomials Qn, computable in polynomial
time such that the stable homotopy types of the fibers (Vn)x = Vn ∩ π−1

n (x) stay
invariant over each connected component of the realizations of each realizable sign
conditions on Qn. The degrees and the number of polynomials in Qn is bounded
polynomially in n (for fixed s). Also, it follows from the main result in [5] (see also
[12, 6]), that the Betti numbers of the fibers (Vn)x are computable in polynomial
time (for fixed s). Together they imply the proposition. �

3.5. Polynomial hierarchy of constructible sheaves. We will now define the
sheaf theoretic version of the polynomial hierarchy. However, before doing so we
motivate out definition by recalling the definitions of NPc

R and co-NPc
R.

If m(n) is any fixed polynomial, then a sequence
(
Xn ⊂ Sm(n)

)
n>0

is in the

class NPc
R, if there exists a polynomial m1(n) and a sequence (Yn ⊂ Sm1(n) ×

S(m(n))n>0 ∈ PR such that for each n > 0 the semi-algebraic set Xn is described

by the formula (∃y ∈ Sm1(n))((y, x) ∈ Yn).

Similarly,
(
Xn ⊂ Sm(n)

)
n>0

is in the class co-NPc
R, if there exists a polynomial

m1(n) and a sequence (Zn ⊂ Sm1(n) × S(m(n))n>0 ∈ PR such that for each n > 0

the semi-algebraic set Xn is described by the formula (∀z ∈ Sm1(n))((z, x) ∈ Zn).
Notice that in the second case it immediately follows the fact that for all N > 0,

Hj(QSN ) = Q, for j = 0, N,

= 0, otherwise

that

QXn = τ≤m1(n)τ≥m1(n)Rπn,∗(QZn)[m1(n)],

where for each n > 0, πn : Sm1(n) × Sm(n) → Sm(n) is the projection map to the
second factor.
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In the first case, we use a construction used in [13]. Namely, given a sequence

(Yn ⊂ Sm1(n) × S(m(n))n>0 ∈ PR, the sequence

(Jπn(Yn) ⊂ [0, 1]×Bm1(n) ×Bm1(n) × S(m(n))n>0 ∈ PR,

where Jπn(Yn) ⊂ [0, 1] × Bm1(n) × Bm1(n) × Sm(n) is defined as the union of the
following three sets:

(0, 1)× (Yn ×πn Yn),

{(1, y0, y1, x) | (y0, x) ∈ Yn},
{(0, y0, y1, x) | (y1, x) ∈ Yn}.

Denoting by J(πn) : Jπn(Yn) → Sm(n) the natural projection map, it is easy to

verify that the fibers of the projection map J(πn) : Jπn(Yn) → Sm(n) are homo-
topy equivalent to the topological join with itself of the corresponding fibers of the

projection πn : Yn → Sm(n), and are thus connected if non-empty. It is clear that
the sequence (Jπn(Yn))n>0 ∈ PR. Moreover, J(πn)(Jπn(Yn)) = Xn, and for each
x ∈ Xn, (J(πn))−1(x) is connected.

Thus, the constructible sheaf QXn can be expressed as

QXn = τ≤0τ≥0R(J(πn))∗QJπn (Yn).

Notice that the quantifiers in the usual definition of the classes NPR and co-NPR
are replaced by the direct image functor and truncation functors.

This motivates the following definition.

Definition 3.68. For each p ≥ 0 we define a class of sequences Λ(p)PR as follows.
Let

Λ(0)PR = PR.

For p > 0, we define inductively the class Λ(p)PR as the smallest class of sequences
of constructible sheaves satisfying the following conditions.

(A) The class Λ(p)PR contains the class of sequences, (Fn)n>0 for which there
exists non-negative polynomialsm(n),m0(n) ∈ Z[n], and a sequence (Gn)n>0 ∈
Λ(p−1)PR such that for each n > 0,

(1) Gn ∈ Ob(Db
sa(Sm0(n) × Sm(n),Q));

(2) Fn = Rπn,∗Gn, where πn : Sm0(n) × Sm(n) → Sm(n) is the projection
to the second factor.

(B) The class Λ(p)PR is closed under taking direct sums, tensor products, trun-
cations and pull-backs. More precisely,

(1) If (Fn)n>0, (Gn)n>0 ∈ Λ(p)PR, then (Fn ⊕ Gn)n>0, (Fn ⊗ Gn)n>0 ∈
Λ(p)PR.

(2) For any polynomial m(n), and a class (Fn)n>0 ∈ Λ(p)PR, the se-

quences (τ≤m(n)Fn)n>0, (τ
≥m(n)Fn)n>0 also belong to the class Λ(p)PR.

(3) For any fixed non-negative polynomial m1(n) ∈ Z[n], let πn : Sm1(n)×
Sm(n) → Sm(n) be the projection map on the second factor, and(

Fn ∈ Ob(Db
sa(Sm(n))

)
n>0
∈ Λ(p)PR.

Then,
(
π−1
n (Fn)

)
n>0
∈ Λ(p)PR.
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Finally, Λ(ω)PR is defined as the union

Λ(ω)PR =
⋃
p≥0

Λ(p)PR

The class Λ(ω)PR is the analogue in the category of constructible sheaves of the
class PHR and we will denote

PHR = Λ(ω)PR.

The following example is closely related to the language in the B-S-S complexity
class NPR of all real polynomials in n variables having degree at most 4, whose set
of real zeros is non-empty. It is well known [14] that this problem is NPR-complete.

Example 3.69. For each n let Vn ⊂ Sn−1×SNn,4−1 denote the real variety defined
by

Vn = {(x, P ) | P ∈ Symn,4 ∩ SNn,4−1,x ∈ Sn−1|P (x) = 0}.
Let as usual πn : Sn−1 × SNn,4−1 → SNn,4−1 denote the projection to the second
factor.

It is now easy to verify that the sequence
(
Rπn,∗QVn ∈ Ob(Db

sa(SNn,4−1))
)
n>0

belongs to the class Λ(1)PR. We conjecture that it does not belong to the class
PR.

3.6. Inclusions. In this section we relate the class of sheaves PR with the more
classical complexity classes Pc

R, and more generally the class PHR with the class
PHc

R. This allows us to relate the classical question about separating the class Pc
R

from the class PHR with the new question of separating PHR from PR.

Proposition 3.70. (A) A sequence (Sn ⊂ Sm(n))n>0 belongs to the class Pc
R

if and only if (QXn ∈ Ob(Dsa(Sm(n)))n>0 belongs to the class PR.

(B) If a sequence (Sn ⊂ Sm(n))n>0 belongs to the complexity class Σc
R,p ∪Πc

R,p,

then the sequence (QSn ∈ Ob(Dsa(Sm(n)))n>0 belongs to the class Λ(p)PR.

In particular, if a sequence (Sn ⊂ Sm(n))n>0 belongs to the class PHc
R then

(QXn ∈ Ob(Dsa(Sm(n))n>0 belongs to the class PHR.

Proof. The first part has been already proved in Proposition 3.54. Now suppose

that (Sn ⊂ Sm(n))n>0 belongs to the complexity class Σc
R,p. We prove that (QSn ∈

Ob(Dsa(Sm(n)))n>0 belongs to the class Λ(p)PR using induction on p. Suppose
that the claim holds for all smaller values of p. The base case p = 0 follows from
the first part.

Then, since (Sn ⊂ Sm(n))n>0 belongs to the complexity class Σc
R,p, by definition,

there exists polynomials
m(n),m1(n), . . . ,mp(n)

and for for each n > 0 the semi-algebraic set Sn is described by a first order formula

(Q1Y
1 ∈ Sm1(n)) · · · (QpYp ∈ Smp(n))φn(X0, . . . , Xm(n),Y

1, . . . ,Yp),

with φn a quantifier-free first order formula defining a closed semi-algebraic subset

of Sm1(n) × · · · × Smp(n) × Sm(n) and for each i, 1 ≤ i ≤ p Qi ∈ {∃,∀}, with
Qj 6= Qj+1, 1 ≤ j < p, Q1 = ∃, and the sequence of semi-algebraic sets (Tn ⊂
Sm1(n) × · · · × Smp(n) × Sm(n))n>0 defined by the formulas (φn)n>0 belongs to the
class PR.
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The sequence
(
S′n ⊂ Sm1(n) × Sm(n)

)
n>0

, and hence the sequence (Jπn(S′n))n>0,

belongs to the class Πc
R,p−1. where each S′n is defined by the formula

(Q2Y
2 ∈ Sm2(n)) · · · (QpYp ∈ Smp(n))φn(X0, . . . , Xm(n),Y

1, . . . ,Yp),

and πn : Sm1(n)×Sm(n) → Sm(n) is the projection map on the second factor. Using

the inductive hypothesis, the sequence
(
QJπn (S′n)

)
n>0
∈ Λ(p−1)PR. Then, for each

n > 0, QSn = τ≥0τ≤0Rπn,∗QJπn (S′n), and it follows from the definition of the class

Λ(p−1)PR, that (QSn)n>0 belongs to the class Λ(p)PR.

Now suppose that (Sn ⊂ Sm(n))n>0 belongs to the complexity class Πc
R,p.

Then, there exists polynomials

m(n),m1(n), . . . ,mp(n)

and for for each n > 0 the semi-algebraic set Sn is described by a first order formula

(Q1Y
1 ∈ Sm1(n)) · · · (QpYp ∈ Smp(n))φn(X0, . . . , Xm(n),Y

1, . . . ,Yp),

with φn a quantifier-free first order formula defining a closed semi-algebraic subset

of Sm1(n) × · · · × Smp(n) × Sm(n) and for each i, 1 ≤ i ≤ p Qi ∈ {∃,∀}, with
Qj 6= Qj+1, 1 ≤ j < p, Q1 = ∀, and the sequence of semi-algebraic sets (Tn ⊂
Sm1(n) × · · · × Smp(n) × Sm(n))n>0 defined by the formulas (φn)n>0 belongs to the
class PR.

The sequence
(
S′n ⊂ Sm1(n) × Sm(n)

)
n>0

belongs to the class Σc
R,p−1 where each

S′n is defined by the formula

(Q2Y
2 ∈ Sm2(n)) · · · (QpYp ∈ Smp(n))φn(X0, . . . , Xm(n),Y

1, . . . ,Yp).

Using the inductive hypothesis, the sequence
(
QS′n

)
n>0
∈ Λ(p−1)PR. Then, for

each n > 0, QSn = τ≥0τ≤0Rπn,∗QJπn (S′n)[m1(n)], and it follows from the definition

of the class Λ(p−1)PR, that (QSn)n>0 belongs to the class Λ(p)PR. �

It is an immediate consequence of Proposition 3.70 that:

Theorem 3.71. For each p ≥ 0, the equality Λ(p)PR = PR implies Σc
R,p ∪Πc

R,p =
Pc

R.

In view of Theorem 3.71 we conjecture that:

Conjecture 3.72. For each p > 0,

Λ(p)PR 6= PR.

Remark 3.73. Notice that Conjecture 3.72 is a priori weaker than the more standard
conjecture that Σc

R,p ∪Πc
R,p 6= Pc

R.

Remark 3.74. The reverse implication in Theorem 3.71 is probably not true, even

though we do not have a counter-example at this point. In fact, sequences
(
Sn ⊂ Sm(n)

)
n>0

for which (QSn)n>0 ∈ Λ(1)PR “interpolates” between the classes NPc
R and co-NPc

R.

For example, consider a sequence
(
Sn ⊂ Sm(n)

)
n>0

for which there exists a se-

quence
(
Tn ⊂ Sm1(n) × Sm(n)

)
n>0

, such that Sn = {x ∈ Sm(n) | Hm2(n)(Tn,x,Q) ∼=
Q}, where m1(n),m2(n) are non-negative polynomials, and Tn,x = π−1

n (x) ∩ Tn
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where πn is the projection map πn : Sm1(n) × Sm(n) → Sm(n) to the second factor.
This sequence is unlikely to be in either NPc

R and co-NPc
R, even though clearly

(QSn)n>0 ∈ Λ(1)PR.

4. Topological complexity of constructible sheaves

A standard way in semi-algebraic geometry to measure the topological complex-
ity of a semi-algebraic set is by the sum of their Betti numbers. The topological
complexity of a set S, measured by the sum of its Betti numbers, has been shown
to be related to hardness of testing membership in S [48, 36]. Also, the topological
complexity is a rough guide to the best possible complexity one can hope for of algo-
rithms computing topological invariants of a set S. For example, if the topological
complexity is bounded by a polynomial in the input parameters, then one often
gets algorithms also with polynomial complexity (see for example [2, 5, 4, 12] in the
case of semi-algebraic sets defined by few quadratic polynomials for an instance of
this phenomena).

For a sequence of semi-algebraic sets (Sn ⊂ Rn) one can study the dependence
of the Betti numbers of Sn as a function of n, and in particular estimate the
growth of this sequence. It follows from complexity estimates on effective quantifier
elimination (see for example [9]), as well as estimates on the Betti numbers of semi-
algebraic sets in terms of the number and degrees of the polynomials occurring
in their definition [29], that the Betti numbers of the sets Sn, for any sequence(
Sn ⊂ Rm(n)

)
n>0
∈ PHR, are bounded singly exponentially as a function of n. This

is gives an upper bound on the growth of topological complexity of the sequence(
Sn ⊂ Rm(n)

)
n>0

. We now state this fact more formally.

Theorem 4.1. Let
(
Sn ⊂ Rm(n)

)
n>0

belong to the class PHR. Then, there exists

a polynomial q(n) (depending on the sequence (Sn)n>0), such that

b(Sn) ≤ 2q(n).

In other words, b(Sn) is bounded singly exponentially as a function of n. A similar
statement holds for the compact class PHc

R as well.

Proof. Recall that, if
(
Sn ⊂ Rm(n)

)
n>0

belong to the class PHR, then for each
n > 0 the semi-algebraic set Sn is described by a first order formula

(4.1) (Q1Y
1) · · · (QpYp)φn(X1, . . . , Xk(n),Y

1, . . . ,Yp),

with φn a quantifier free formula in the first order theory of the reals, and for
each i, 1 ≤ i ≤ p, Yi = (Y i1 , . . . , Y

i
ki(n)) is a block of ki(n) variables, Qi ∈ {∃,∀},

with Qj 6= Qj+1, 1 ≤ j < p, Q1 = ∃, and the sequence of semi-algebraic sets

(Tn ⊂ Rk(n)+k1(n)+···+kp(n))n>0 defined by the quantifier-free formulas (φn)n>0

belongs to the class PR.
It follows from the definition of the class PR that the sets Tn has a description

by a quantifier-free first order formula with atoms of the form P{>,=, <}0, P ∈
R[X1, . . . , Xn], and the number and degrees of the polynomials appearing in the
formula are bounded singly exponentially in n. It then follows from the complex-
ity estimates on effective quantifier elimination in the theory of the reals (see for
example [32, 40],[9, Theorem 14.16]), that the same is true for the sets Sn as well.
It now follows from [29, Theorem 6.8] (see also [9, Theorem 7.50]) that b(Sn) is
bounded singly exponentially in n. �
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Remark 4.2. Note that for the compact class PHc
R, the statement of Theorem 4.1

also follows directly from Theorem 4.6 and Proposition 3.70 below.

In the sheaf context, in order to measure the complexity of a given constructible
sheaf F ∈ Ob(Db

sa(X)) for any semi-algebraic set X, we we will use the sum of the
dimensions of the hypercohomology groups, Hi(X,F) (Definition 3.25).

Notation 4.3. For a constructible sheaf F ∈ Ob(Db
sa(X)), we will denote

bi(F) = dimQ(Hi(X,F),

b(F) =
∑
i

bi(F).

Definition 4.4. We call b(F) the topological complexity of F .

It is well known (see for example [33, Chapter III]) that:

Proposition 4.5. If X is a locally closed semi-algebraic set, then

bi(QX) = bBMi (X).

Theorem 4.6. Let
(
Fn ∈ Ob(Db

sa(Sm(n))
)
n>0

be a sequence of constructible sheaves

belonging to the class Λ(ω)(PR). Then, there exists a polynomial q(n) (depending
on the sequence (Fn)n>0), such that

b(Fn) ≤ 2q(n).

In other words, b(Fn) is bounded singly exponentially as a function of n.

Before proving Theorem 4.6 we need a few preliminaries.

Proposition 4.7. Let K be a compact semi-algebraic set, and F ∈ Ob(Db
sa(K)),

and suppose that C ⊂ Sn is a locally closed and contractible subset of Sn. Suppose
that H∗(Fx) is locally constant on C. Then, F|C′ is isomorphic to a constant sheaf
in Ob(Db

sa(C ′)) for any locally closed subset C ′ ⊂ C.

Proof. The proposition follows from the fact that any locally constant sheaf over a
contractible set is isomorphic to a constant sheaf (Proposition 3.13), and the fact
that the restriction of a constant sheaf to a subspace again yields a constant sheaf.
The same applies in the derived category as well. �

Proposition 4.8. (Covering by contractibles) Let P ⊂ R[X1, . . . , Xn+1] be a finite
family of polynomials, with card(P) = s, and d = maxP∈P deg(P ). Then, there
exists a family of polynomials Q ⊂ R[X1, . . . , Xn+1] having the following properties.

(A) The degrees of the polynomials in Q, as well as card(Q) are bounded by

(sd)n
O(1)

.
(B) The signs of the polynomials in P are invariant at all points of any semi-

algebraically connected component D of the realization R(ρ,Sn) of any re-
alizable sign condition ρ ∈ {0,+1,−1}Q.

(C) For each realizable sign condition σ ∈ {0, 1,−1}P , the realization S =
R(σ,Sn) is a disjoint union of locally closed semi-algebraic sets D. Each
such D is a semi-algebraically connected component of some realizable sign
condition on Q, and is contained in a contractible semi-algebraic subset
D′ ⊂ S which is closed in S.
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Proof. The proposition follows by applying Algorithm 16.14 (Covering by con-
tractible sets) in [9] taking the family of polynomials P as input. We omit the
details. �

Following the same notation as in Proposition 4.8.

Corollary 4.9. Suppose F ∈ Ob(Db
sa(Sn)) such that Fx is locally constant along

each connected component C of the realization of each realizable sign condition
σ ∈ {0, 1,−1}P . Then, F|D is a constant sheaf for each D, for D a connected
component of the realization of any realizable sign condition of Q.

Proof. This follows immediately from Propositions 4.8 and 4.7. �

We will also need some properties regarding the invariance of sheaf cohomol-
ogy under “infinitesimal” “thickenings” and “shrinkings” of the underlying semi-
algebraic sets. In the case of ordinary cohomology (or in sheaf theoretic language
cohomology with values in a constant sheaf) these facts are standard and follows
from homotopy invariance of the cohomology groups and the local conic structure
of semi-algebraic sets [16, Theorem 9.3.6]. However, in general sheaf cohomology
is not homotopy invariant (see for example [28, Example 3.1.6]), and so more care
needs to be taken. The following proposition follows directly from [34, Proposition
2.7.1].

Proposition 4.10. (Shrinking) Let K be a compact semi-algebraic set and F ∈
Ob(Db

sa(K)). Let X be a locally closed semi-algebraic subset of K and suppose that
(Xn ⊂ X)n∈N is an increasing family of compact semi-algebraic subsets of X such
that, Xn ⊂ Int(Xn+1) for each n, and X = ∪nXn. Then, the natural map induced
by restriction

φj : Hj(X,F|X)→ lim←−
n

Hj(Xn,F|Xn)

is an isomorphism for all j ∈ Z. In particular, since all the hypercohomology groups,
Hj(Xn,F|Xn are finite dimensional, and vanish for |j| > N for some N , we have
that for all n large enough,

Hj(X,F|X) ∼= lim←−
n

Hj(Xn,F|Xn).

We also have the following.

Proposition 4.11. (Thickening) Let K be a compact semi-algebraic set and F ∈
Ob(Db

sa(K)). Let Z be a closed semi-algebraic subset of K and suppose that (Zn ⊂
X)n∈N is a decreasing family of compact semi-algebraic subsets of K such that
Z = ∩nZn. Then, the natural map induced by restriction

φj : lim−→
n

Hj(Zn,F|Zn)→ Hj(Z,F|Z)

is an isomorphism for all j ∈ Z. In particular, we have that for all n large enough,

Hj(Z,F|Z) ∼= Hj(Zn,F|Zn).

Proof. See [34, Remark 2.6.9]. �

We need some notation.
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Notation 4.12. Let P ⊂ R[X1, . . . , Xn] be a family of polynomials with card(P) =
s. Let ε̄ = (ε1, ε2, . . . , ε2s).

For two sign conditions σ1, σ2 ∈ {0, 1,−1}P , we denote σ1 ≺ σ2 if and only if
σ2(P ) = 0⇒ σ1(P ) = 0 for all P ∈ P.

For a sign condition σ ∈ {0, 1,−1}P , let

level(σ) = card({P ∈ P | σ(P ) = 0}),

and let σε̄ be the formula∧
P∈P,σ(P )=0

(−ε2`−1 ≤ P ≤ ε2`−1) ∧
∧

P∈P,σ(P )>0

(P ≥ ε2`) ∧
∧

P∈P,σ(P )<0

(P ≤ −ε2`),

where ` = level(σ).
By the phrase “0 < ε̄� 1” we will mean “0 < ε1 � ε2 � · · · � ε2s−1 � ε2s �

1” (i.e. “for all sufficiently small positive ε2s, and then for all sufficiently small
positive ε2s−1, etc.”).

Proposition 4.13. Let K be a compact semi-algebraic subset of Rn. Suppose
F ∈ Ob(Db

sa(K)) such that H∗(Fx) is constant along each connected component C
of the realization of each realizable sign condition σ ∈ {0, 1,−1}P on K. Then for
all 0 < ε̄� 1 (see Notation 4.12 above):

(A) If C is a connected component of the realization of the realizable sign condi-
tion σ ∈ {0, 1,−1}P on K, then there exists a unique connected component,
Cε̄, of R(σε̄,K), such that C ∩ Cε̄ 6= ∅.

(B) The semi-algebraic set Cε̄ is closed in K and homotopy equivalent to C.
(C) For ever q ∈ Z, and x ∈ C,

Hq(C,F|C) ∼= Hq(Cε̄,F|Cε̄) ∼=
⊕
i+j=q

Hi(C,Q)⊗Hj(Fx).

(D) More generally, suppose that C0, . . . , Cp are connected components of the
realizations of σ0, . . . , σp ∈ {0, 1,−1}P on K, and that C ′ = C0,ε̄ ∩ · · · ∩
Cp,ε̄ 6= ∅. Then, there exists a permutation π of {0, . . . , p} such that

σπ(0) ≺ · · · ≺ σπ(p),

C ′ ⊂ Cσπ(p)
.

Moreover, C ′ is closed in K, and homotopy equivalent to C ′′ = Cσπ(p)
∩C ′,

and for every q ∈ Z and x ∈ C ′

Hq(C ′,F|C′) ∼= Hq(C ′′,F|C′′) ∼=
⊕
i+j=q

Hi(C ′,Q)⊗Hj(Fx).

Proof. We prove the first part of the proposition. The second part follows by an
induction on p.

For γ > 0 let σγ be the formula∧
P∈P,σ(P )>0

(P ≥ γ) ∧
∧

P∈P,σ(P )<0

(P ≤ −γ),

and σγ,δ be the formula defined by∧
P∈P,σ(P )=0

(−δ ≤ P ≤ δ) ∧
∧

P∈P,σ(P )>0

(P ≥ γ) ∧
∧

P∈P,σ(P )<0

(P ≤ −γ).
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It is easy to show that (see for example, [9, Lemma 16.17]) that for 0 < δ � γ �
1, and for each connected component C of R(σ,K) there exists a unique connected
component Cγ,δ of σγ,δ, and that Cγ,δ is homotopy equivalent to C.

Now choose a sequence γi ↘ 0 and for each γj choose δi,j ↘ 0. Then for all i
large enough, and having chosen i, for all j large enough Cγi,δj is well defined, and
it is clear that each Cγi,δj is compact and ∩jCγi,δi = Cγi . Using Proposition 4.11
we obtain that For every q ∈ Z, and for all j large enough,

Hq(Cγi ,F|Cγi ) ∼= Hq(Cγi,δj ,F|Cγi,δj ).

Now observe that ∪iCγi = C, and using Proposition 4.10 we have for every q ∈ Z,

Hq(C,F|C) ∼= Hq(Cεi ,F|Cγi ),

for all i large enough. Moreover, noticing that H∗(Fx) is constant over Cγi (using
the fact that H(Fx) is constant over C and Proposition 4.7), we have that for every
q ∈ Z and x ∈ Cγi

Hq(Cγi ,F|Cγi ) ∼=
⊕
i+j=q

Hi(Cγi ,Q)⊗Hj(Fx).

Now using the fact that Cγi is homotopy equivalent to C for i large enough, we
have for every q ∈ Z,

Hq(Cγi ,Q) ∼= Hq(C,Q).

Together Eqns. (4.2), (4.2), (4.2) and (4.2) imply that For ever q ∈ Z, and x ∈ C,

Hq(C,F|C) ∼= Hq(Cγi,δj ,F|Cγi,δj ) ∼=
⊕

k+m=q

Hk(C,Q)⊗Hm(Fx).

for all i large enough, and after having chosen i, for all j large enough. The first
part of the proposition now follows by replacing δi by ε2level(σ)−1 and γi by ε2level(σ).

The second part of the proposition follows from an induction on p using the first
part as the base case. But since the steps are very similar to the one above we omit
this part of the proof. �

Proof. (Proof of Theorem 4.6.) Let
(
Fn ∈ Ob(Db

sa(Sm(n))
)
n>0

be a sequence of

constructible sheaves belonging to the class Λ(p)(PR) for some p ≥ 0.
We first prove that there exists a polynomial q1(n) (depending on the sequence

(Fn)n>0) and for each n > 0 a family of polynomials Pn ⊂ R[X1, . . . , Xm(n)+1],
such that:

(A) both the card(Pn) and the degrees of the polynomials in Pn are bounded
by 2q1(n);

(B) the semi-algebraic partition Π(Pn,Sm(n)) (cf. Notation 3.52) is subordinate
to Fn;

(C) moreover, for x ∈ C,∑
i

dimQ(Hi((Fn)x)) ≤ 2q1(n),

and
(D)

Hi((Fn)x) = 0,

for |i| ≥ q1(n).
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The proof of the above claim is by induction on p. If p = 0, then the claim
follows directly from the definition of PR and Proposition 3.53. Now suppose that
the claim is true for all smaller values of p.

Now a sequence (Fn)n>0 belongs to Λ(p)(PR), by definition either:

(A) for each n > 0

Fn = Rπn,∗(Gn),

and the sequence

(Gn ∈ Ob(Dsa(Kn))n>0 ∈ Λ(p−1)(PR),

where m1(n) ∈ Z[n] is a non-negative polynomial, Kn = Sm1(n) × Sm(n).

and πn : Sm1(n) × Sm(n) → Sm(n) is the projection to the second factor.
Or:

(B)

Fn = Rπn,∗(Gn),

can be obtained from a finite number of sequences of the first kind, by
taking tensor products, direct sums, truncations and pull-backs.

However, the claim to be proved is easily shown to be preserved under operations
of tensor products, direct sums, truncations and pull-backs (by the same method
of proof as in the proof of Proposition 3.55. Thus, it suffices to consider only the
first case.

By the induction hypothesis there exists polynomial q2(n) (depending on the
sequence (Gn)n>0) and for each n > 0 a family of polynomials

Qn ⊂ R[Y0, . . . , Ym1(n), X0, . . . , Xm(n)],

such that:

(A) both sn = card(Qn) and the degrees of the polynomials in Qn are both
bounded by 2q2(n);

(B) the semi-algebraic partition Π(Qn,Kn) is subordinate to Gn;
(C) moreover, for each z ∈ D,∑

i

dimQ Hi((Gn)z ≤ 2q2(n),

and
(D)

Hi((Gn)z) = 0,

for |i| ≥ q2(n).

Now, let ε̄ = (ε1, ε2, . . . , ε2sn). Considering the variables ε̄ as variables, let

P̄ ′n ⊂ R[ε̄, Y0, . . . , Ym1(n), X0, . . . , Xm(n)]

be defined as a set of polynomials such that for all 0 < ε̄� 1,⋃
P∈P̄′n

Z(P (ε̄, ·),Sm(n))

contains all images of the critical points of the projection map πn restricted to all
varieties Z(Q′n,ε̄(ε̄, ·),Kn), for all subsets Q′n,ε̄ ⊂ Qn,ε̄ with card(Q′n,ε̄) ≤ m1(n) +

m(n). Now writing the polynomials in P̄ ′n as polynomials in the variables ε̄, let P ′n
denote the union of all the coefficients of all the polynomials in P̄ ′n.
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It follows from arguments similar to those in the proof of the main theorem in
[10], that the degrees of the polynomials in P̄ ′n are bounded singly exponentially in
n, and noting further that each one of them depends on at most m1(n) +m(n) of
the εi’s, it follows that the number and the degrees of the polynomials in P ′n are also
bounded singly exponentially in n. Moreover, for 0 < ε̄ � 1, and every connected

component C ′ of the realization R(σ′,Sm(n)) of a sign condition σ′ ∈ {0, 1,−1}P′n
and x ∈ C ′, there is a homeomorphism, φx : C ′ × π−1

n (x) → π−1(C ′), such that
the following diagram commutes (i.e. the homeomorphism φx preserves the fibers
of πn)

C ′ × π−1
n (x)

φx //

π

��

π−1
n (C ′)

πn

��

C ′
IdC′ // C ′

(here π denotes the projection map to the first factor), and moreover for each
x′ ∈ C ′, and for each tuple (σ0, . . . , σp), where for each i, σi ∈ {0, 1,−1}Qn , and
connected components Dσi of the realization R(σi,Kn) for each i, 0 ≤ i ≤ p, φx
restricts to a homeomorphism between (Dσ0,ε̄∩· · ·∩Dσp,ε̄)x, (Dσ0,ε̄∩· · ·∩Dσp,ε̄)x′ ,
(following the same notation as in Proposition 4.13). Note that, for each x ∈ C ′,
there is a spectral sequence, Ep,qr (x) with
(4.2)

Ep,q2 (x) =
⊕

σ0,≺···≺σp,σj∈{0,1,−1}Qn
Hq((Dσ0,ε̄ ∩ · · · ∩Dσp,ε̄)x,Gn|(Dσ0,ε̄∩···∩Dσp,ε̄)x)

that abuts to H∗(π−1
n (x),Gn|π−1

n (x)). The homeomorphism φx thus induces an iso-

morphism between the spectral sequences Ep,qr (x) and Ep,qr (x′) and hence between
the groups H∗(π−1

n (x),Gn|π−1
n (x)) and H∗(π−1

n (x′),Gn|π−1
n (x′)). In particular, this

implies that

Hq(C ′,HpGn|C′) ∼= Hq(C ′,Q)⊗Hp(π−1
n (x),Gn|π−1

n (x)).

Using Proposition 4.8, there exists a family of polynomials

Pn ⊂ R[X0, . . . , Xm(n)]

such that the card(Pn), as well as the degrees of the polynomials in Pn are bounded

by (card(P ′n) maxP∈P′n deg(P ))m1(n)O(1)

, and such that over each connected com-

ponent C of the realization, R(σ,Sm(n)), of any realizable sign condition σ′ ∈
{0, 1,−1}Pn , Hi(π−1

n (x),Gn|π−1(x)) is constant (not just locally constant) for x ∈ C.

We now bound the dimensions dimQ Hi(π−1
n (x),Gn|π−1(x)).

By induction hypothesis, we have that Hq((Gn)(y,x)) = 0 for all q with |q| ≥
q2(n). It follows that for any x ∈ Sm(n), Hi(π−1

n (x),Gn|π−1(x)) = 0 for all i with
|i| > N(n) = q2(n) +m1(n).

It then follows from the E2-term of the spectral sequence abutting to

Hi(π−1
n (x),Gn|π−1(x))

(Eqn. 4.2), that

dimQ Hi(π−1
n (x),Gn|π−1(x)) ≤

∑
p+q=i,|q|≤N(n)

∑
σ̄

dimQ Hq((D′σ̄,ε̄)x,Gn|(D′σ̄,ε̄)x),
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where

σ̄ = σ0 ≺ · · · ≺ σp, σj ∈ {0, 1,−1}Qn ,
D′ = (Dσ0,ε̄ ∩ · · · ∩Dσp,ε̄).

It follows from Part (D) of Proposition 4.13 that,

Hq((D′σ̄,ε̄)x,Gn|(D′σ̄,ε̄)x) ∼= Hq((Dσp ∩D′σ̄,ε̄)x, (Gn)z)

∼=
⊕
i+j=q

Hi(Dσp ∩D′σ̄,ε̄,Q)⊗Hj(Gn)(y,x))).

for any z = (y,x) ∈ (Dσp ∩D′σ̄,ε̄)x. It follows that
∑
i dimQ Hi(π−1

n (x),Gn|π−1(x))
is bounded singly exponentially. This finishes the induction.

Using Proposition 4.8 one more time, we can pass from the partition of Sn,
into connected locally closed semi-algebraic subsets C where each C is a connected

component of R(σ,Sm(n)) for some σ ∈ {0, 1,−1}Pn , to a cover by closed subsets

whose elements are connected components Cσ,ε̄, of R(σε̄,S
m(n)), σ ∈ {0, 1,−1}Pn

and σε̄ as in Notation 4.12.
The singly exponential upper bound on the dimQ Hk(Sm(n),Fn) now follows by

bounding the E2-term of hypercohomology spectral sequence corresponding to this
cover using Proposition 3.31. The theorem follows. �

4.1. Complexity of generalized quantifier elimination. The following result
which follows directly from the proof of Theorem 4.6 above but which does not refer
to any complexity classes could be of independent interest. It is the sheaf theoretic
analogue of an effective singly exponential complexity bound for eliminating one
block of quantifiers in the first order theory of the reals [40, 9]. In particular, the
implied algorithm in the following theorem could be viewed as the sheaf-theoretic
analogue of Algorithm 14.1 (Block Elimination) in [9] restricted to the compact
situation. We omit the proof of this theorem which is embedded in the proof of the
intermediate claim inside the the proof of Theorem 4.6 above.

Theorem 4.14. (Complexity of generalized quantifier elimination) Let

F ∈ Ob(Db
sa(Sm × Sn)),

and let P ⊂ R[Y0, . . . , Ym, X0, . . . , Xn] be a finite set of polynomials, such that the
semi-algebraic partition Π(P,Sm×Sn) is subordinate to F . Moreover, suppose that
card(P) = s, and also that the degrees of the polynomials in P are all bounded by d.
Let π : Sm×Sn denote the projection map to the second factor. Then, there exists a
family of polynomials Q ⊂ R[X0, . . . , Xn], with card(Q), as well as the degrees of the

polynomials in Q bounded by (sd)(m+n)O(1)

, such that the semi-algebraic partition
Π(Q,Sn) is subordinate to the constructible sheaf Rπ∗F ∈ Ob(Db

sa(Sn)). Moreover,
there exists an algorithm for computing semi-algebraic description of the partition

Π(Q,Sn), given P as input, with complexity bounded by (sd)(m+n)O(1)

.

Proof. See above. �

Remark 4.15. The restriction to spheres in Theorem 4.14 is to ensure properness
of the projection map π. It is possible that with more work it would be possible to
extend the theorem to the non-compact case and consider projections π : Rm×Rn →
Rn, and consider not just the functor Rπ∗ but the derived image functor with proper
support, Rπ! as well. We do not undertake this task in the current paper.
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5. Constructible functions and sheaves: Toda’s theorem

In this section, we discuss the connections between the complexities of con-
structible functions and constructible sheaves. We formulate a new conjecture that
that could be seen as analogous to Toda’s theorem in discrete complexity theory
[42]. Toda’s theorem gives an inclusion of the polynomial hierarchy PH in the
class P#P where the right hand side is the set of languages accepted by a Turing
machine in polynomial times but with access to an oracle computing functions in
#P. The class #P consists of sequences of functions, (fn : {0, 1}n → N)n>0 which
counts the number of points in the fibers of a linear projection of a language in
NP. We refer the reader to [13] where this geometric definition of the class #P is
elaborated.

In [13] (respectively, [11]) a geometric definition was given of a class, #P†R (re-

spectively, #P†C) of sequences of functions (fn : Sn → Z[T ])n>0 (respectively,
(fn : PnC → Z[T ])n>0) where the functions fn took values in the Poincaré poly-
nomials of the fibers of a projection of a language (in the B-S-S) sense in NPc

R
(respectively, NPc

C). We omit the precise definitions of these classes, but point out
that these functions are in fact constructible functions (or more precisely each com-
ponent of these functions corresponding to the different coefficients of the image
polynomial is a constructible function). An analogue of Toda’s theorem was proved
in [13].

Theorem 5.1. [13]

PHc
R ⊂ P

#P†R
R .

A similar result was proved in the complex case in [11].
The relationship implicit in Toda’s theorem (and its real and complex analogue)

raises the interesting question of whether such a relationship is also true in the
sheaf theoretic case. In particular, the following classical proposition (see [34]) is
very suggestive.

We first need a new notation.

Notation 5.2. For X a semi-algebraic set we denote by CF(X) the set of con-
structible functions on X.

Notation 5.3. If X is a semi-algebraic set, and F ∈ Ob(Db
sa(X)), then we will

denote by Eu(F) the constructible function on X defined by

Eu(F) =
∑
j

(−1)j dimQ Hj(Fx).

Proposition 5.4. [34] Let X,Y be compact semi-algebraic sets, and f : Y → X a
semi-algebraic continuous map. Then, we have the following commutative diagram:

Ob(Dsa(Y ))
Rf∗ //

Eu

��

Ob(Dsa(X))

Eu

��

CF(Y )
f∗=

∫
· d χ
// CF(X).

Proof. See [34]. �

We now define the sheaf theoretic analogue of the class #P and its generaliza-
tions.
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Definition 5.5. Let m(n) ∈ Z[n] be a non-negative polynomial. We say that

a sequence of constructible functions
(
fn : Sm(n) → Z

)
n>0

is in the class #PR,

if there exists a sequence of constructible sheaves (Fn)n>0 ∈ ΛPR such that for

each n > 0, fn = Eu(Fn). More generally, we will say that
(
fn : Sm(n) → Z

)
n>0

is in the class Eu(Λ(p)PR), if there exists a a sequence of constructible sheaves
(Fn)n>0 ∈ Λ(p)PR such that for each n > 0, fn = Eu(Fn). Note that #PR =

Eu(Λ(1)PR).

We have the following conjecture which can be seen as a reformulation of Toda’s
fundamental theorem [42] in sheaf theoretic terms.

Conjecture 5.6.

Eu(Λ(ω)PR) = #PR.

6. Conclusions

In this paper we have begun the study of a complexity theory of constructible
functions and sheaves patterned along the line of the Blum-Shub-Smale theory
for constructible/semi-algebraic sets. We have formulated versions of the P vs NP
questions for classes of constructible functions as well as sheaves. An immediate goal
would be to develop an analogue of “completeness” results in classical complexity
theory and identify certain functions and sheaves to be complete in their class.

As mentioned in the introduction, aside from in semi-algebraic geometry, con-
structible functions and sheaves appear in many areas of mathematics, in particular
in the theory of linear partial differential equations and micro-local analysis as de-
veloped by Kashiwara and Schapira [34], motivic integration [25], and also in a
more applied setting of signal processing [3]. A more distant goal would be to
study these applications from the complexity viewpoint.
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lish: Real algebraic geometry), Ergebnisse der Mathematik und ihrer Grenzgebiete [Results

in Mathematics and Related Areas ], vol. 12 (36), Springer-Verlag, Berlin, 1987 (1998).
MR 949442 (90b:14030)

17. A. Borel and et al., Intersection cohomology, Modern Birkhäuser Classics, Birkhäuser Boston
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Math. Acad. Sci. Paris 339 (2004), no. 6, 411–416. MR 2092754 (2005f:14049)

26. P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, Vol. 569, Springer-Verlag,
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