Solutions to Hwk7

Section 6.2

24.

\[
\begin{array}{c|ccccc}
 x & f(x) \\
 \hline
 4 & 63 & 26 & 6 & 1 \\
 2 & 11 & 2 & 5 \\
 0 & 7 & 7 \\
 3 & 28 \\
\end{array}
\]

Thus, \(p(x) = 63 + 26(x - 4) + 6(x - 4)(x - 2) + x(x - 4)(x - 2). \)

Section 6.3

1.

\[
\begin{array}{c|ccccc}
 x & p(x) \\
 \hline
 0 & 2 & -9 & 3 & 7 & 5 \\
 0 & 2 & -6 & 10 & 17 \\
 1 & -4 & 4 & 44 \\
 1 & -4 & 48 \\
 2 & 44 \\
\end{array}
\]

So \(p(x) = 2 - 9x + 3x^2 + 7x^2(x - 1) + 5x^2(x - 1)^2. \)

3. By Theorem 1, there exists a unique polynomial \(p \) of degree \(\leq m \) (\(m = 2n + 1 \)) such that \(p(x_i) = y_i \) and \(p'(x_i) = 0 \) for \(0 \leq i \leq n. \) By Equation (9)

\[
p(x) = \sum_{i=0}^{n} y_i [1 - 2(x - x_i)\ell'_i(x_i)]\ell_i^2(x)
\]

where \(\ell_i(x) = \prod_{j=0, j\neq i}^{n} (x - x_j)/(x_i - x_j) \) for \(0 \leq i \leq n. \)

4. Let us write \(p(x) = a + b(x - x_0) + c(x - x_0)^2 + d(x - x_0)^3. \) Then \(p'''(x) = 2c + 6d(x - x_0). \)

The four conditions can be written as: \(c_{00} = p(x_0) = a, \ c_{02} = p''(x_0) = 2c, \)

\(c_{10} = p(x_1) = a + bh + ch^2 + dh^3, \) and \(c_{12} = p'''(x_1) = 2c + 6dh \) when \(h = x_1 - x_0. \) So \(a \) and \(c \) are obtained without restrictions: \(a = c_{00}, \ c = c_{02}/2. \) \(d \) and \(b \) can be obtained from last two equations: \[
\begin{bmatrix}
 h & h^3 \\
 0 & 6h
\end{bmatrix}
\]

is known vector. \(\det \begin{bmatrix}
 h & h^3 \\
 0 & 6h
\end{bmatrix} = 6h^2 \neq 0 \) iff \(h \neq 0 \)

\(\Rightarrow \) condition: \(x_0 \neq x_1. \)