
Journal of Scientific Computing (2023) 95:35
https://doi.org/10.1007/s10915-023-02162-0

Numerical Computation of Partial Differential Equations by
Hidden-Layer Concatenated Extreme Learning Machine

Naxian Ni1 · Suchuan Dong1

Received: 27 May 2022 / Revised: 30 December 2022 / Accepted: 16 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Extreme learning machine (ELM) is a type of randomized neural networks originally devel-
oped for linear classification and regression problems in themid-2000s, and has recently been
extended to computational partial differential equations (PDE). This method can yield highly
accurate solutions to linear/nonlinear PDEs, but requires the last hidden layer of the neural
network to be wide to achieve a high accuracy. If the last hidden layer is narrow, the accuracy
of the existing ELM method will be poor, irrespective of the rest of the network configura-
tion. In this paper we present a modified ELM method, termed HLConcELM (hidden-layer
concatenated ELM), to overcome the above drawback of the conventional ELMmethod. The
HLConcELM method can produce highly accurate solutions to linear/nonlinear PDEs when
the last hidden layer of the network is narrow and when it is wide. The new method is based
on a type of modified feedforward neural networks (FNN), termed HLConcFNN (hidden-
layer concatenated FNN), which incorporates a logical concatenation of the hidden layers in
the network and exposes all the hidden nodes to the output-layer nodes. HLConcFNNs have
the interesting property that, given a network architecture, when additional hidden layers are
appended to the network or when extra nodes are added to the existing hidden layers, the rep-
resentation capacity of the HLConcFNN associated with the new architecture is guaranteed
to be not smaller than that of the original network architecture. Here representation capac-
ity refers to the set of all functions that can be exactly represented by the neural network
of a given architecture. We present ample benchmark tests with linear/nonlinear PDEs to
demonstrate the computational accuracy and performance of the HLConcELM method and
the superiority of this method to the conventional ELM from previous works.

Keywords Extreme learning machine · Hidden layer concatenation · Random weight neural
networks · Least squares · Scientific machine learning · Random basis

Mathematics Subject Classification 65D15 · 65M70 · 65M99 · 65N99 · 68T07

B Suchuan Dong
sdong@purdue.edu

Naxian Ni
nin@purdue.edu

1 Center for Computational and Applied Mathematics, Department of Mathematics, Purdue University,
West Lafayette, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02162-0&domain=pdf

 35 Page 2 of 65 Journal of Scientific Computing (2023) 95:35

1 Introduction

This work extends our recent studies [9, 10, 13] of a type of random-weight neural networks,
the so-called extreme learning machines (ELMs) [30], for scientific computing and in par-
ticular for computational partial differential equations (PDEs). Specifically, we would like
to address the following question:

– Can ELM achieve a high accuracy for solving linear/nonlinear PDEs on network archi-
tectures with a narrow last hidden layer?

For the existing ELM method [9, 10, 13] (referred to as the conventional ELM hereafter),
the answer to this question is negative. The goal of this paper is to introduce a modified
method, referred to as the hidden-layer concatenated ELM (HLConcELM), to overcome this
drawback of the conventional ELM and provide a positive answer to the above question.

Exploiting randomization in neural networks has a longhistory [53]. Turing’s un-organized
machine [63] and Rosenblatt’s perceptron [52] in the 1950s are early examples of random-
ized neural networks. After a hiatus of several decades, there has been a strong revival of
methods based on random-weight neural networks, starting in the 1990s [56]. In recent years
randomization based neural networks have attracted a growing interest in a variety of areas
[20, 53].

Since it is enormously costly and hard to optimize the entire set of adjustable parameters
in the neural network, it seems advisable if one randomly assigns and fixes a subset of the
network’s parameters so that the ensuing optimization task of network training can be simpler,
and ideally linear, without severely compromising the network’s achievable approximation
capability. This strategy underlies the randomization of neural networks. When applied to
feedforward or recurrent neural networks, randomization leads to techniques such as the
random vector functional link (RVFL) networks [31, 48, 49], the extreme learning machine
[26, 29, 30], the echo-state network [32, 43], the no-propagation network [64], and the liquid
state machine [44]. The random-weight neural networks (with a single hidden layer) are
universal function approximators. The universal approximation property of such networks
has been studied in [26, 31, 39, 45]. The theoretical results of [26, 31, 45] establish that a
single hidden-layer feedforward neural network having random but fixed (not trained) hidden
nodes can approximate any continuous function to any desired degree of accuracy, provided
that the number of hidden nodes is sufficiently large. The expected rate of convergence in
the approximation of Lipschitz continuous functions is given in [31, 45, 50].

ELM was originally developed in [29, 30] for single hidden-layer feedforward neural
networks for linear classification/regression problems. It has since undergone a dramatic
growth and found widespread applications in a variety of areas (see e.g. the reviews of
[1, 27] and the references therein). The method is based on two strategies: (i) randomly
assigned but fixed (not trainable) hidden-layer coefficients, and (ii) trainable linear output-
layer coefficients computed by a linear least squares method or by using the pseudoinverse
(Moore-Penrose inverse) of the coefficient matrix [3, 23, 48, 59].

While ELM emerged nearly two decades ago, the investigation of this technique for
the numerical solution of differential equations has appeared only quite recently, alongside
the proliferation of deep neural network (DNN) based PDE solvers in the past few years
(see e.g. [8, 11, 17, 24, 33, 34, 37, 42, 51, 54, 58, 60–62, 66], among many others). In
[40, 41, 57, 67] the ELM technique has been used for solving linear ordinary or partial
differential equations (ODEs/PDEs) with single hidden-layer feedforward neural networks,
in which certain polynomials (e.g. Legendre, Chebyshev, or Bernstein polynomials) serve
as the activation function. In [47] the ELM algorithm is used for solving linear ODEs and

123

Journal of Scientific Computing (2023) 95:35 Page 3 of 65 35

PDEs on neural networks with a single hidden layer, in which the Moore-Penrose inverse of
the coefficient matrix has been used. In [15] a physics-informed ELM method is proposed
for solving linear PDEs by combining the physics-informed neural network and the ELM
idea. The neural network consists of a single hidden layer, and the Moore-Penrose inverse
is employed to solve the resultant linear system. Interestingly, the authors set the number of
hidden nodes to be equal to the total number of conditions in the problem. A solution strategy
based on the normal equation associated with the linear system is studied in [16].

The ELM approach is extended to the numerical solution of nonlinear PDEs in [9] on local
or global feedforward neural networks with a single or multiple hidden layers. A nonlinear
least squares method with perturbations (NLLSQ-perturb) and a Newton-linear least squares
(Newton-LLSQ) method are developed for solving the resultant nonlinear algebraic system
for the output-layer coefficients of the ELM neural network. The NLLSQ-perturb algorithm
therein takes advantage of the nonlinear least squares implementation from the scipy library,
which implements a Gauss-Newton type method combined with a trust-region strategy. A
block time marching (BTM) scheme is proposed in [9] for long-time dynamic simulations of
linear and nonlinear PDE problems, in which the temporal dimension (if large) is divided into
a number of windows (called time blocks) and the PDE problem is solved on the time blocks
individually and successively. More importantly, a systematic comparison of the accuracy
and the computational cost (network training time) between the ELM method and two state-
of-the-art deep neural network (DNN) based PDE solvers, the deep Galerkin method (DGM)
[54] and the physics-informed neural network (PINN) method [51], has been conducted in
[9], as well as a systematic comparison between ELM and the classical finite element method
(FEM). The comparisons show that the ELM method far outperforms DGM and PINN in
terms of the accuracy and the computational cost, and that ELM is on par with the classical
FEM in computational performance and outperforms the FEM as the problem size becomes
larger. In [9] the hidden-layer coefficients are set to uniform random values generated on
[−Rm, Rm], where Rm is a user-prescribed constant. The results of [9] show that the Rm

value has a strong influence on the numerical accuracy of the ELM results and that the best
accuracy is associated with a range of moderate Rm values for a given problem. This is
consistent with the observation for classification problems [71].

A number of further developments of the ELM technique for solving linear and nonlinear
PDEs appeared recently; see e.g. [6, 10, 13, 18, 21], among others. In order to address the
influence of random initialization of the hidden-layer coefficients on the ELM accuracy, a
modified batch intrinsic plasticity (modBIP) method is developed in [10] for pre-training
the random coefficients in the ELM network. This method, together with ELM, is applied
to a number of linear and nonlinear PDEs. The accuracy of the combined modBIP/ELM
method has been shown to be insensitive to the random initializations of the hidden-layer
coefficients. In [6] the authors have presented a method for solving one-dimensional linear
elliptic PDEs based on ELM with single hidden-layer feedforward neural networks and the
sigmoid activation function. The random parameters in the activation function are set based
on the location of the domain of interest and the function derivative information. In [21]
the authors present a method based on randomized neural networks with a single hidden
layer for solving stiff ODEs. The time integration therein appears to be similar to the block
time marching strategy [9], but with an adaptation on the time block sizes. It is observed
that the presented method is advantageous over the stiff ODE solvers from MatLab. Noting
the influence of the maximum random-coefficient magnitude (i.e. the Rm constant) on the
ELM accuracy as shown by [9], in [13] we have presented a method for computing the
optimal Rm in ELM based on the differential evolution algorithm, as well as an improved
implementation for computing the differential operators of the last hidden-layer data. These

123

 35 Page 4 of 65 Journal of Scientific Computing (2023) 95:35

improvements significantly enhance the ELM computational performance and dramatically
reduce its network training time as compared with that of [9]. The improved ELM method
is compared systematically with the traditional second-order and high-order finite element
methods for solving a number of linear and nonlinear PDEs in [13]. The improved ELM far
outperforms the second-order FEM. For smaller problem sizes it is comparable to the high-
order FEM in performance, and for larger problem sizes the improved ELM outperforms
the high-order FEM markedly. Here, by “outperform” we mean that one method achieves a
better accuracy under the same computational cost or incurs a lower computational cost to
achieve the same accuracy. In [18] an ELM method is presented for the numerical solution
of stationary nonlinear PDEs based on the sigmoid and radial basis activation functions. The
authors observe that the ELM method exhibits a better accuracy than the finite difference
method and the FEM. Another recent development related to ELM is [12], in which a method
based on the variable projection strategy is proposed for solving linear and nonlinear PDEs
with artificial neural networks. For linear PDEs, the neural-network representation of the PDE
solution leads to a separable nonlinear least squares problem, which is then reformulated to
eliminate the output-layer coefficients, leading to a reduced problem about the hidden-layer
coefficients only. The reduced problem is solved first by the nonlinear least squares method to
determine the hidden-layer coefficients, and the output-layer coefficients are then computed
by the linear least squares method [12]. For nonlinear PDEs, the problem is first linearized
by the Newton’s method with a particular linearization form, and the linearized system is
solved by the variable projection framework together with neural networks. The ELMmethod
can be considered as a special case of the variable projection, i.e. with zero iteration when
solving the reduced problem for the hidden-layer coefficients [12]. It is shown in [12] that
the variable projection method exhibits an accuracy significantly superior to the ELM under
identical conditions and network configurations.

As has been shown in previous works [9, 10, 13], ELM can produce highly accurate results
for solving linear and nonlinear PDEs. For smooth field solutions the ELM errors decrease
exponentially as the number of training data points or the number of training parameters in
the neural network increases, and the errors can reach a level close to the machine zero when
the number of degrees of freedom becomes large. To achieve a high accuracy, however, the
existing ELM method requires the number of nodes in the last hidden layer of the neural
network to be sufficiently large [9]. Therefore, the ELM network usually has a wide hidden
layer in the case of a shallow neural network, or a wide last hidden layer in the case of deeper
neural networks. If the last hidden layer contains only a small number of nodes, the results
computed with the existing (conventional) ELM will tend to be poor in accuracy, regardless
of the configuration with the rest of the network.

In this paper, we focus on feedforward neural networks (FNNs) with multiple hidden
layers, and present a modified ELM method (termed HLConcELM) for solving PDEs to
overcome the above drawback associatedwith conventional ELM. TheHLConcELMmethod
can produce accurate solutions to linear/nonlinear PDEs when the last hidden layer of the
network is narrow, and when the last hidden layer is wide.

The new method is based on a type of modified feedforward neural networks, referred to
as hidden-layer concatenated FNN (or HLConcFNN) herein, which incorporates a logical
concatenation of the hidden layers so that all the hidden nodes are exposed to and con-
nected with the nodes in the output layer (see Sect. 2 for details). The HLConcFNNs have
the interesting property that, given a network architecture, when additional hidden layers are
appended to the neural network or when extra nodes are added to the existing hidden layers,
the representation capacity of the HLConcFNN associated with the new architecture is guar-
anteed to be not smaller than that associated with the original network architecture. Here by

123

Journal of Scientific Computing (2023) 95:35 Page 5 of 65 35

representation capacity we refer to the set of all functions that can be exactly represented
by the neural network (see Sect. 2 for the definition). In contrast, conventional FNNs do not
have a parallel property when additional hidden layers are appended to the network.

The HLConcELM is attained by assigning (and fixing) the weight/bias coefficients in the
hidden layers of the HLConcFNN to random values, and allowing the connection coefficients
between all the hidden nodes and the output nodes to be adjustable (trainable). More specif-
ically, given a network architecture with L hidden layers, we set the weight/bias coefficients
of the l-th (1 ≤ l ≤ L) hidden layer to uniform random values generated on the interval
[−Rl , Rl], where Rl is a constant. The vector of Rl constants (referred to as the hidden mag-
nitude vector herein), R = (R1, R2, . . . , RL), influences the accuracy of HLConcELM, and
in this paper we determine the optimal R using the method from [13] based on the differen-
tial evolution algorithm. HLConcELMs partially inherit the non-decreasing representation
capacity property of HLConcFNNs. For example, given a network architecture, when extra
hidden layers are appended to the network, the representation capacity of the HLConcELM
associated with the new architecture will not be smaller than that associated with the original
architecture, provided that the random hidden-layer coefficients for the new architecture are
assigned in an appropriate fashion. On the other hand, when extra nodes are added to the
existing hidden layers, HLConcELMs in general do not have a parallel non-decreasing prop-
erty with regard to its representation capacity, because of the randomly assigned hidden-layer
coefficients.

The exploration of neural-network architecture has been actively pursued inmachine learn-
ing research, and the connectivity patterns are the focus of a number of research efforts.Neural
networks incorporating shortcut connections (concatenations) between the input nodes, the
hidden nodes, and the output nodes are explored in e.g. [7, 19, 28, 36, 65] (among others).
The hidden-layer concatenated neural network adopted in the current paper can be consid-
ered in spirit as a simplification of the connection patterns in the DenseNet [28] architecture,
and it is similar to the deep RVFL architecture of [36] but without the connection between
the input nodes and the output nodes. We note that these previous works are for image and
data classification problems, while the current work focuses on scientific computing and in
particular the numerical solutions of partial differential equations.

We present extensive numerical experiments with linear and nonlinear PDEs to test the
performance of the HLConcELM method and compare this method with the conventional
ELM method. These benchmark tests demonstrate unequivocally that HLConcELM can
achieve highly accurate results when the last hidden layer in the neural network is narrow or
wide, and that it is much superior in accuracy to the conventional ELM. The implementation
of the current method is in Python and employs the Tensorflow (www.tensorflow.org), Keras
(keras.io), and the scipy libraries. All the benchmark tests are performed on aMAC computer
(3.2GHz Intel Core i5 CPU, 24GB memory) in the authors’ institution.

The contribution of this work lies in two aspects. The first one lies in the HLCon-
cELM method for solving linear and nonlinear PDEs. The other aspect is with regard to
the non-decreasing representation capacity of HLConcFNNs when additional hidden layers
are appended to an existing network architecture. To the best of the authors’ knowledge,
this property seems unknown to the community so far. Bringing this property into collective
consciousness can be another contribution of this paper.

The rest of this paper is organized as follows. In Sect. 2 we discuss the structures of
HLConcFNNs and HLConcELMs, as well as their non-decreasing representation capacity
property when additional hidden layers are appended to an existing architecture. We then
develop the algorithm for solving linear and nonlinear PDEs employing the HLConcELM
architecture. In Sect. 3 we present extensive benchmark examples to test the current HLCon-

123

 35 Page 6 of 65 Journal of Scientific Computing (2023) 95:35

cELM method and compare its performance with that of the conventional ELM. Section4
concludes the presentation with several further comments about the presented method. In
Appendix A we provide constructive proofs to the theorems from Sect. 2 concerning the rep-
resentation capacity of HLConcFNNs and HLConcELMs. Appendix B summarizes a study
of different activation functions with the HLConcELMmethod. Appendix C provides further
comparisons betweenHLConcELM and conventional ELMunder the setting that the number
of trainable parameters is maintained to be the same in both methods. Further tests of the
HLConcELM method are documented in Appendix D for the Laplace equation around a
reentrant corner, in Appendix E for the Kuramoto–Sivashinsky equation, in Appendix F for
the Shrodinger equation, and in Appendix G for the two-dimensional advection equation.

2 Hidden-Layer Concatenated Extreme LearningMachine

2.1 Conventional ELM and Drawback

The ELM method with feedforward neural networks (FNN) for solving linear and nonlinear
PDEs has been described in e.g. [9, 10, 13]. Figure1a illustrates such a network containing
three hidden layers. From layer to layer, the arrow in the sketch represents the usual FNN
logic, an affine transform followed by a function composition with an activation function
[22]. For ELM we require that no activation function be applied to the output layer and
that the output layer contain no bias. So the output layer is linear and has zero bias. This
requirement is adopted throughout this paper.

As discussed in [9], we pre-set the weight/bias coefficients in all the hidden layers to
random values and fix these values once they are assigned. Only the weight coefficients of
the output layer are trainable. The hidden-layer coefficients in the neural network are not
trainable with ELM.

To solve a given linear or nonlinear PDE with ELM, we first enforce the PDE and the
associated boundary/initial conditions on a set of collocation points in the domain or on
the appropriate domain boundaries. This gives rise to a linear least squares problem for
linear PDEs, or a nonlinear least squares problem for nonlinear PDEs, about the output-layer
coefficients (trainable parameters) of the neural network [9]. We solve this least squares
problem for the output-layer coefficients by a linear least squares method for linear PDEs
and by a nonlinear least squares method for nonlinear PDEs [9].

ELM can produce highly accurate solutions to PDEs. In particular, for smooth solutions its
errors decrease exponentially as the number of collocation points or the number of trainable
parameters (the number of nodes in the last hidden layer) increases [9, 10]. In addition, it has
a low computational cost (network training time) [9, 13].

Hereafterwe refer to a vector or a list of positive integers as an architectural vector (denoted
by M),

architectural vector: M = [M0, M1, . . . , ML−1, ML] (1)

where (L + 1) is the dimension of the vector with L ≥ 2, and Mi (0 ≤ i ≤ L) are positive
integers. We associate a given M to the architecture of an FNN with (L + 1) layers, where
Mi (0 ≤ i ≤ L) is the number of nodes in the i-th layer. The layer 0 and the layer L represent
the input and the output layers, respectively. The layers in between are the hidden layers.

Despite its high accuracy and attractive computational performance, certain aspect of the
ELM method is less appealing and remains to be improved. One particular aspect in this

123

Journal of Scientific Computing (2023) 95:35 Page 7 of 65 35

Fig. 1 Illustration of neural network structure (with 3 hidden layers): a conventional FNN, and b hidden-layer
concatenated FNN (HLConcFNN). In HLConcFNN all the hidden nodes are exposed to the output nodes,
while in conventional FNN only the last hidden-layer nodes are exposed to the output nodes

Fig. 2 Illustration of error characteristics of conventional ELM (Poisson equation): Distributions of a the
exact solution, b the ELM error obtained with the architecture M1 = [2, 300, 30, 1], and c the ELM error
obtained with the architecture M2 = [2, 300, 400, 1]

regard concerns the size of the last hidden layer of the ELM network. ELM requires the last
hidden layer of the neural network to be wide in order to achieve a high accuracy, irrespective
of the sizes of the rest of the network architecture. If the last hidden layer contains only a
small number of nodes, the ELM accuracy will be poor even though the preceding hidden
layers can be wide enough. This point is illustrated by Fig. 2, which shows the ELM results
for solving the two-dimensional (2D) Poisson equation on a unit square. Figure2a shows the
distribution of the exact solution. Figures2b, c show the ELM error distributions obtained
using two network architectures given by [2, 300, 30, 1] and [2, 300, 400, 1], respectively,
under otherwise identical conditions. Both neural networks have the Gaussian activation

123

 35 Page 8 of 65 Journal of Scientific Computing (2023) 95:35

function σ(x) = e−x2 for all the hidden nodes, and are trained on a uniform set of 21 × 21
collocation points. The only difference between them is the size of the last hidden layer. With
400 nodes in the last hidden layer the ELM solution is highly accurate, with the maximum
error on the order 10−7 in the domain. With 30 nodes in the last hidden layer, on the other
hand, the ELM solution exhibits no accuracy at all, with the maximum error on the order of
102, despite the fact that the first hidden layer is fairly large (containing 300 nodes). With the
existing ELMmethod, only the last hidden-layer nodes directly contribute to the the output of
the neural network, while the nodes in the preceding hidden layers do not directly affect the
network output. In other words, with the existing ELM, all the degrees of freedom provided
by the nodes in the preceding hidden layers are to some extent “wasted”.

Can one achieve a high accuracy even if the last hidden layer is narrow in the ELM
network? Can we take advantage of the degrees of freedom provided by the hidden nodes
in the preceding hidden layers with ELM? These are the questions we are interested in and
would like to address in the current work.

The above drawback of the existing ELMmethod, which will be referred to as the conven-
tional ELM hereafter, motivates the developments in what follows. We present a modified
ELMmethod to address this issue and discuss how to use the modified method for numerical
simulations of PDEs.

2.2 Modifying ELMNeural Network with Hidden-Layer Concatenation

To address the aforementioned drawback, we consider a type of modified FNNs for ELM
computation. The idea of the modified network is illustrated in Fig. 1b using three hidden
layers as an example.

The main strategy here is to expose all the hidden nodes in the neural network to the
output-layer nodes. Starting with a standard FNN, we incorporate a logical concatenation
layer between the last hidden layer and the output layer. This logical layer concatenates the
output fields of all the hidden nodes, from the first to the last hidden layers, in the original
network architecture. From the logical concatenation layer to the output layer a usual affine
transform, together with possibly a function composition with an activation function, is
performed to attain the output fields of the overall neural network. Note that the logical
concatenation layer involves no parameters.

Hereafter we refer to this type of modified neural networks as the hidden-layer concate-
nated FNN (HLConcFNN), and the original FNN as the base neural network. Thanks to the
logical concatenation, in HLConcFNN all the hidden nodes in the base network architecture
are connected with the output nodes.

One can also include the input fields in the logical concatenation layer. Numerical experi-
ments show that, however, there is no advantage in terms of the accuracywhen the input fields
are included. In the current paper we do not include the input fields in the concatenation.

Let us next use a real-valued function of d (d ≥ 1) variables, u(x) (x ∈ Ω ⊂ R
d),

represented by a HLConcFNN to illustrate some of its properties. Consider a HLConcFNN,
whose base architecture is given byM in (1), where M0 = d and ML = 1. The d input nodes
represent the d components of x = (x1, x2, . . . , xd), and the single output node represents
the function u(x). Let σ : R → R denote the activation function for all the hidden nodes. As
stated before, we require that no activation function be applied to the output node and that it
contain no bias.

Let Φ(i)(x) =
(
φ

(i)
1 (x), . . . , φ(i)

Mi
(x)
)
, 1 ≤ i ≤ L − 1, denote the Mi output fields of the

i-th hidden layer. The logical concatenation layer contains a total of Nc(M) = ∑L−1
i=1 Mi

123

Journal of Scientific Computing (2023) 95:35 Page 9 of 65 35

logical nodes. Then we have the following expansion relation,

u(x) =
L−1∑
i=1

Mi∑
j=1

βi jφ
(i)
j (x) =

L−1∑
i=1

Φ(i)(x)βT
i = Φ(x)βT , (2)

where βi j (1 ≤ i ≤ L − 1, 1 ≤ j ≤ Mi) denotes the weight coefficient of the output layer,
i.e. the connection coefficient between the output node and the j-th hidden node in the i-th
hidden layer, and

⎧
⎪⎪⎨
⎪⎪⎩

β i = (βi1, βi2, . . . , βiMi),

β = (β1,β2, . . . ,βL−1) = (β11, . . . , β1M1 , β21, . . . , βL−1,ML−1),

Φ =
(
Φ(1),Φ(2), . . . ,Φ(L−1)

)
=
(
φ

(1)
1 , . . . , φ

(1)
M1

, φ
(2)
1 , . . . , φ

(L−1)
ML−1

)
.

(3)

The logic from layer (i − 1) to layer i , for 1 ≤ i ≤ L − 1, represents an affine transform
followed by a function composition with the activation function,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

φ
(i)
j (x) = σ

⎛
⎝

Mi−1∑
k=1

φ
(i−1)
k (x)w(i)

k j + b(i)
j

⎞
⎠ , 1 ≤ j ≤ Mi ,

Φ(i)(x) = σ
(
Φ(i−1)(x)W(i) + b(i)

)
.

(4)

In the above equation, the constants w
(i)
k j (1 ≤ k ≤ Mi−1, 1 ≤ j ≤ Mi) are the weights and

b(i)
j (1 ≤ j ≤ Mi) are the biases of layer i , and

⎧⎪⎨
⎪⎩
W(i) =

[
w

(i)
k j

]
Mi−1×Mi

, b(i) =
(
b(i)
1 , b(i)

2 , . . . , b(i)
Mi

)
,

Φ(0)(x) =
(
φ

(0)
1 , φ

(0)
2 , . . . , φ

(0)
M0

)
= x.

(5)

Define ⎧
⎨
⎩

θ (i) = flatten
[
W(i),b(i)

]
, 1 ≤ i ≤ L − 1,

θ = (θ (1), θ (2), . . . , θ (L−1)) = (θ1, θ2, . . . , θNh),

(6)

where “flatten” denotes the operation to reshape and combine a list of matrices or vectors
into a single vector, and Nh(M) = ∑L−1

i=1 (Mi−1 + 1)Mi . Here θ (i) denotes the vector of
weight/bias coefficients of layer i for 1 ≤ i ≤ L − 1, θ denotes the vector of weight/bias
coefficients in all the hidden layers, and Nh is the total number of hidden-layer coefficients
in the neural network.

The output field of the neural network depends on (θ ,β), and the output fields of each
hidden layer depend on θ . Tomake these dependenciesmore explicit, we re-write equation (2)
into

u(θ ,β, x) =
L−1∑
i=1

Mi∑
j=1

βi jφ
(i)
j (θ , x) =

L−1∑
i=1

Φ(i)(θ , x)βT
i = Φ(θ , x)βT , (7)

where Φ, Φ(i), β i and β are defined in (3).
A hidden-layer concatenated FNN is characterized by the architectural vector of the base

network and the activation function. Given the architectural vector M and an activation
function σ , let HLConcFNN(M, σ) denote the associated hidden-layer concatenated neural

123

 35 Page 10 of 65 Journal of Scientific Computing (2023) 95:35

network. For a given domain Ω ⊂ R
d , an architectural vectorM = (M0, M1, . . . , ML) with

M0 = d and ML = 1, and an activation function σ(·), we define
U (Ω,M, σ) = {u(θ,β, x) | u(θ ,β, x) is the output of HLConcFNN(M, σ),

x ∈ Ω, θ ∈ R
Nh , β ∈ R

Nc
}

(8)

as the collection of all possible output fields of thisHLConcFNN(M, σ).U (Ω,M, σ)denotes
the set of all functions that can be exactly represented by this HLConcFNN(M, σ) on Ω .
Hereafter we refer toU (Ω,M, σ) as the representation capacity of the HLConcFNN(M, σ)

for the domain Ω .

Remark 1 It should be noted that U (Ω,M, σ) as defined by (8) is not a linear space, for the
simple fact that it is not closed under addition because of the nonlinear parameters θ .

The HLConcFNNs have an interesting property. If one appends extra hidden layers to the
network architecture, or adds nodes to any of the existing hidden layers, the representation
capacity of the resultant HLConcFNN is at least as large as that of the original one. On
the other hand, conventional FNNs lack such a property when additional hidden layers are
appended to the architecture. Specifically, we have the following results.

Theorem 1 Given an architectural vector M1 = (m0,m1, . . . ,mL−1,mL) with mL = 1,
define a new vector M2 = (m0,m1, . . . ,mL−1, n,mL), where n ≥ 1 is an integer. For a
given domain Ω ⊂ R

m0 and an activation function σ(·), the following relation holds

U (Ω,M1, σ) ⊆ U (Ω,M2, σ), (9)

where U is defined in (8).

Theorem 2 Given an architectural vector M1 = (m0,m1, . . . ,mL) with mL = 1, define a
new vectorM2 = (m0,m1, . . . ,ms−1,ms + 1,ms+1, . . . ,mL) for some s (1 ≤ s ≤ L − 1).
For a given domain Ω ⊂ R

m0 and an activation function σ(·), the following relation holds

U (Ω,M1, σ) ⊆ U (Ω,M2, σ), (10)

where U is defined in (8).

These properties can be shown to be true by simple constructions, which are quite straight-
forward to devise. Risking on the side of naivety, we still include the constructive proofs for
these two theorems in an Appendix of this paper for the benefit of a skeptical reader.

It should be noted that for conventional FNNs the relation given by (10) is true, but the
relation given by (9) does not hold. Relation (9) is true for HLConcFNNs thanks to the
concatenation of hidden layers in such networks.

Suppose we start with a base neural network architecture M0 and generate a sequence
of architectures Mi (i ≥ 1), with each one obtained either by adding extra nodes to the
existing hidden layers of or by appending additional hidden layers to the previous architecture.
Then based on the above two theorems the HLConcFNNs associated with this sequence of
architectures exhibit a hierarchical structure, in the sense that the representation capacities
of this sequence of HLConcFNNs do not decrease, namely

U (Ω,M0, σ) ⊆ U (Ω,M1, σ) ⊆ · · · ⊆ U (Ω,Mn, σ) ⊆ · · · . (11)

If the activation function σ(·) is nonlinear, the representation capacities of this sequence of
HLConcFNNs should strictly increase.

123

Journal of Scientific Computing (2023) 95:35 Page 11 of 65 35

Remark 2 If the number of nodes in the output layer of the HLConcFNN is more than one,
the relations given by Theorems 1 and 2 about the representation capacities equally hold.

Hidden-Layer Concatenated Extreme Learning Machine (HLConcELM) Let us next com-
bine the hidden-layer concatenated FNN with the idea of ELM. We adopt HLConcFNNs as
the neural network for the ELM computation. We pre-set (and fix) all the weight/bias coeffi-
cients in the hidden layers (i.e. θ) of the HLConcFNN to random values, and train/compute
the output-layer coefficients (i.e. β) by a linear or nonlinear least squares method. We will
refer to the resultant method as the hidden-layer concatenated extreme learning machine
(HLConcELM).

Given an architectural vector M, an activation function σ(·), and the randomly assigned
values for the hidden-layer coefficients θ , let HLConcELM(M, σ, θ) denote the associ-
ated hidden-layer concatenated ELM. For a given domain Ω ⊂ R

d , a vector M =
(M0, M1, . . . , ML) with M0 = d and ML = 1, and given θ ∈ R

Nh and σ , we define

U (Ω,M, σ, θ) = {u(θ ,β, x) | u(θ,β, x) is the output of HLConcFNN(M, σ),

x ∈ Ω, β ∈ R
Nc
}

(12)

as the set of all possible output fields of HLConcELM(M, σ, θ) on Ω , where Nc denotes
the total number of the output-layer coefficients. Hereafter we refer to U (Ω,M, σ, θ) as
the representation capacity of the HLConcELM(M, σ, θ). Note that U (Ω,M, σ, θ) forms a
linear space.

Analogous to Theorem 1, when one appends hidden layers to a given network architecture,
the representation capacity of the HLConcELM associated with the resultant architecture
will be at least as good as that associated with the original one, on condition that the random
hidden-layer coefficients of the new HLConcELM are set appropriately. On the other hand,
if one adds extra nodes to a hidden layer (other than the last one) of a given architecture, there
is no analogous result to Theorem 2 for HLConcELM, because the hidden-layer coefficients
in ELM are randomly set. Specifically, we have the following result.

Theorem 3 Given an architectural vector M1 = (m0,m1, . . . ,mL−1,mL) with mL = 1,
define a new vector M2 = (m0,m1, . . . ,mL−1, n,mL), where n ≥ 1 is an integer. Let θ ∈
R

Nh1 and ϑ ∈ R
Nh2 denote two random vectors, with the relation ϑ[1 : Nh1] = θ [1 : Nh1],

where Nh1 = ∑L−1
i=1 (mi−1 + 1)mi and Nh2 = Nh1 + (mL−1 + 1)n. For a given domain

Ω ⊂ R
m0 and an activation function σ(·), the following relation holds

U (Ω,M1, σ, θ) ⊆ U (Ω,M2, σ,ϑ), (13)

where U is defined in (12).

By ϑ[1 : Nh1] = θ[1 : Nh1] we mean that the first Nh1 entries of ϑ and θ are the same.
Because of this condition, the random bases for U (Ω,M2, σ,ϑ) would contain those bases
for U (Ω,M1, σ, θ), giving rise to the relation (13). For the sake of completeness we have
included a proof of Theorem 3 in Appendix A. It should be noted that conventional ELMs
lack a comparable property as expressed by the relation (13).

In the current paper we set the random hidden-layer coefficients θ in HLConcELM in the
following fashion. Given an architectural vectorM = (m0,m1, . . . ,mL−1,mL), let ξ ∈ R

Nh

be a random vector generated on the interval [−1, 1] from a uniform distribution, where
Nh = ∑L−1

i=1 (mi−1+1)mi . Once generated, ξ will befixed throughout the computation for the
given architectureM. We next partition ξ into (L − 1) sub-vectors, ξ = (ξ1, ξ2, . . . , ξ L−1),

123

 35 Page 12 of 65 Journal of Scientific Computing (2023) 95:35

with ξ i having a dimension (mi−1 + 1)mi for 1 ≤ i ≤ L − 1. Let R = (R1, R2, . . . , RL−1)

denote (L − 1) constants. We then set θ in HLConcELM for the given architecture M to

θ(M,R, ξ) = flatten
[
R1ξ1, R2ξ2, . . . , RL−1ξ L−1

]
, (14)

where “flatten” concatenates the list of vectors into a single vector.
Hereafter we refer to the above vector R = (R1, . . . , RL−1) as the hidden magnitude

vector for the network architecture M. When assigning random hidden-layer coefficients
as described above, we have essentially set the weight/bias coefficients in the i-th hidden
layer to uniform random values generated on the interval [−|Ri |, |Ri |], where Ri is the i-th
component of R, for 1 ≤ i ≤ L − 1. The constant |Ri | denotes the maximum magnitude of
the random coefficients for the i-th hidden layer.

The constants Ri (1 ≤ i ≤ L − 1) are the hyperparameters of the HLConcELM. The
idea of generating random coefficients for different hidden layers with different maximum
magnitudes is first studied in [13] for conventional feedforward neural networks, and amethod
based on the differential evolution algorithm is developed therein for computing the optimal
values of those magnitudes. In the current work, for a given PDE problem, we use the method
of [13] to compute the optimal (or near-optimal) hidden magnitude vector R∗, and employ
R = R∗ in HLConcELM for the simulations.

Hereafter we useHLConcELM(M, σ,R, ξ) to denote the hidden-layer concatenated ELM
characterized by the architectural vector M, the activation function σ(·), the randomly-
assigned but fixed vector ξ on [−1, 1], and the hidden magnitude vector R. According to
Theorem3,when additional hidden layers are appended to a givenHLConcELM(M, σ,R, ξ),
the representation capacity of the resultant HLConcELM will not be smaller than that of the
original one, if the vectors R and ξ of the resultant network are set appropriately.

2.3 Solving Linear/Nonlinear PDEs with Hidden-Layer Concatenated ELM

We next discuss how to use the hidden-layer concatenated ELM for the numerical solution
of PDEs. Consider a domain Ω ⊂ R

d and the following boundary value problem on this
domain,

Lu + F(u) = f (x), x ∈ Ω, (15a)

Bu + G(u) = g(x), x ∈ ∂Ω. (15b)

In these equations u(x) is the field function to be solved for.L is a linear differential operator.
F(u) is a nonlinear operator acting on u and also possibly on its derivatives. Equation (15b)
represents the boundary conditions, where B is a linear differential or algebraic operator. The
boundary condition may possibly contain some nonlinear operator G(u) acting on u and also
possibly on its derivatives. If both F(u) and G(u) are absent the problem becomes linear.
We assume that this problem is well-posed.

In addition, we assume that Lmay possibly include time derivatives (e.g. ∂
∂t ,

∂2

∂t2
). In this

case, problem (15) becomes time-dependent, and we will treat the time variable t in the same
way as the spatial coordinate x and consider t as the last dimension in d dimensions. We
require that the equation (15b) should include appropriate initial condition(s) for such a case.
So the problem (15) may refer to time-dependent cases, which will not be distinguished in
the following discussions.

We represent the solutionfieldu(x)by a hidden-layer concatenatedELMfrom the previous
subsection. Consider a network architecture given byM = (m0,m1, . . . ,mL), wherem0 = d
andmL = 1, and an activation function σ(·). We use the HLConcFNN(M, σ) to represent the

123

Journal of Scientific Computing (2023) 95:35 Page 13 of 65 35

solution field u(x) (see Fig. 1b). Here the d input nodes represent x, and the single output node
represents u(x). The activation function σ is applied to all the hidden nodes in the network. As
noted before, we require that the output layer should contain no activation function and have
zero bias. With a given hidden magnitude vector R = (R1, R2, . . . , RL−1) and a randomly
generated vector ξ ∈ R

Nh on [−1, 1], where Nh = ∑L−1
i=1 (mi−1 + 1)mi , we set and fix the

random hidden-layer coefficients according to equation (14).
Under these settings, the output field of the neural network is given by equation (2).

Substituting this expression for u(x) into the system (15), we have

L−1∑
i=1

mi∑
j=1

βi j

[
Lφ

(i)
j (x)

]
+ F

⎛
⎝

L−1∑
i=1

mi∑
j=1

βi jφ
(i)
j (x)

⎞
⎠ = f (x), x ∈ Ω, (16a)

L−1∑
i=1

mi∑
j=1

βi j

[
Bφ

(i)
j (x)

]
+ G

⎛
⎝

L−1∑
i=1

mi∑
j=1

βi jφ
(i)
j (x)

⎞
⎠ = g(x), x ∈ ∂Ω, (16b)

where φ
(i)
j (x) (1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi) denotes the output field of the j-th node in the

i-th hidden layer, and βi j (1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi) are the weight coefficients in the
output layer of the HLConcELM. It should be noted that, since the hidden-layer coefficients
are randomly set but fixed, φ(i)

j (x) are random but fixed functions. The coefficients βi j are
the trainable parameters in HLConcELM.

We next choose a set of Q (Q ≥ 1) points on Ω , referred to as the collocation points,
which can be regular grid points, random points, or chosen based on some other distribution.
Among these points we assume that Qb (1 ≤ Qb ≤ Q − 1) points reside on the boundary
∂Ω and the rest are from the interior of Ω . Let X denote the set of all the collocation points,
and Xb denote the set of the boundary collocation points.

We enforce the equation (16a) on all the collocation points from X, and enforce the
equation (16b) on all the boundary collocation points from Xb. This leads to

L−1∑
i=1

mi∑
j=1

βi j

[
Lφ

(i)
j (xp)

]
+ F

⎛
⎝

L−1∑
i=1

mi∑
j=1

βi jφ
(i)
j (xp)

⎞
⎠ = f (xp), xp ∈ X, 1 ≤ p ≤ Q;

(17a)

L−1∑
i=1

mi∑
j=1

βi j

[
Bφ

(i)
j (xq)

]
+ G

⎛
⎝

L−1∑
i=1

mi∑
j=1

βi jφ
(i)
j (xq)

⎞
⎠ = g(xq), xq ∈ Xb, 1 ≤ q ≤ Qb.

(17b)

This is a system of (Q+Qb) nonlinear algebraic equations about Nc = ∑L−1
i=1 mi unknowns,

βi j . The differential operators involved in these equations, such as Lφ
(i)
j (xp), Bφ

(i)
j (xq),

F(u(xp)) and G(u(xq)) where u(xp) = ∑L−1
i=1

∑mi
j=1 βi jφ

(i)
j (xp), can be computed by

using automatic differentiation of the neural network.
The system (17) is a rectangular system, in which the number of equations and the num-

ber of unknowns are not the same. We seek a least squares solution to this system. This is a
nonlinear least squares problem, and it can be solved by the Gauss-Newton method together
with the trust region strategy [46]. Several quality implementations of the Gauss-Newton
method are available from the scientific libraries. In this work we employ the Gauss-Newton
implementation together with a trust region reflective algorithm [4, 5] from the scipy pack-

123

 35 Page 14 of 65 Journal of Scientific Computing (2023) 95:35

age in Python (scipy.optimize.least_squares) to solve this problem. We refer to the method
implemented in this scipy routine as the nonlinear least squares method in this paper.

The nonlinear least squares method requires two procedures for solving the system (17),
one for computing the residual of this system and the other for computing the Jacobianmatrix
for a given arbitrary βi j (1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi). For a given arbitrary β (see (3)), the
residual r(β) ∈ R

Q+Qb is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(β) = (r1(β), r2(β)) ,

r1(β) = (r11, r12, . . . , r1Q), r2(β) = (r21, r22, . . . , r2Qb);

r1p =
L−1∑
i=1

mi∑
j=1

βi j

[
Lφ

(i)
j (xp)

]
+ F

⎛
⎝

L−1∑
i=1

mi∑
j=1

βi jφ
(i)
j (xp)

⎞
⎠− f (xp),

xp ∈ X, 1 ≤ p ≤ Q;

r2q =
L−1∑
i=1

mi∑
j=1

βi j

[
Bφ

(i)
j (xq)

]
+ G

⎛
⎝

L−1∑
i=1

mi∑
j=1

βi jφ
(i)
j (xq)

⎞
⎠− g(xq),

xq ∈ Xb, 1 ≤ q ≤ Qb.

(18)

The Jacobian matrix ∂r
∂β

∈ R
(Q+Qb)×Nc is given by,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂r
∂β

=
[

∂r1
∂β
∂r2
∂β

]

(Q+Qb)×Nc

;

∂r1
∂β

=
[

∂r1p
∂βi j

]
Q×Nc

,
∂r2
∂β

=
[

∂r2q
∂βi j

]
Qb×Nc

;
∂r1p
∂βi j

= Lφ
(i)
j (xp) + F ′(u(xp))φ

(i)
j (xp), xp ∈ X,

1 ≤ p ≤ Q, 1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi ;
∂r2q
∂βi j

= Bφ
(i)
j (xq) + G ′(u(xq))φ

(i)
j (xq), xq ∈ Xb,

1 ≤ q ≤ Qb, 1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi ;

(19)

where u(xp) is computed based on equation (2). The F ′(u) and G ′(u) terms denote the
derivatives with respect to u, and may represent the effect of an operator. For example, the
nonlinear function F(u) = u ∂u

∂x (as in the Burgers’ equation) leads to F ′(u)φ = ∂u
∂x φ +u ∂φ

∂x .
Therefore, to solve the problem (15) by HLConcELM, the input training data (denoted

by X) to the neural network is a Q × d matrix, consisting of the coordinates of all the
collocation points, X = [

xp
]
Q×d (for all xp ∈ X). The output data (denoted by U) of the

neural network is a Q × mL matrix, representing the field solution u(x) on the collocation
points, U = [

u(xp)
]
Q×mL

. The output data of the logical concatenation layer (denoted by

Ψ) of the HLConcELM is a Q × Nc matrix given by Ψ = [
Φ(θ , xp)

]
Q×Nc

. It represents
the output fields of the all the hidden nodes on all the collocation points. Here Nc denotes
the total number of hidden nodes in the network, and θ denotes the random hidden-layer
coefficients given by (14). The relation (7) is translated into, in terms of the neural-network
data,

U = Ψ βT , (20)

123

Journal of Scientific Computing (2023) 95:35 Page 15 of 65 35

where β denotes the output-layer coefficients given by (3).

Remark 3 The output data of the logical concatenation layerΨ can be computed by a forward
evaluation of the neural network (for up to the logical concatenation layer) on the input data
X. In our implementation we have created a Keras sub-model with the input layer as its input
and the logical concatenation layer as its output. By evaluating this sub-model on the input
data we can attain the output data for all the hidden nodes on the collocation points. The
first and higher derivatives of Ψ with respect to X are computed by a forward-mode auto-
differentiation, implemented by the “ForwardAccumulator” in the Tensorflow library. This
forward-mode auto-differentiation is crucial for the computational performance, because the
total number of hidden nodes (Nc) in HLConcELM is typically much larger than the number
of input nodes (d). The differential operators on the output fields of the hidden nodes involved
in (18) and (19), such as Lφ

(i)
j (xp) (xp ∈ X), Bφ

(i)
j (xq) (xq ∈ Xb) and F ′(u(xp))φ

(i)
j (xp),

can be computed based on or extracted from Ψ and its derivatives with respect to X. Once
Ψ is attained, for a given β, the output data of the neural network can be computed by (20),
which provides the u(xp) (xp ∈ X or xp ∈ Xb) for computing the terms F ′(u(xp)) and
G ′(u(xq)) in (18) and (19).

Remark 4 If the boundary value problem (15) is linear, i.e. in the absence of the terms F(u)

and G(u), the resultant system (17) is a linear algebraic system of (Q+ Qb) equations about
Nc unknowns of the parameters βi j . In this case we use the linear least squares method
to solve this system to compute a least squares solution for βi j . In our implementation we
employ the linear least squares routine from scipy (scipy.linalg.lstsq), which in turn employs
the linear least squares implementation from the LAPACK library.

Remark 5 If the problem (15) is time-dependent, for longer-time or long-time simulations,
we employ the block marching scheme from [9] together with the HLConcELM for its
computation. The temporal dimension, which can be potentially large in this case, is first
divided into a number of windows (referred as time blocks), so that each time block is of a
moderate size. The problem on each time block is solved by HLConcELM individually and
successively. After one time block is computed, the solution evaluated at the last time instant,
possibly together with its derivatives, is used as the initial condition for computing the time
block that follows. We refer the reader to [9] for more detailed discussions of the block time
marching scheme.

Remark 6 HLConcFNNs can be used together with the locELM (local extreme learning
machine) method [9] and domain decomposition for solving PDE problems. In this case, we
employ a HLConcELM for the local neural network on each sub-domain, and the algorithm
for computing the PDE solution is essentially the same. The only difference lies in that in the
system (17) one needs to additionally include the Ck continuity conditions on those colloca-
tion points that reside on the sub-domain boundaries. The residuals in (18) and the Jacobian
matrix in (19) need to be modified accordingly to account for these additional equations
from the Ck continuity conditions. We refer the reader to [9] for detailed discussions of these
aspects. For the convenience of presentation, hereafter we will refer to the locELM method
based on HLConcFNNs as the locHLConcELM method (local hidden-layer concatenated
ELM).

Remark 7 For a givenproblem, the optimal or near-optimal valueR∗ for the hiddenmagnitude
vector R can be computed by the method from [13] based on the differential evolution
algorithm. For all the test problems in Sect. 3, we employ R = R∗ computed based on the
method of [13] in the HLConcELM simulations.

123

 35 Page 16 of 65 Journal of Scientific Computing (2023) 95:35

3 Numerical Benchmarks

In this section we employ several benchmark problems in two dimensions (2D) or in one spa-
tial dimension (1D) plus time to test the performance of the HLConcELMmethod for solving
linear and nonlinear PDEs. We show that this method can produce highly accurate results
when the network architecture has a narrow last hidden layer. In contrast, the conventional
ELM method in this case utterly loses accuracy.

The HLConcELM method is implemented in Python based on the Tensorflow and
Keras libraries. The linear and nonlinear least squares methods employed in HLCon-
cELM are based on the implementations in the scipy package (scipy.linalg.lstsq and
scipy.optimize.least_squares), as discussed before. The differential operators on the hidden-
layer data (see equations (17a)–(17b)) are computed by a forward-mode auto-differentiation,
as stated in Remark 3. In all the numerical tests of this section we employ the Gaussian
activation function σ(x) = e−x2 for all the hidden nodes, while the output layer is linear and
has zero bias.

The ELM errors reported in the following subsections are computed as follows. We have
considered regular rectangular domains for simplicity in the current paper. For a given archi-
tecture we train the HLConcELM network on Q = Q1 × Q1 uniform collocation points
(i.e. regular grid points) by the linear or nonlinear least squares method, with Q1 uniform
points in each direction of the 2D domain or the spatial-temporal domain. After the network
is trained, we evaluate the neural network on a finer set of Qeval = Q2 × Q2 uniform grid
points, with Q2 much larger than Q1, to attain the HLConcELM solution data. We evaluate
the exact solution to the problem, if available, on the same set of Qeval grid points. Then we
compare the HLConcELM solution data and the exact solution data on the Q2 × Q2 grid
points to compute the maximum (l∞) and root-mean-squares (rms, or l2) errors. We refer
to the errors computed above as the HLConcELM errors associated with the given network
architecture and the Q = Q1 × Q1 training collocation points. When Q1 is varied in a range
for the convergence tests, we have made sure that Q2 is much larger than the largest Q1 in the
prescribed range. When the block time marching scheme is used for longer-time simulations
together with HLConcELM (see Remark 5), the Q = Q1×Q1 and Qeval = Q2×Q2 points
above refer to the points in each time block.When the locHLConcELMmethod together with
domain decomposition is used to solve a problem (seeRemark 6), the Q and Qeval points refer
to the points in each sub-domain. In the current paper we employ a fixed Qeval = 101× 101
(i.e. Q2 = 101) when evaluating the neural network and computing the HLConcELM errors
for all the test problems in this section.

As in our previous works [9, 10], we employ a fixed seed for the random number generator
in the Tensorflow library in order to make the reported numerical results herein exactly
reproducible.While the seed value is different for the test problems in different subsections, it
has been fixed to a particular value for the numerical testswithin each subsection. Specifically,
the seed to the randomnumber generator is 10 inSect. 3.1, 50 inSect. 3.3, and 100 inSects. 3.2,
3.4 and 3.5.

In comparisonswith the conventional ELMmethod [9] in the following subsections, all the
hidden-layer coefficients in conventional ELM are assigned (and fixed) to uniform random
values generated on the interval [−Rm, Rm], with Rm = Rm0, where Rm0 is the optimal Rm

computed by the method of [13] based on the differential evolution algorithm.

123

Journal of Scientific Computing (2023) 95:35 Page 17 of 65 35

Fig. 3 Variable-coefficient Poisson equation: distributions of a the exact solution, b the absolute error of the
HLConcELM solution, and c the absolute error of the conventional ELM solution. In b, c, network architecture
M = [2, 800, 50, 1], Gaussian activation function, Q = 35×35 uniform collocation points.R = (3.0, 0.005)
for HLConcELM in b. Rm = Rm0 = 0.35 for conventional ELM in c, where Rm0 is the optimal Rm computed
using the method of [13]

3.1 Variable-Coefficient Poisson Equation

The first numerical test involves the 2D Poisson equation with a variable coefficient field.
Consider the 2D domain Ω = [0, 1.6] × [0, 1.6] and the the following boundary value
problem on Ω ,

∂

∂x

(
a(x, y)

∂u

∂x

)
+ ∂

∂ y

(
a(x, y)

∂u

∂ y

)
= f (x, y), (21a)

u(0, y) = g1(y), u(1.6, y) = g2(y), u(x, 0) = h1(x), u(x, 1.6) = h2(x), (21b)

where (x, y) are the spatial coordinates, u(x, y) is the field function to be solved for, f (x, y)
is a prescribed source term, a(x, y) is the coefficient field given by a(x, y) = 2+ sin(x + y),
and g1, g2, h1 and h2 are prescribed boundary distributions. We choose the source term f
and the boundary data gi and hi (i = 1, 2) appropriately such that the following function
satisfies the system (21),

u(x, y) = − sin(πx2) sin(π y2). (22)

The distribution of this exact solution in the xy plane is illustrated by Fig. 3a.

123

 35 Page 18 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 4 Variable-coefficient Poisson equation: the maximum, rms and h1 errors of the HLConcELM solution
versus the number of collocation points per direction obtained with a network architecture of a [2, 800, 50, 1]
and b [2, 50, 800, 1]. R = (3.0, 0.005) in a, and R = (0.68, 0.82) in b

We employ the HLConcELMmethod from Sect. 2 to solve the system (21). Let the vector
M = [2,m1, . . . ,mL−1, 1] denote the architecture of the HLConcELM, where the two input
nodes represent the coordinates x and y and the single output node represents the solution
u. We employ the Gaussian activation function for all the hidden nodes, as stated at the
beginning of Sect. 3. The output layer is linear and has no bias. The number of hidden layers
and the number of hidden nodes are varied, and the specific architure will be given below
when discussing the results.

We employ a uniform set of Q = Q1×Q1 grid points on the domainΩ , with Q1 uniform
points on each side of the boundary, as the collocation points for training the neural network.
Q1 is varied in the tests. As discussed earlier, after the neural network is trained, we evaluate
the neural network on another finer set of Qeval = Q2 × Q2, with Q2 = 101, uniform grid
points on Ω and compute the HLConcELM errors.

Figure 3b, c show a comparison of the point-wise absolute-error distributions in the xy
plane of theHLConcELMsolution and the conventionalELMsolution obtainedusing a neural
networkwith a narrow last hidden layer. Note that in conventional ELM the usual feedforward
neural network has been employed (see Fig. 1a). For both HLConcELM and conventional
ELM we employ here a neural network with the architecture M = [2, 800, 50, 1] and a
uniform set of Q = 35× 35 collocation points for the network training. With HLConcELM,
for setting the random hidden-layer coefficients, we employ a hidden magnitude vector
R = (3.0, 0.005), which is close to the optimum R∗ obtained based on the method of
[13]. With conventional ELM, we set the hidden-layer coefficients to uniform random values
generated on the interval [−Rm, Rm] with Rm = Rm0, where Rm0 = 0.35 is the optimal
Rm obtained using the method of [13] for this case. Because the last hidden layer is quite
narrow (with 50 nodes), we observe that the result of the conventional ELM exhibits no
accuracy, with a maximum error around 85 in the domain. In contrast, the HLConcELM
method produces highly accurate results, with the maximum error on the order of 10−8 in
the domain.

Figure 4 illustrates the convergence behavior of the HLConcELM solution with respect to
the number of collocation points in the network training. Two neural networks are considered,
with the architectures given byM1 = [2, 800, 50, 1] andM2 = [2, 50, 800, 1], respectively.
We vary the number of collocation points per direction (i.e. Q1) systematically between

123

Journal of Scientific Computing (2023) 95:35 Page 19 of 65 35

Fig. 5 Variable-coefficient Poisson equation: a The maximum/rms/h1 errors and b the network training time
of HLConcELM versus the number of nodes in the first hidden layer for a network architecture [2, M, 50, 1]
(varyingM). cThemaximum/rms/h1 errors andd the network training timeofHLConcELMversus the number
of nodes in the second hidden layer for a network architecture [2, 50, M, 1] (varyingM). Q = 35×35 uniform
collocation points in (a,b,c,d). R = (3.0, 0.005) in a, b, and R = (0.68, 0.82) in c, d

Q1 = 5 and Q1 = 50, and record the corresponding HLConcELM errors. Figure4a, b show
the maximum, rms and h1 errors of HLConcELM as a function of Q1 for the two neural
networks. Here the h1 error is defined as
√√√√√ 1

Qeval

Qeval∑
i=1

⎡
⎣(u|xi − uex |xi)2 +

(
∂u

∂x

∣∣∣∣
xi

− ∂uex
∂x

∣∣∣∣
xi

)2

+
(

∂u

∂ y

∣∣∣∣
xi

− ∂uex
∂ y

∣∣∣∣
xi

)2
⎤
⎦

where u and uex denote the ELM solution and the exact solution, respectively, and xi (1 ≤
i ≤ Qeval) denote the evaluation points. For the networkM1 we employ a hidden magnitude
vector R = (3.0, 0.005), and for the network M2 we employ a hidden magnitude vector
R = (0.68, 0.82). TheseR values are obtained using the method of [13]. The results indicate
that the HLConcELM errors decrease approximately exponentially with increasing number
of collocation points (when Q1 ≤ 30). The errors stagnate as Q1 increases further, because
of the fixed network size. Note that the last hidden layer of the networkM1 is quite narrow (50
nodes), while that of the network M2 is quite wide (800 nodes). The HLConcELM method
produces accurate results with both types of neural networks.

123

 35 Page 20 of 65 Journal of Scientific Computing (2023) 95:35

Table 1 Variable-coefficient Poisson equation: comparison of the maximum, rms and h1 errors computed
using the current HLConcELM method and the conventional ELM method

Network Collocation Current HLConcELM Conventional ELM

Points Max error rms error h1 error Max error rms error h1 error

[2,800,50,1] 5 × 5 1.91E+0 4.31E-1 3.75E+0 3.06E+1 6.34E+0 5.37E+1

10 × 10 3.22E-2 7.88E-3 1.14E-1 5.48E+1 1.78E+1 8.00E+1

15 × 15 2.33E-3 3.92E-4 8.15E-3 6.24E+1 2.11E+1 8.85E+1

20 × 20 4.70E-5 1.32E-5 2.29E-4 6.97E+1 2.42E+1 9.62E+1

25 × 25 4.78E-7 1.10E-7 2.52E-6 7.67E+1 2.70E+1 1.03E+2

30 × 30 3.17E-8 3.79E-9 1.33E-7 8.31E+1 2.96E+1 1.10E+2

[2,50,800,1] 5 × 5 2.95E+0 9.26E-1 4.85E+0 2.48E+0 8.85E-1 5.72E+0

10 × 10 9.35E-2 9.93E-3 1.71E-1 1.32E-1 1.50E-2 2.33E-1

15 × 15 1.11E-3 2.40E-4 4.04E-3 6.52E-3 1.00E-3 1.55E-2

20 × 20 3.42E-5 6.91E-6 1.35E-4 7.63E-5 1.33E-5 2.71E-4

25 × 25 2.34E-6 4.45E-7 8.44E-6 1.83E-6 4.14E-7 8.13E-6

30 × 30 3.07E-8 4.81E-9 1.48E-7 9.87E-8 2.02E-8 5.07E-7

TheHLConcELMdata in this table correspond to a portion of those in Fig. 4a for the network [2, 800, 50, 1] and
to those in Fig. 4b for the network [2, 50, 800, 1]. For conventional ELM, the random hidden-layer coefficients
are assigned to uniform random values generated on [−Rm , Rm] with Rm = Rm0. Here Rm0 is the optimal
Rm obtained using the method of [13], with Rm0 = 0.35 for the network [2, 800, 50, 1] and Rm0 = 0.75 for
the network [2, 50, 800, 1]

Figure 5 illustrates the convergence behavior, as well as the network training time, of the
HLConcELMmethodwith respect to the number of nodes in the neural network.We consider
two groups of neural networks, with the architectures given byM1 = [2, M, 50, 1] andM2 =
[2, 50, M, 1], respectively, where M is varied systematically between M = 100 and M =
1000. For all the test cases, we employ a fixed uniform set of Q = 35×35 collocation points
to train the neural network. For generating the hidden-layer coefficients, we use a hidden
magnitude vector R = (3.0, 0.005) with the first group of networks M1, and a vector R =
(0.68, 0.82)with the second group of networksM2. Figure5a, c depict the maximum/rms/h1

errors of HLConcELM as a function ofM for these two groups of neural networks. Figure5b,
d depict the correspondingwall time it takes to train these neural networkswithHLConcELM.
It can be observed that the HLConcELM errors decrease approximately exponentially with
increasingM (before saturation).WhenM becomes large theHLConcELM results are highly
accurate. The network training time of the HLConcELM method increases approximately
linearly with increasing M . In the range of M values tested here, it takes around a second to
train the neural network to attain the HLConcELM results.

Table 1 provides a comparison of the HLConcELM accuracy and the conventional ELM
accuracy for solving the variable-coefficient Poisson equation on two network architectures,
M1 = [2, 800, 50, 1] andM2 = [2, 50, 800, 1]. The networkM1 contains a relatively small
number of nodes in its last hidden layer, and the conventional ELM would not perform well.
The networkM2 contains a large number of nodes in its last hidden layer, and the conventional
ELM should perform quite well. We consider a sequence of uniform collocation points,
ranging from Q = 5 × 5 to Q = 30 × 30. Table 1 lists the maximum, rms and h1 errors of
the HLConcELM solution and the conventional ELM solution corresponding to each set of
collocation points. The data indicate that the conventional ELM exhibits no accuracy with
the networkM1, and exhibits exponentially increasing accuracy with increasing collocation

123

Journal of Scientific Computing (2023) 95:35 Page 21 of 65 35

Fig. 6 Variable-coefficient Poisson equation (3 hidden layers in NN): a Distribution of the absolute error of
the HLConcELM solution. The maximum/rms errors of HLConcELM versus b the number of collocation
points per direction, and c the number of nodes in the first hidden layer of the neural network. Neural network
architectureM = [2, M, 50, 50, 1], Q = Q1 × Q1 uniform collocation points. M = 600 in a, b and is varied
in c. Q1 = 35 in a, c and is varied in b. R = (2.6, 0.005, 0.8) in a–c

Table 2 Variable-coefficient Poisson equation: the maximum and rms errors of HLConcELM versus the
number of hidden layers (i.e. depth) in the neural network architecture, with two uniform sets of collocation
points (Q = 15 × 15 and 30 × 30)

hidden R Q = 15×15 Q = 30×30

layers max-err rms-err max-err rms-err

1 (2.0) 8.91E+0 1.48E+0 1.48E+1 1.92E+0

2 (0.73,0.023) 4.86E-2 4.69E-3 1.10E-1 1.26E-2

3 (0.77,0.07,0.17) 2.57E-3 8.09E-4 1.34E-3 1.10E-4

4 (0.6,0.19,0.16,0.05) 1.67E-3 4.07E-4 6.69E-5 7.20E-6

5 (0.48,0.23,0.25,0.14,0.3) 1.84E-3 3.81E-4 5.54E-6 7.33E-7

6 (0.54,0.24,0.18,0.13,0.38,0.39) 7.66E-4 1.54E-4 9.61E-7 8.60E-8

7 (0.58,0.25,0.12,0.25,0.57,1.18,0.12) 2.74E-3 6.77E-4 9.19E-7 5.46E-8

The width of each hidden layer is 100. For example, the network architecture is [2, 100, 100, 100, 100, 1]with
4 hidden layers. The hidden magnitude vector R is listed in the table

points on the network M2. On the other hand, the current HLConcELM method exhibits
exponentially increasing accuracy with increasing collocation points on both networks M1

and M2.
Figure 6 is an illustration of the HLConcELM results obtained on neural networks with

three hidden layers. Here we consider a network architecture M = [2, M, 50, 50, 1], with
M either fixed at M = 600 or varied systematically between M = 100 and M = 1000. The
set of collocation points (uniform) is either fixed at Q = 35 × 35 or varied systematically
between Q = 5 × 5 and Q = 50 × 50. We employ a fixed hidden magnitude vector
R = (2.6, 0.005, 0.8), obtained using the method of [13]. Figure6a shows the HLConcELM
error distribution corresponding to M = [2, 600, 50, 50, 1] and Q = 35 × 35, indicating a
quite high accuracy, with the maximum error in the domain on the order 10−7. Figure6b,
c demonstrate the exponential convergence (before saturation) of the HLConcELM errors
with respect to the collocation points Q1 and the number of nodes M , respectively. These
results show that the current HLConcELM method can produce highly accurate results on
neural networks with multiple hidden layers and a narrow last hidden layer.

Table 2 illustrates the effect of the neural-network depth (number of hidden layers) on the
HLConcELM accuracy. Here we vary the number of hidden layers systematically between 1
and 7, while the number of nodes in each hidden layer is fixed at 100. The hidden magnitude

123

 35 Page 22 of 65 Journal of Scientific Computing (2023) 95:35

vectorR is provided in the table for each network architecture. The maximum and rms errors
of the HLConcELM solutions for two sets of collocation points are listed in the table. For
each set of collocation points, the HLConcELM errors decrease approximately exponentially
initially with increasing number of hidden layers, and then stagnate when the depth increases
beyond a certain level. With Q = 15 × 15 collocation points, the HLConcELM maximum
error reaches a level 10−3 with 3 or more hidden layers. With Q = 30 × 30, the maximum
error reaches a level 10−7 with 6 or more hidden layers.

3.2 Advection Equation

In the next examplewe employ the 1D advection equation (plus time) to test theHLConcELM
method. Consider the spatial-temporal domain, (x, t) ∈ Ω = [0, 5] × [0, 40], and the
following initial/boundary value problem on Ω ,

∂u

∂t
− 2

∂u

∂x
= 0, (23a)

u(0, t) = u(5, t), (23b)

u(x, 0) = 20 tanh

(
1

10
cos

(
2π

5
(x − 3)

))
. (23c)

In the above equations u(x, t) is the field function to be solved for, andwe impose the periodic
boundary condition in the spatial direction. This system has the following exact solution,

u(x, t) = 20 tanh

(
1

10
cos

(
2π

5
(x + 2t − 3)

))
. (24)

The distribution of this solution on the spatial-temporal domain is illustrated in Fig. 7a.
To solve the system (23), we employ the HLConcELM method combined with the block

timemarching scheme (see Remark 5 and [9]). We divide the domainΩ into 40 uniform time
blocks in time. For computing each time block with HLConcELM, we employ a network
architectureM = [2,m1, . . . ,mL−1, 1], where the two input nodes represent x and t and the
single output node represents u(x, t). Let Q = Q1×Q1 denote the uniform set of collocation
points for each time block (Q1 grid points in both x and t directions), where Q1 is varied in
the tests. As discussed before, upon completion of training, the neural network is evaluated
on a uniform set of Qeval = 101×101 grid points on each time block and the corresponding
errors are computed. The maximum and rms errors reported below refer to the errors of the
HLConcELM solution on the entire domain Ω (over 40 time blocks).

Figure 7b, c illustrate the absolute-error distributions on Ω of the HLConcELM solution
and the conventional ELM solution, respectively. For both methods, we employ 40 time
blocks in block time marching, a neural network architecture M = [2, 500, 50, 1] with the
Gaussian activation function, and a set of Q = 35 × 35 uniform collocation points per time
block. For HLConcELM we employ R = (3.0, 1.0), which is computed by the method
of [13]. For conventional ELM we employ Rm = Rm0 = 0.065, which is also obtained
by the method of [13], for generating the random hidden-layer coefficients. Because the
number of nodes in the last hidden layer is quite small, the conventional ELM exhibits a low
accuracy, with the maximum error on the order of 10−2 in the domain. On the other hand,
the HLConcELM method produces a highly accurate solution, with the maximum error on
the order of 10−9 in the domain.

Figure 8 illustrates the convergence behavior, as well as the growth in the network training
time, of the HLConcELm method with respect to the number of collocation points. We have

123

Journal of Scientific Computing (2023) 95:35 Page 23 of 65 35

Fig. 7 Advection equation: distributions in the spatial–temporal domain of a the exact solution, b the absolute
error of the HLConcELM solution, and c the absolute error of the conventional ELM solution. In b, c, network
architecture [2, 500, 50, 1], 40 uniform time blocks, Q = 35× 35 uniform collocation points per time block.
R = (3.0, 1.0) in b for HLConcELM. Rm = Rm0 = 0.065 in c for conventional ELM

considered two network architectures, M1 = [2, 500, 50, 1] and M2 = [2, 50, 500, 1], with
a narrower last hidden layer in M1 and a wider one in M2. A uniform set of Q = Q1 × Q1

collocation points is employed, with Q1 varied systematically between Q1 = 5 and Q1 = 50
in the tests. The hidden magnitude vector R computed by the method [13] is used in the
simulations, withR = (3.0, 1.0) for the networkM1 andR = (0.9, 0.5) for the networkM2.
Figure8a, b depict themaximum/rms errors onΩ and the network training time, respectively,
as a function of Q1 obtainedwith the neural networkM1. Figure8c, d show the corresponding
results obtained with the network M2. While the convergence behavior is not quite regular,
one can observe that the HLConcELM errors approximately decrease exponentially (before
saturation) with increasing number of collocation points. The network training time grows
approximately linearly with increasing number of training collocation points.

Figure 9 illustrates the convergence behavior of the HLConcELMmethod with respect to
the number of nodes in the neural network. Two groups of neural networks are considered in
these tests,with an architectureM1 = [2, M, 50, 1] for thefirst group andM2 = [2, 50, M, 1]
for the second one, with M varied systematically. A uniform set of Q = 35 × 35 colloca-
tion points is employed for training the neural networks. We use R = (3.0, 1.0) for the
architecture M1 and R = (0.9, 0.5) for the architecture M2. The plots (a) and (b) show the
maximum/rms errors of HLConcELM on Ω as a function of M , indicating that the errors
decrease approximately exponentially (before saturation) with increasing M in the neural
network.

Table 3 provides an accuracy comparison of the current HLConcELM method and
the conventional ELM method [9] for solving the advection equation. Two neural net-
works are considered here, with the architectures given by M1 = [2, 500, 50, 1] and

123

 35 Page 24 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 8 Advection equation: the maximum/rms errors in the domain Ω (a, c) and the network training time
(b, d) of HLConcELM versus the number of collocation points per direction in each time block. The results
are attained with two network architectures: a, b M1 = [2, 500, 50, 1], and c, d M2 = [2, 50, 500, 1].
R = (3.0, 1.0) in a, b for the networkM1, and R = (0.9, 0.5) in c, d for the networkM2

Fig. 9 Advection equation: a the HLConcELM maximum/rms errors on Ω versus the number of nodes in
the first hidden layer for the network architecture M1 = [2, M, 50, 1] (varying M). b The HLConcELM
maximum/rms errors onΩ versus the number of nodes in the second hidden layer for the network architecture
M2 = [2, 50, M, 1] (varying M). Q = 35 × 35 in a, b. R = (3.0, 1.0) in a for the network M1, and
R = (0.9, 0.5) in b for the network M2

123

Journal of Scientific Computing (2023) 95:35 Page 25 of 65 35

Table 3 Advection equation: comparison of the maximum/rms errors on Ω from the current HLConcELM
method and the conventional ELM method [9]

Network Collocation Current HLConcELM Conventional ELM

Architecture Points Max error rms error Max error rms error

[2, 500, 50, 1] 5 × 5 2.48E + 0 1.41E + 0 1.33E + 0 4.57E − 1

10 × 10 2.21E + 0 8.26E − 1 5.97E − 2 1.91E − 2

15 × 15 7.45E − 3 2.78E − 3 4.31E − 2 1.30E − 2

20 × 20 1.22E − 3 1.39E − 4 3.62E − 2 1.08E − 2

25 × 25 1.39E − 5 2.00E − 6 3.15E − 2 9.50E − 3

30 × 30 2.25E − 8 6.47E − 9 3.24E − 2 8.89E − 3

[2, 50, 500, 1] 5 × 5 1.97E + 0 1.10E + 0 1.86E + 0 9.18E − 1

10 × 10 9.33E − 2 3.74E − 2 4.18E − 2 1.65E − 2

15 × 15 1.05E − 3 4.16E − 4 3.09E − 4 8.48E − 5

20 × 20 3.16E − 5 6.30E − 6 1.97E − 4 5.01E − 5

25 × 25 5.60E − 7 1.36E − 7 7.60E − 5 5.85E − 6

30 × 30 5.80E − 8 1.45E − 8 9.76E − 8 3.32E − 8

The HLConcELM data in this table correspond to a portion of those in Fig. 8a for the network [2, 500, 50, 1]
and to those in Fig. 8c for the network [2, 50, 500, 1]. For conventional ELM, the hidden-layer coefficients
are set to uniform random values generated on [−Rm , Rm] with Rm = Rm0. Here Rm0 is the optimal Rm
computed by the method of [13], with Rm0 = 0.065 for the network [2, 500, 50, 1] and Rm0 = 0.65 for the
network [2, 50, 500, 1]

M2 = [2, 50, 500, 1], respectively. The maximum/rms errors of both methods on the domain
Ω corresponding to a sequence of collocation points are listed in the table. With the network
M1, whose last hidden layer is narrower, the conventional ELM exhibits only a fair accuracy
with increasing collocation points, with its maximum errors on the order of 10−2. In con-
trast, the current HLConcELM method produces highly accurate results with the network
M1, with the maximum error reaching the order of 10−8 on the larger set of collocation
points. With the network M2, whose last hidden layer is wider, both the conventional ELM
and the current HLConcELM produce highly accurate results with increasing number of
collocation points. These observations are consistent with those in the previous subsection
for the variable-coefficient Poisson equation.

Figure 10 illustrates the HLConcELM results obtained on a deeper neural network con-
taining 4 hidden layers for solving the advection equation. The network architecture is given
by M = [2, M, 30, 30, 30, 1], where M is either fixed at M = 400 or varied systematically
between M = 100 and M = 800. A uniform set of Q = Q1 × Q1 collocation points is
used to train the network, where Q1 is either fixed at Q1 = 35 or varied systematically
between Q1 = 5 and Q1 = 50. In all simulations we employ a hidden magnitude vector
R = (3.1, 1.0, 0.9, 0.8), which is computed using the method of [13]. Figure10a depicts the
distribution of the absolute error of the HLConcELM solution on Ω , which corresponds to
M = 400 and Q1 = 35. It can be observed that the result is highly accurate, with a maxi-
mum error on the order of 10−8 in the domain. Figure10b shows the maximum/rms errors
of HLConcELM as a function of Q1, with a fixed M = 400 in the tests. Figure10c shows
the maximum/rms errors of HLConcELM as a function of M in the neural network, with a
fixed Q1 = 35 for the collocation points. The exponential convergence of the HLConcELM
errors (before saturation) is unmistakable.

123

 35 Page 26 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 10 Advection equation (4 hidden layers in neural network): a error distribution of the HLConcELM
solution on Ω . The HLConcELM maximum/rms errors on Ω versus b the number of collocation points per
direction in each time block, and c the number of nodes in the first hidden layer (M). Network architecture
[2, M, 30, 30, 30, 1], 40 time blocks in block time marching. Q = 35×35 in a, c, and is varied in b. M = 400
in a, b, and is varied in c. R = (3.1, 1.0, 0.9, 0.8) in a–c

3.3 Nonlinear Helmholtz Equation

We employ a nonlinear Helmholtz equation to test the HLConcELM method for the next
problem. Consider the 2D domain (x, y) ∈ Ω = [0, 1.5] × [0, 1.5] and the following
boundary value problem on Ω ,

∂2u

∂x2
+ ∂2u

∂ y2
− 100u + 10 cosh(u) = f (x, y), (25a)

u(0, y) = g1(y), u(1.5, y) = g2(y), u(x, 0) = h1(x), u(x, 1.5) = h2(x). (25b)

In the above equations u(x, y) is the field solution to be sought, f (x, y) is a prescribed source
term, gi and hi (i = 1, 2) are the Dirichlet boundary data. In this subsection we choose f ,
gi and hi (i = 1, 2) such that the system (25) has the following solution,

u(x, y) = 4 cos
(
πx2

)
cos

(
π y2

)
. (26)

The distribution of this solution in the xy plane is illustrated in Fig. 11a.
We employ the HLConcELM method with neural networks that contain two input nodes,

representing the x and y, and a single output node, representing the solution u. The number
of hidden layers and the number of hidden nodes are varied and will be specified below. To
train the neural network, we employ a uniform set of Q = Q1 × Q1 collocation points on
Ω , with Q1 varied in the tests. The ELM errors reported below are computed on a finer set
of Qeval = 101 × 101 uniform grid points, as explained before.

Figure 11b, c illustrate the absolute-error distributions obtained using the HLConcELM
method and the conventionalELMmethodwith the network architectureM = [2, 500, 30, 1].

123

Journal of Scientific Computing (2023) 95:35 Page 27 of 65 35

Fig. 11 Nonlinear Helmholtz equation: Distributions of a the exact solution, b the absolute error of the
HLConcELM solution, and c the absolute error of the conventional ELM solution. In b, c, network architecture
[2, 500, 30, 1], Gaussian activation function, Q = 35 × 35 uniform collocation points. R = (2.0, 3.0) in b
for HLConcELM. Rm = Rm0 = 0.6 in c for conventional ELM

A uniform set of Q = 35×35 collocation points has been used to train the network with both
methods. The hiddenmagnitude vector isR = (2.0, 3.0) for HLConcELM,which is obtained
with the method of [13]. For conventional ELMwe have employed Rm = Rm0 = 0.6, which
is also obtained using themethod of [13], for generating the randomhidden-layer coefficients.
The conventional ELM solution is inaccurate, with the maximum error on order of 10. On
the other hand, the current HLConcELM method produces an accurate solution on the same
network architecture, with the maximum error on the order of 10−6 in the domain.

Figure 12 illustrates the convergence behavior and the network training time with respect
to the training collocation points of the HLConcELM method for solving the nonlinear
Helmholtz equation. Two network architectures are considered here, M1 = [2, 500, 30, 1]
andM2 = [2, 30, 500, 1]. The number of collocation points in each direction (Q1) is varied
systematically between Q1 = 5 and Q1 = 50 in these tests. We employ R = (2.0, 3.0)
for the network M1 and R = (0.65, 0.7) for the network M2, which are obtained using the
method of [13]. Figure12a, b show the maximum/rms errors and the network training time
of the HLConcELM method as a function of Q1 for the neural network M1. Figure12c, d
show the corresponding results for the network M2. The exponential convergence (before
saturation) and the near linear growth in the network training time observed here for the

123

 35 Page 28 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 12 Nonlinear Helmholtz equation: The maximum/rms errors (a, c) and the network training time (b,
d) of the HLConcELM method versus the number of collocation points in each direction. In a, b, network
architecture [2, 500, 30, 1], R = (2.0, 3.0). In c, d, network architecture [2, 30, 500, 1], R = (0.65, 0.7). In
(a,b,c,d), uniform collocation points Q = Q1 × Q1, with Q1 varied

nonlinear Helmholtz equation are consistent with those for the linear problems in previous
subsections.

Figure 13 illustrates the error convergence of the HLConcELM method with respect to
the number of nodes in the neural network. Two groups of neural networks are considered
here, with the architecturesM1 = [2, M, 30, 1] andM2 = [2, 30, M, 1], where M is varied
systematically. The networks are trained on a uniform set of Q = 35×35 collocation points.
The plots (a) and (b) show the maximum/rms errors of HLConcELM as a function of M for
these two groups of neural networks. It can be observed that the errors decrease approximately
exponentially with increasing M .

Table 4 compares the numerical errors of the current HLConcELM method and the
conventional ELM method for solving the nonlinear Helmholtz equation on two network
architectures, M1 = [2, 500, 30, 1] and M2 = [2, 30, 500, 1], trained on a sequence of uni-
form sets of collocation points. The HLConcELM method produces highly accurate results
on both neural networks. On the other hand, while the conventional ELM produces accurate
results on the network M2, its solution on the network M1 is utterly inaccurate.

123

Journal of Scientific Computing (2023) 95:35 Page 29 of 65 35

Fig. 13 Nonlinear Helmholtz equation: a The HLConcELMmaximum/rms errors versus the number of nodes
in the first hidden layerwith network architecture [2, M, 30, 1] (M varied).bTheHLConcELMmaximum/rms
errors versus the number of nodes in the second hidden layer with the architecture [2, 30, M, 1] (M varied).
Q = 35 × 35 collocation points in a, b. R = (2.0, 3.0) in a, and R = (0.65, 0.7) in b

Table 4 Nonlinear Helmholtz equation: comparison of the maximum/rms errors from the HLConcELM
method and the conventional ELM method [9]

Network Collocation Current HLConcELM Conventional ELM

Architecture Points Max error rms error Max error rms error

[2, 500, 30, 1] 5 × 5 4.00E + 0 1.48E + 0 7.64E + 0 2.41E + 0

10 × 10 1.59E + 0 2.80E − 1 9.69E + 0 2.73E + 0

15 × 15 1.27E − 3 1.62E − 4 9.73E + 0 2.71E + 0

20 × 20 1.27E − 5 2.34E − 6 9.74E + 0 2.73E + 0

25 × 25 2.08E − 6 2.11E − 7 9.74E + 0 2.73E + 0

30 × 30 3.74E − 6 3.48E − 7 9.75E + 0 2.74E + 0

[2, 30, 500, 1] 5 × 5 3.23E + 0 8.43E − 1 3.80E + 0 1.15E + 0

10 × 10 7.22E − 1 1.32E − 1 3.08E + 0 7.48E − 1

15 × 15 1.06E − 3 2.36E − 4 3.86E − 4 6.29E − 5

20 × 20 2.56E − 5 3.12E − 6 3.15E − 5 5.67E − 6

25 × 25 8.78E − 7 1.38E − 7 1.33E − 6 2.68E − 7

30 × 30 8.99E − 7 8.20E − 8 1.76E − 6 1.92E − 7

The HLConcELM data in this table correspond to a portion of those in Fig. 12a for the network [2, 500, 30, 1]
and to those in Fig. 12c for the network [2, 30, 500, 1]. For conventional ELM, the hidden-layer coefficients
are set to uniform random values generated on [−Rm , Rm] with Rm = Rm0. Here Rm0 is the optimal Rm
obtained using the method of [13], with Rm0 = 0.6 for the network [2, 500, 30, 1] and Rm0 = 0.65 for the
network [2, 30, 500, 1]

Figure 14 illustrates the HLConcELM results computed on a deeper neural network with
5 hidden layers. The network architecture is given by M = [2, M, 30, 30, 30, 30, 1], where
M is either fixed at M = 500 or varied systematically in the tests. The network is trained on a
uniform set of Q = Q1×Q1 collocation points, where Q1 is either fixed at Q1 = 35 or varied
systematically. Figure14a depicts the absolute-error distribution of theHLConcELMsolution
obtained with M = 500 and Q1 = 35, indicating a quite high accuracy with the maximum
error on the order of 10−6 in the domain. Figure14b, c show the HLConcELM errors as a

123

 35 Page 30 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 14 Nonlinear Helmholtz equation (5 hidden layers in neural network): a Error distribution of the HLCon-
cELM solution. The maximum/rms errors of the HLConcELM solution versus b the number of collocation
points in each direction and c the number of nodes in the first hidden layer (M). Neural network architecture
[2, M, 30, 30, 30, 30, 1], Q = Q1 × Q1 uniform collocation points. M = 500 in a, b, and is varied in c.
Q1 = 35 in a, c, and is varied in b. R = (2.1, 0.1, 2.0, 2.5, 0.5) in a–c

function of Q1 and M , respectively. The exponential convergence (prior to saturation) of
these errors is evident.

3.4 Burgers’ Equation

In the next benchmark example we use the viscous Burgers’ equation to test the performance
of the HLConcELMmethod. Consider the spatial-temporal domain, (x, t) ∈ Ω = [−1, 1]×
[0, 1], and the following initial/boundary value problem on Ω ,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (27a)

u(−1, t) = u(1, t) = 0, (27b)

u(x, 0) = − sin(πx), (27c)

123

Journal of Scientific Computing (2023) 95:35 Page 31 of 65 35

Fig. 15 Burgers’ equation: distribution of the exact solution

Fig. 16 Burgers’s equation on the smaller domain Ω1 (t ∈ [0, 0.2]): a Configuration of the 4 sub-domains
in the locHLConcELM simulation. Distributions of the locHLConcELM solution (b) and its absolute error
(c) on Ω1. Local neural-network architecture: [2, 200, 30, 1], Q = 21 × 21 uniform collocation points per
sub-domain, R = (0.9, 0.05)

where ν = 1
100π , and u(x, t) denotes the field function to be solved for. This problem has

the following exact solution [2],

u(x, t) = −
∫∞
−∞ sin π(x − η) f (x − η)e− η2

4νt dη

∫∞
−∞ f (x − η)e− η2

4νt dη

, (28)

where f (y) = e− cos(π y)
2πν . Figure15 illustrates the distribution of this solution on the spatial-

temporal domain, which indicates that a sharp gradient develops in the domain over time.

123

 35 Page 32 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 17 Burgers’ equation on the smaller domain Ω1: a The locHLConcELM maximum/rms errors and b
the network training time versus the number of collocation points per direction in each sub-domain. Local
network architecture: [2, 200, 30, 1], Q = Q1 × Q1 uniform collocation points (Q1 varied),R = (0.9, 0.05)

We will first solve the problem (27) on a smaller domain (with a smaller temporal dimen-
sion) Ω1 = [−1, 1] × [0, 0.2], before the sharp gradient develops, in order to investigate the
convergence behavior of the HLConcELM method. Then we will compute this problem on
the larger domain Ω using HLConcELM.

On the smaller domain Ω1 we solve the system (27) by the locHLConcELM method
(local version of HLConcELM, see Remark 6). We partition Ω1 along the x direction into 4
sub-domains; see Fig. 16a. These sub-domains are non-uniform, and the x coordinates of the
sub-domain boundaries are given by the vector X = [−1,−0.2, 0, 0.2, 1]. We impose C1

continuity conditions in x across the interior sub-domain boundaries. We employ a HLCon-
cELM for the local neural network on each sub-domain, which contains two input nodes
(representing the x and t of the sub-domain) and a single output node (representing the solu-
tion u on the sub-domain). The specific architectures of the neural network will be provided
below. On each sub-domain we employ a uniform set of Q = Q1 × Q1 collocation points
(Q1 points in both x and t directions) for the network training, with Q1 varied in the tests.
We train the overall neural network, which consists of the local neural networks coupled
together by theC1 continuity conditions, by the nonlinear least squares method; see Sect. 2.3
and also [9].

Figure 16b, c illustrate the distributions of the HLConcELM solution and its absolute
error on the domain Ω1, respectively. These results are obtained by locHLConcELMs with
an architecture [2, 200, 30, 1] and a uniform set of Q = 21 × 21 collocation points on
each sub-domain. The hidden magnitude vector is R = (0.9, 0.05), which is obtained using
the method of [13]. The locHLConcELM method produces an accurate solution, with the
maximum error on the order of 10−7 on Ω1.

Figure 17 illustrates the convergence behavior and the network training time of the
locHLConcELMmethod with respect to the increase of the collocation points for the smaller
domain Ω1. The local network architecture is given by [2, 200, 30, 1], and the collocation
points are varied systematically between Q = 5 × 5 and Q = 30 × 30 in the tests. The
plots (a) and (b) show the locHLConcELM errors and the network training time as a func-
tion of the number of collocation points in each direction, respectively. We observe that the
locHLConcELM errors decrease exponentially (before saturation) and the network training
time grows approximately linearly with increasing collocation points.

123

Journal of Scientific Computing (2023) 95:35 Page 33 of 65 35

Fig. 18 Burgers’ equation on the smaller domain Ω1: a The locHLConcELM maximum/rms errors and b the
network training time versus the number of nodes in the first hidden layer (M). Local network architecture [2,
M, 30, 1] (M varied), Q = 21 × 21 uniform collocation points per sub-domain, R = (0.9, 0.05)

Table 5 Burgers’ equation on the smaller domain Ω1: comparison of the maximum/rms errors from the
locHLConcELM method and the conventional locELM method [9]

Local network Collocation Current locHLConcELM Conventional locELM

Architecture Points Max error rms error Max error rms error

[2, 200, 30, 1] 5 × 5 1.39E − 2 2.64E − 3 4.12E − 2 1.21E − 2

10 × 10 2.30E − 4 4.44E − 5 6.62E − 2 2.84E − 2

15 × 15 2.98E − 6 5.83E − 7 7.42E − 2 3.16E − 2

20 × 20 4.01E − 7 7.06E − 8 7.97E − 2 3.39E − 2

25 × 25 5.59E − 7 9.04E − 8 8.44E − 2 3.58E − 2

30 × 30 6.60E − 7 1.11E − 7 8.86E − 2 3.76E − 2

The locHLConcELM data in this table correspond to those in Fig. 17a. For conventional locELM, the random
hidden-layer coefficients are set to uniform randomvalues generated on [−Rm , Rm]with Rm = Rm0 = 0.175,
where Rm0 is the optimal Rm obtained using the method of [13]

Figure 18 is an illustration of the convergence behavior and the network training time
of the locHLConcELM method with respect to the size of the neural network. The local
network architecture is given by [2, M, 30, 1], with M varied systematically. We employ
a fixed uniform set of Q = 21 × 21 collocation points, and a hidden magnitude vector
R = (0.9, 0.05) obtained using the method of [13]. One observes that the errors decrease
exponentially and that the network training time grows superlinearly with increasing M .

Table 5provides an accuracy comparisonof theHLConcELMmethodand the conventional
locELM method [9] for solving the Burgers’ equation on the smaller domain Ω1. With both
methods, we employ 4 sub-domains as shown in Fig. 16a, a local neural network architecture
[2, 200, 30, 1], and a sequence of uniform collocation points ranging from Q = 5 × 5 and
Q = 30 × 30. The current locHLConcELM method is significantly more accurate than the
conventional locELM method, with their maximum errors on the order of 10−7 and 10−2

respectively.
Figure 19 illustrates the characteristics of the locHLConcELM solution obtained with 3

hidden layers in the local neural network on the smaller domain Ω1. Here we employ a local
network architecture [2, M, 30, 30, 1], with M either fixed at M = 200 or varied systemati-

123

 35 Page 34 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 19 Burgers’ equation on the smaller domain Ω1 (3 hidden layers in network): a Error distribution of
the locHLConcELM solution. The locHLConcELM maximum/rms errors versus b the number of collocation
points per direction in each sub-domain, and c the number of nodes in the first hidden layer (M). Local network
architecture: [2, M, 30, 30, 1]. M = 200 in a, b, and is varied in c. Q = 21 × 21 in a, c, and is varied in b.
R = (1.0, 0.035, 0.03) in a–c

cally, and a uniform set of Q = Q1×Q1 collocation points, with Q1 either fixed at Q1 = 21
or varied systematically. The hidden magnitude vector is R = (1.0, 0.035, 0.03), obtained
using the method of [13]. Figure19a is an illustration of the absolute-error distribution onΩ1

corresponding to M = 200 and Q1 = 21, demonstrating a high accuracy with the maximum
error on the order of 10−7. Figure19b, c show the exponential convergence behavior of the
HLConcELM errors with respect to Q1 and M .

Let us next consider the larger domain Ω (t ∈ [0, 1]) and solve the system (27) using
the current method. We employ the locHLConcELM method together with the block time
marching scheme (seeRemarks 5 and6) in the simulation. Specifically,wedivide the temporal
dimension into 5 uniform time blocks, and partition each time block into 6 non-uniform sub-
domains along the x direction. Figure20a illustrates the configuration of the time blocks and
the sub-domains on each time block, where the x coordinates of the sub-domain boundaries
are given by X = [−1,−0.1,−0.02, 0, 0.02, 0.1, 1]. We employ a local neural network
architecture M = [2, 300, 1] and a uniform set of Q = 21 × 21 collocation points on each
sub-domain. The hidden magnitude vector is R = 2.0, which is obtained using the method
of [13]. Figure20b, c show the distributions of the locHLConcELM solution and its absolute
error on Ω . The data indicate that the current method achieves a quite high accuracy with
the sharp gradient present in the domain, with the maximum error on the order of 10−5.

Figure 21 compares profiles of the locHLConcELM solution and the exact solution (28)
for the Burgers’ equation at three time instants t = 0.25, 0.5 and 1.0. The error profiles of the
locHLConcELMsolution have also been included in this figure. The simulation configuration
and the parameters used here correspond to those of Fig. 20. It is evident that the current
locHLConcELM method has achieved a quite high accuracy for this problem.

3.5 KdV Equation

In the next benchmark problem we employ the Korteweg-de Vries (KdV) equation to test
the HLConcELM method. Consider the spatial-temporal domain (x, t) ∈ Ω = [1.0, 1.5] ×
[1.0, 1.5] and the following initial/boundary value problem,

∂u

∂t
− u

∂u

∂x
+ ∂3u

∂x3
= f (x, t), (29a)

123

Journal of Scientific Computing (2023) 95:35 Page 35 of 65 35

Fig. 20 Burgers’ equation on the larger domain Ω (t ∈ [0, 1]): a Configuration of the 5 uniform time blocks
and the 6 non-uniform sub-domains on each time block. Distributions of b the locHLConcELM solution and
c its absolute error. Local network architecture [2, 300, 1] on each sub-domain, Q = 21×21 per sub-domain,
R = 2.0

u(1, t) = g1(t), u(1.5, t) = g2(t),
∂u

∂x
(1, t) = g3(t), (29b)

u(x, 1) = h(x). (29c)

In the above equations u(x, t) is the field solution to be sought, f (x, t) is a prescribed source
term, gi (i = 1, 2, 3) and h are the data for the boundary and initial conditions. We choose
f , gi (i = 1, 2, 3) and h such that the system (29) has the following analytic solution,

u(x, t) = 4 sin
(
πx3

)
sin
(
π t3

)
. (30)

Figure22a shows the distribution of this solution in the spatial-temporal xt plane.
To solve the problem (29) using the HLConcELM method, we employ neural networks

with two input nodes (representing the x and t) and a single output node (representing u),
with theGaussian activation function for all the hidden nodes. A uniform set of Q = Q1×Q1

collocation points on the domain Ω is used to train the neural network, where Q1 is varied
systematically in the tests.

Figure 22b, c illustrate the absolute-error distributions obtained using the HLConcELM
method and the conventional ELM method. Here the network architecture is given by M =
[2, 800, 50, 1], and a uniform set of Q = 35×35 collocation points is used for both methods.
The hidden magnitude vector is R = (3.2, 0.01) with HLConcELM, which is obtained
using the method of [13]. For conventional ELM, we set the hidden-layer coefficients to

123

 35 Page 36 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 21 Burgers’ equation on the larger domain Ω: Profiles of the locHLConcELM solution (first column)
and its absolute error (second column) at the time instants: t = 0.25 (a, d), t = 0.5 (b, e), and t = 1.0 (c,
f). The profiles of the exact solution are also shown in a–c, which overlap with those of the locHLConcELM
solution. The locHLConcELM simulation parameters and configurations follow those of Fig. 20

123

Journal of Scientific Computing (2023) 95:35 Page 37 of 65 35

Fig. 22 KdV equation: Distributions of a the exact solution, b the absolute error of the HLConcELM
solution, and c the absolute error of the conventional ELM solution. In b, c, neural network architecture
M = [2, 800, 50, 1], Q = 35 × 35 uniform collocation points. R = (3.2, 0.01) in b for HLConcELM.
Rm = Rm0 = 0.27 in c for conventional ELM

random values generated on [−Rm, Rm] with Rm = Rm0, where Rm0 = 0.27 is the optimal
Rm obtained using the method of [13]. The conventional ELM solution is observed to be
inaccurate (maximum error on the order of 102), because of the narrow last hidden layer in
the network. In contrast, the HLConcELM solution is highly accurate, with the maximum
error on the order of 10−8 in the domain.

Figure 23 illustrates the convergence behavior of the HLConcELM errors with respect to
the collocation points and the number of nodes in the network. Here the network architecture
is M = [2, M, 50, 1], with M either fixed at M = 800 or varied between M = 100 and
M = 1000. A uniform set of Q = Q1 × Q1 collocation points is used, with Q1 either
fixed at Q1 = 35 or varied between Q1 = 5 and Q1 = 40. The hidden magnitude vector
is R = (3.2, 0.01), obtained from the method of [13]. The two plots (a) and (b) depict the
maximum/rms errors of the HLConcELM solution as a function of Q1 and M , respectively.
One can observe the familiar exponential decrease in the errors with increasing Q1 or M .

Table 6provides an accuracy comparisonof theHLConcELMmethodand the conventional
ELMmethod [9] for solving the KdV equation on a network architectureM = [2, 800, 50, 1]
corresponding to a sequence of collocation points. The HLConcELM solution is highly
accurate, while the conventional ELM solution exhibits no accuracy at all on such a neural
network.

123

 35 Page 38 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 23 KdV equation: The HLConcELM maximum/rms errors versus a the number of collocation points
per direction, and b the number of nodes in the first hidden layer (M). Network architecture [2, M, 50, 1].
M = 800 in a, varied in b. Q = 35 × 35 in b, varied in a. R = (3.2, 0.01) in a, b

Table 6 KdV equation: comparison of the maximum/rms errors from the HLConcELM method and the
conventional ELM method

Neural Collocation Current HLConcELM Conventional ELM

Network Points Max error rms error Max error rms error

[2, 800, 50, 1] 5 × 5 4.67E + 0 1.24E + 0 1.66E + 2 8.18E + 1

10 × 10 8.28E − 2 1.70E − 2 1.78E + 2 1.02E + 2

15 × 15 4.30E − 3 7.21E − 4 1.88E + 2 9.36E + 1

20 × 20 8.21E − 5 1.64E − 5 1.78E + 2 9.80E + 1

25 × 25 3.02E − 7 5.71E − 8 1.75E + 2 8.89E + 1

30 × 30 4.55E − 7 3.32E − 8 1.66E + 2 7.76E + 1

35 × 35 5.55E − 8 4.95E − 9 1.67E + 2 7.77E + 1

40 × 40 1.87E − 7 1.45E − 8 1.67E + 2 7.74E + 1

Network architecture: [2, 800, 50, 1]. The HLConcELM data in this table correspond to those in Fig. 23a. For
conventional ELM, the hidden-layer coefficients are set to uniform random values generated on [−Rm , Rm]
with Rm = Rm0. Here Rm0 = 0.27 is the optimal Rm obtained using the method of [13]

Figure 24 illustrates the HLConcELM solutions obtained on a deeper neural network
with 3 hidden layers. The neural network architecture is given by M = [2, M, 50, 50, 1],
where M is either fixed at M = 700 or varied systematically. A hidden magnitude vector
R = (3.0, 0.025, 1.6) is employed in all the simulations. Figure24a shows the absolute-error
distribution on Ω , which corresponds to M = 700 and a set of Q = 35 × 35 collocation
points. The HLConcELM result is highly accurate, with the maximum error on the order of
10−7 on Ω . Figure24b, c depict the maximum/rms errors of HLConcELM as a function of
the number of collocation points and as a function of M , respectively. The data again signify
the exponential (or near exponential) convergence of the HLConcELM errors.

123

Journal of Scientific Computing (2023) 95:35 Page 39 of 65 35

Fig. 24 KdV equation (3 hidden layers in network): a Distribution of the absolute error of the HLConcELM
solution. The HLConcELMmaximum/rms errors versus b the number of collocation points per direction, and
c the number of nodes in the first hidden layer (M). Network architecture: [2, M, 50, 50, 1]. M = 700 in a,
b, varied in c. Q = 35 × 35 in a, c, varied in b. R = (3.0, 0.025, 1.6) in a–c

4 Concluding Remarks

The extreme learning machine (ELM) method can yield highly accurate solutions to linear
and nonlinear PDEs. To achieve a high accuracy, the existing ELMmethod [9, 10, 13] requires
the last hidden layer of the neural network to be wide. So the ELM neural network typically
contains a large number of nodes in the last hidden layer, irrespective of the rest of the network
configuration. If the last hidden layer is narrow, the ELM accuracy will suffer and tend to be
poor, even though the neural network may contain a large number of the nodes in the other
hidden layers.

In the current paper we have presented a method to overcome the above drawback of the
existing (conventional) ELM method. The new method, termed HLConcELM (hidden-layer
concatenated ELM), can produce highly accurate solutions to PDEs when the last hidden
layer is wide, and when the last hidden layer is narrow, in which case the conventional ELM
completely losses accuracy.

The new method relies on a type of modified feedforward neural networks (FNN), which
exposes the hidden nodes in all the hidden layers to the output nodes by incorporating
a logical concatenation of the hidden layers into the network. We refer to this modified
network as HLConcFNN (hidden-layer concatenated FNN) in this paper. In HLConcFNN

123

 35 Page 40 of 65 Journal of Scientific Computing (2023) 95:35

every hidden node in the network directly influences the nodes in the output layer, while in
conventional FNN only the hidden nodes in the last hidden layer directly influence the output
nodes. HLConcFNNs have the property that, if new hidden layers are appended to an existing
network architecture or new nodes are added to an existing hidden layer, the representation
capacity of the resultant network architecture is guaranteed to be not smaller than that of the
original one.

The HLConcELM method adopts the HLConcFNN as its neural network. It assigns ran-
dom values to (and fixes) the weight/bias coefficients in all the hidden layers of the neural
network, while the coefficients between the output nodes and all the hidden nodes of the
network are trained/computed by a linear or nonlinear least squares method. Note that in
HLConcELM every hidden node in the network is connected to the output nodes because of
the logical hidden-layer concatenation. HLConcELMs partially inherit the non-decreasing
representation capacity property of HLConcFNNs. They have the property that, as new hid-
den layers are appended to an existing network architecture, the representation capacity of
the HLConcELM associated with the resultant architecture is not smaller than that associated
with the original one, provided that the random coefficients in the resultant architecture are
assigned in an appropriate fashion.

In essence, when solving PDEs or approximating functions, the ELM method performs
an expansion of the unknown field solution in terms of a set of random basis functions. With
conventional ELM, the random bases consist of the output fields of the last hidden layer of
the neural network. With HLConcELM, on the other hand, the random bases consist of the
output fields of the hidden nodes in all the hidden layers of the neural network. HLConcELM
is able to harvest the degrees of freedom provided by all the hidden nodes in the network,
not limited to those from the last hidden layer. This is the essential difference between the
HLConcELM method and the conventional ELM method.

We have tested the current HLConcELM method on boundary value problems and ini-
tial/boundary value problems involving a number of linear and nonlinear PDEs. In particular,
we have compared HLConcELM and the conventional ELM on network architectures whose
last hidden layer is narrow or wide. The numerical results demonstrate that the current
HLConcELM method yields highly accurate results on network architectures with both nar-
row and wide last hidden layers. In contrast, the conventional ELM only achieves accurate
results on architectures with a wide last hidden layer, and with a narrow last hidden layer it
exhibits poor or no accuracy. The HLConcELM method displays an exponentially conver-
gent behavior for smooth field solutions, reminiscent of the traditional high-order techniques
[35, 68–70, 72]. Its numerical errors decrease exponentially or nearly exponentially as the
number of collocation points or the number of trainable parameters increases.

Author Contributions NN: software, data acquisition, data visualization, data analysis, writing of paper. SD:
conceptualization, methodology, software, data acquisition, data analysis, writing of paper.

Funding This work was partially supported by US National Science Foundation (DMS-2012415).

Data Availability The datasets related to this paper are available from the correpsonding author on reasonable
request.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

123

Journal of Scientific Computing (2023) 95:35 Page 41 of 65 35

Appendix A: Proofs of Theorems from Sect. 2

Proof of Theorem 1 Consider an arbitrary u(θ ,β, x) ∈ U (Ω,M1, σ), where θ ∈ R
Nh1 and

β ∈ R
Nc1 , with Nh1 = ∑L−1

i=1 (mi−1 + 1)mi and Nc1 = ∑L−1
i=1 mi . Let w

(i)
k j (1 ≤ i ≤ L − 1,

1 ≤ k ≤ mi−1, 1 ≤ j ≤ mi) and b(i)
j (1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi) denote the hidden-layer

weight/bias coefficients of the associated HLConcFNN(M1, σ), and let βi j (1 ≤ i ≤ L − 1,
1 ≤ j ≤ mi) denote the output-layer coefficients of HLConcFNN(M1, σ). u(θ ,β, x) is
given by (7).

Consider a function v(ϑ,α, x) ∈ U (Ω,M2, σ) with ϑ ∈ R
Nh2 and α ∈ R

Nc2 , where
Nc2 = Nc1 + n, and Nh2 = Nh1 + (mL−1 + 1)n. We will choose ϑ and α such that
v(ϑ,α, x) = u(θ ,β, x). We construct ϑ and α by setting the hidden-layer and the output-
layer coefficients of HLConcFNN(M2, σ) as follows.

The HLConcFNN(M2, σ) has L hidden layers. We set the weight/bias coefficients in its
last hidden layer (with n nodes) to arbitrary values. We set those coefficients that connect
the output node and the n nodes in the last hidden layer to all zeros. For the rest of the
hidden-layer coefficients and the output-layer coefficients in HLConcFNN(M2, σ), we use
those corresponding coefficient values from the network HLConcFNN(M1, σ).

More specifically, let ξ (i)
k j and η

(i)
j denote the weight/bias coefficients in the hidden layers,

and αi j denote the output-layer coefficients, of HLConcFNN(M2, σ) associated with the
function v(ϑ,α, x). We set these coefficients by,

ξ
(i)
k j =

{
w

(i)
k j , for 1 ≤ i ≤ L − 1, 1 ≤ k ≤ mi−1, 1 ≤ j ≤ mi ;

arbitrary value, for i = L, 1 ≤ k ≤ mL−1, 1 ≤ j ≤ n; (31)

η
(i)
j =

{
b(i)
j , for all 1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi ;

arbitrary value, for i = L, 1 ≤ j ≤ n; (32)

αi j =
{

βi j , for 1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi ;
0, for i = L, 1 ≤ j ≤ n.

(33)

With the above coefficients, the last hidden layer of the network HLConcFNN(M2, σ)
may output arbitrary fields, which however have no effect on the output field of
HLConcFNN(M2, σ) because αL j = 0 (1 ≤ j ≤ n). The rest of the hidden nodes in
HLConcFNN(M2, σ) and the output node of HLConcFNN(M2, σ) produce fields that are
identical to those of the corresponding nodes in the network HLConcFNN(M1, σ). We thus
conclude that u(θ,β, x) = v(ϑ,α, x). So u(θ ,β, x) ∈ U (Ω,M2, σ), and the relation (9)
holds. ��
Proof of Theorem 2 We use the same strategy as that in the proof of Theorem 1. Consider
an arbitrary u(θ,β, x) ∈ U (Ω,M1, σ), where θ ∈ R

Nh1 and β ∈ R
Nc1 , with Nh1 =∑L−1

i=1 (mi−1 + 1)mi and Nc1 = ∑L−1
i=1 mi . The hidden-layer coefficients of the associated

HLConcFNN(M1, σ) are denoted by w
(i)
k j (1 ≤ i ≤ L − 1, 1 ≤ k ≤ mi−1, 1 ≤ j ≤ mi)

and b(i)
j (1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi), and the output-layer coefficients are denoted by βi j

(1 ≤ i ≤ L − 1, 1 ≤ j ≤ mi). u(θ ,β, x) is given by (7).
Consider a function v(ϑ,α, x) ∈ U (Ω,M2, σ) with ϑ ∈ R

Nh2 and α ∈ R
Nc2 , where

Nc2 = Nc1 + 1, and Nh2 = Nh1 + (ms−1 + 1) + ms+1 if 1 ≤ s ≤ L − 2 and Nh2 =
Nh1 + (ms−1 + 1) if s = L − 1. We construct ϑ and α by setting the hidden-layer and the
output-layer coefficients of HLConcFNN(M2, σ) as follows.

In HLConcFNN(M2, σ) we set the weight coefficients that connect the extra node of
layer s to those nodes in layer (s + 1) to all zeros, and we also set the weight coefficient that

123

 35 Page 42 of 65 Journal of Scientific Computing (2023) 95:35

connects the extra node of layer s with the output node to zero. We set the weight coefficients
that connect the nodes of layer (s − 1) to the extra node of layer s to arbitrary values, and
also set the bias coefficient corresponding to the extra node of layer s to an arbitrary value.
For the rest of the hidden-layer and output-layer coefficients of HLConcFNN(M2, σ), we
use those corresponding coefficient values from the network HLConcFNN(M1, σ).

Specifically, let ξ
(i)
k j and η

(i)
j denote the weight/bias coefficients in the hidden layers,

and αi j denote the output-layer coefficients, of the HLConcFNN(M2, σ) associated with
v(ϑ,α, x). We set these coefficients by,

ξ
(i)
k j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w
(i)
k j , for all (1 ≤ i ≤ s − 1, or s + 2 ≤ i ≤ L − 1),

1 ≤ k ≤ mi−1, 1 ≤ j ≤ mi ;
w

(s)
k j , for i = s, 1 ≤ k ≤ ms−1, 1 ≤ j ≤ ms;

arbitrary value, for i = s, 1 ≤ k ≤ ms−1, j = ms + 1;
w

(s+1)
k j , for i = s + 1, 1 ≤ k ≤ ms, 1 ≤ j ≤ ms+1;

0, for i = s + 1, k = ms + 1, 1 ≤ j ≤ ms+1;

(34)

η
(i)
j =

⎧
⎪⎨
⎪⎩

b(i)
j , for all 1 ≤ i ≤ L − 1, i
= s, 1 ≤ j ≤ mi ;

b(s)
j , for i = s, 1 ≤ j ≤ ms;

arbitrary value, for i = s, j = ms + 1;
(35)

αi j =
⎧⎨
⎩

βi j , for all 1 ≤ i ≤ L − 1, i
= s, 1 ≤ j ≤ mi ;
βs j , for i = s, 1 ≤ j ≤ ms;
0, for i = s, j = ms + 1.

(36)

With the above coefficients, the extra node in layer s of the network HLConcFNN(M2, σ)
may output an arbitrary field, which however has no contribution to the output field of
HLConcFNN(M2, σ). The rest of the hiddennodes and theoutput nodeofHLConcFNN(M2, σ)
produce identical fields as the corresponding nodes in the network HLConcFNN(M1, σ).
We thus conclude that u(θ ,β, x) = v(ϑ,α, x). So u(θ,β, x) ∈ U (Ω,M2, σ) and the rela-
tion (10) holds. ��
Proof of Theorem 3 We use the same strategy as that in the proof of Theorem 1. Consider an
arbitrary u(θ ,β, x) ∈ U (Ω,M1, σ, θ), where β ∈ R

Nc1 with Nc1 = ∑L−1
i=1 mi . We will try

to construct an equivalent function from U (Ω,M2, σ,ϑ).
We consider another function v(ϑ,α, x) ∈ U (Ω,M2, σ,ϑ), where α ∈ R

Nc2 with
Nc2 = Nc1 + n, and we set the coefficients of the HLConcELM corresponding to v(ϑ,α, x)
as follows. Since ϑ[1 : Nh1] = θ [1 : Nh1], the random coefficients in the first (L − 1)
hidden layers of the HLConcELM corresponding to v(ϑ,α, x) are identical to those corre-
sponding hidden-layer coefficients in the HLConcELM for u(θ ,β, x). We set the weight/bias
coefficients in the L-th hidden layer of the HLConcELM for v(ϑ,α, x), which contains n
nodes, to arbitrary random values. For the output-layer coefficients of the HLConcELM for
v(ϑ,α, x), we set those coefficients that connect the hidden nodes in the first (L − 1) hidden
layers and the output node to be identical to those corresponding output-layer coefficients in
the HLConcELM for u(θ,β, x), namely, α[1 : Nc1] = β[1 : Nc1]. We set those coefficients
that connect the hidden nodes of the L-th hidden layer and the output node to be zeros in the
HLConcELM for v(ϑ,α, x), namely, α[Nc1 + 1 : Nc2] = 0.

With the above coefficient settings, the output fields of those nodes in the first (L −
1) hidden layers of HLConcELM(M2, σ,ϑ) are identical to those corresponding nodes of
HLConcELM(M1, σ, θ). The output fields of those n nodes in the L-th hidden layer of
HLConcELM(M2, σ,ϑ) are arbitrary, which however have no contribution to the output

123

Journal of Scientific Computing (2023) 95:35 Page 43 of 65 35

Table 7 Appendix B (variable-coefficient Poisson equation): the activation functions and the corresponding
hidden magnitude vector R employed

Name σ(x) R name σ(x) R

Gaussian e−x2 (3.0,0.005) sinc sin(πx)
πx (6.0,0.05)

tanh tanh(x) (2.0,0.05) GELU 1
2

(
1 + erf x√

2

)
(4.4,0.01)

RePU-8

{
x8, i f x ≥ 0,
0, i f x < 0.

(0.22,0.4) swish x
1+e−x (3.8,0.01)

TheR values used here are close to the optimalR∗ obtained by the method of [13] based on the neural network
[2,800,50,1] with Q=35×35 collocation points

Table 8 Appendix B (variable-coefficient Poisson equation): the max/rms/h1 errors of HLConcELM obtained
with different activation functions on two uniform sets of collocation points

σ(x) Max Error rms Error h1 Error

Q=15×15 30×30 Q=15×15 30×30 Q=15×15 30×30

Gaussian 2.33E-3 3.17E-8 3.92E-4 3.79E-9 8.15E-3 1.33E-7

tanh 2.33E-3 1.64E-6 3.14E-4 1.10E-7 6.30E-3 5.28E-6

RePU-8 3.40E-3 8.19E-3 6.66E-4 7.30E-4 1.08E-2 1.76E-2

sinc 2.35E-2 4.37E-9 8.27E-3 3.35E-10 1.16E-1 1.51E-8

GELU 2.89E-3 8.75E-8 4.55E-4 5.73E-9 9.34E-3 2.93E-7

swish 1.31E-3 7.07E-7 2.43E-4 5.43E-8 4.95E-3 2.59E-6

Neural network [2,800,50,1]. R values are given in Table 7

Table 9 Appendix B (variable-coefficient Poisson equation): the max/rms/h1 errors of HLConcELM obtained
with different activation functions on two neural networks with architecture [2, M, 50, 1]
σ(x) max error rms error h1 error

M=400 800 M=400 800 M=400 800

Gaussian 9.00E-4 5.68E-8 7.96E-5 5.25E-9 2.26E-3 2.42E-7

tanh 1.84E-3 1.44E-6 2.06E-4 1.12E-7 6.34E-3 5.39E-6

RePU-8 1.19E-1 6.61E-3 1.20E-2 5.47E-4 2.32E-1 1.38E-2

sinc 1.32E-3 3.33E-9 1.51E-4 1.61E-10 4.06E-3 1.38E-8

GELU 1.06E-3 1.05E-7 7.71E-5 7.23E-9 2.24E-3 3.77E-7

swish 1.50E-3 1.78E-6 1.17E-4 7.17E-8 3.58E-3 4.35E-6

Q = 35 × 35 uniform collocation points. R values are given in Table 7

field of HLConcELM(M2, σ,ϑ). The output field of the HLConcELM(M2, σ,ϑ) is identical
to that of the HLConcELM(M1, σ, θ), i.e. v(ϑ,α, x) = u(θ,β, x). We thus conclude that
u(θ ,β, x) ∈ U (Ω,M2, σ,ϑ) and the relation (13) holds. ��

Appendix B. Numerical Tests with Several Activation Functions

We have employed the Gaussian activation function for all the numerical simulations in
Sect. 3. This appendix provides additional HLConcELM results using several other activation

123

 35 Page 44 of 65 Journal of Scientific Computing (2023) 95:35

functions for solving the variable-coefficient Poisson problem from Sect. 3.1. Table 7 lists
the activation functions studied below, including tanh, RePU-8, sinc, GELU and swish (in
addition to Gaussian), as well as the hiddenmagnitude vectorR employed for each activation
function. Here “RePU-8” stands for the rectified power unit of degree 8, and “GELU” denotes
the Gaussian error linear unit [25].

Table 8 lists the maximum, rms and h1 errors of the HLConcELM solutions obtained
using these activation functions on a neural network [2, 800, 50, 1] with two uniform sets of
collocation points Q = 15 × 15 and 30 × 30. Table 9 lists the maximum, rms and h1 errors
of HLConcELM using these activation functions on two neural networks of the architecture
[2, M, 50, 1] (with M = 400 and 800) with a fixed uniform set of Q = 35 × 35 collocation
points. One can observe a general exponential decrease in the errors with these activation
functions, except for the RePU-8 function in Table 8 (where the errors seem to saturate). The
results with the RePU function appears markedly less accurate than those obtained with the
other activation functions studied here.

Appendix C. Additional ComparisonsBetweenHLConcELMandConven-
tional ELM

This appendix provides additional comparisons between the current HLConcELMmethod
and the conventional ELM method for the variable-coefficient Poisson problem (Sect. 3.1)
and the nonlinear Helmholtz problem (Sect. 3.3).

In those comparisons between HLConcELM and conventional ELM presented in Sect. 3,
the base neural-network architectures for HLConcELM and conventional ELM are main-
tained to be the same. HLConcELM is able to harvest the degrees of freedom in all the
hidden layers of the neural network, thanks to the logical connections between all the hidden
nodes and the output nodes (due to the hidden-layer concatenation). On the other hand, the
conventional ELM only exploits the degrees of freedom afforded by the last hidden layer of
the network, while those degrees of freedom provided by the preceding hidden layers are
essentially “wasted” (see the discussions in Sect. 2.1). This is why the conventional ELM
exhibits a poor accuracy if the last hidden layer is narrow, irrespective of the rest of the
network configuration. This also accounts for why the HLConcELM method can achieve a
high accuracy when the last hidden layer is narrow and when it is wide.

Note that with HLConcELM the number of training parameters equals the total number
of hidden nodes in the neural network, and with conventional ELM it equals the number
of nodes in the last hidden layer. Under the same base network architecture (with multiple
hidden layers), the number of training parameters in HLConcELM is larger than that in the
conventional ELM, because the HLConcELM also exploits the the hidden nodes from the
preceding hidden layers.

In what follows we present several additional numerical tests to compare HLConcELM
and conventional ELM, under the configuration that the number of training parameters in both
HLConcELM and conventional ELM is maintained to be the same. Because of their different
characteristics, the base network architectures for HLConcELM and for conventional ELM
in this case will inevitably not be identical. In the comparisons below we try to keep the two
architectures close to each other, specifically by using the same depth, and the same width for
each hidden layer except the last, for both HLConcELM and conventional ELM. The width
of the last hidden layer in the HLConcELM network and in the conventional-ELM network

123

Journal of Scientific Computing (2023) 95:35 Page 45 of 65 35

Table 10 Appendix C (variable-coefficient Poisson equation): comparison of the maximum and rms errors
versus the number of collocation points (Q) obtained by HLConcELM and conventional ELM

method network Q max error rms error

HLConcELM [2, 800, 50, 1] 5 × 5 1.91E+0 4.31E-1

10 × 10 3.22E-2 7.88E-3

15 × 15 2.33E-3 3.92E-4

20 × 20 4.70E-5 1.32E-5

25 × 25 4.78E-7 1.10E-7

30 × 30 3.17E-8 3.79E-9

Conventional ELM [2, 800, 850, 1] 5 × 5 2.34E+0 7.43E-1

10 × 10 1.02E-1 1.98E-2

15 × 15 3.58E-3 9.09E-4

20 × 20 9.82E-5 2.35E-5

25 × 25 2.97E-6 2.76E-7

30 × 30 4.49E-6 3.26E-7

HLConcELM [2, 50, 800, 1] 5 × 5 2.95E+0 9.26E-1

10 × 10 9.35E-2 9.93E-3

15 × 15 1.11E-3 2.40E-4

20 × 20 3.42E-5 6.91E-6

25 × 25 2.34E-6 4.45E-7

30 × 30 3.07E-8 4.81E-9

Conventional ELM [2, 50, 850, 1] 5 × 5 3.15E+0 1.05E+0

10 × 10 1.16E-1 1.92E-2

15 × 15 3.88E-3 7.55E-4

20 × 20 5.59E-5 1.91E-5

25 × 25 8.60E-7 2.16E-7

30 × 30 6.89E-8 1.14E-8

In all cases, the neural network has two hidden layers and a total of 850 trainable parameters for both HLCon-
cELM and conventional ELM. The HLConcELM data in this table correspond to those in Table 1. For
conventional ELM, the hidden-layer coefficients are assigned to uniform random values from [−Rm , Rm]
with Rm = Rm0. Here Rm0 is the optimal Rm obtained using the method of [13], with Rm0 = 0.38 for the
network [2, 800, 850, 1] and Rm0 = 0.72 for the network [2, 50, 850, 1]

is different, with the conventional ELM being wider (and in some cases considerably wider),
while the number of training parameters is kept the same in both.

Tables 10 and 11 show comparisons of the maximum and rms errors versus the number
of collocation points obtained by HLConcELM and by conventional ELM for the variable-
coefficient Poisson problem from Sect. 3.1. The results in Table 10 are attained with two
hidden layers in the neural network and a total of 850 training parameters. The results
in Table 11 correspond to three hidden layers in the neural network with a total of 900
training parameters. The HLConcELM data in Table 10 for the networks [2, 800, 50, 1]
and [2, 50, 800, 1] correspond to those in Table 1. The simulation parameter values are
listed in the tables or provided in the table captions. The exponential convergence of the
errors with respect to the number of collocation points is evident in all test cases. The
error levels from HLConcELM and the conventional ELM are close, reaching the order
around 10−8 in terms of the maximum error and 10−9 in terms of the rms error. The error

123

 35 Page 46 of 65 Journal of Scientific Computing (2023) 95:35

Table 11 Appendix C (variable-coefficient Poisson equation): comparison of the maximum and rms errors
versus the number of collocation points (Q) obtained by HLConcELM and conventional ELM

method network Q max error rms error

HLConcELM [2, 800, 50, 50, 1] 5 × 5 1.92E+0 4.35E-1

10 × 10 3.21E-2 7.91E-3

15 × 15 2.33E-3 3.94E-4

20 × 20 6.07E-5 1.45E-5

25 × 25 4.99E-7 1.16E-7

30 × 30 6.44E-8 5.62E-9

Conventional ELM [2, 800, 50, 900, 1] 5 × 5 2.83E+0 8.32E-1

10 × 10 2.52E-1 4.58E-2

15 × 15 7.92E-3 1.16E-3

20 × 20 1.14E-4 1.32E-5

25 × 25 4.31E-6 8.18E-7

30 × 30 1.36E-6 9.22E-8

HLConcELM [2, 50, 50, 800, 1] 5 × 5 1.81E+0 4.40E-1

10 × 10 5.83E-2 1.11E-2

15 × 15 3.91E-3 6.24E-4

20 × 20 4.57E-5 6.39E-6

25 × 25 8.10E-7 1.23E-7

30 × 30 2.97E-8 2.66E-9

Conventional ELM [2, 50, 50, 900, 1] 5 × 5 1.49E+0 4.21E-1

10 × 10 8.79E-2 2.06E-2

15 × 15 1.90E-3 3.15E-4

20 × 20 1.79E-5 3.94E-6

25 × 25 2.56E-6 3.72E-7

30 × 30 6.68E-8 8.31E-9

In all cases, the neural network has 3 hidden layers and a total of 900 trainable parameters for bothHLConcELM
and conventional ELM.ForHLConcELM, the hiddenmagnitude vectorR = (3.0, 0.005, 0.15) for the network
[2, 800, 50, 50, 1] and R = (0.5, 0.5, 0.6) for the network [2, 50, 50, 800, 1]. For conventional ELM, the
hidden-layer coefficients are assigned to uniform random values from [−Rm , Rm] with Rm = Rm0. Here
Rm0 is the optimal Rm obtained using the method of [13], with Rm0 = 0.4 for the network [2, 800, 50, 900, 1]
and Rm0 = 0.5 for the network [2, 50, 50, 900, 1]

values resulting fromHLConcELM in general appear better than those from theConventional
ELM, e.g. by comparing the HLConcELM results (with [2, 800, 50, 1]) and the conventional
ELM results (with [2, 800, 850, 1]) in Table 10 or comparing the HLConcELM results (with
[2, 800, 50, 50, 1]) and the conventional ELM results (with [2, 800, 50, 900, 1]) in Table 11.
But this is not true for every test case; see e.g. the case Q=25×25 between HLConcELM
(with [2, 50, 800, 1]) and conventional ELM (with [2, 50, 850, 1]) in Table 10 or the cases
Q=15×15 and 20×20 between HLConcELM (with [2, 50, 50, 800, 1]) and conventional
ELM (with [2, 50, 50, 900, 1]) in Table 11.

Tables 12 and 13 show the comparisons between HLConcELM and conventional ELM
for the nonlinear Helmholtz problem from Sect. 3.3. The results in Table 12 correspond to
two hidden layers in the neural network with a total of 530 training parameters, and those in
Table 13 correspond to three hidden layers in the neural network with a total of 560 training

123

Journal of Scientific Computing (2023) 95:35 Page 47 of 65 35

Table 12 Appendix C (nonlinear Helmholtz equation): comparison of the maximum and rms errors versus
the number of collocation points (Q) obtained by HLConcELM and conventional ELM

method network Q max error rms error

HLConcELM [2, 500, 30, 1] 5 × 5 4.00E+0 1.48E+0

10 × 10 1.59E+0 2.80E-1

15 × 15 1.27E-3 1.62E-4

20 × 20 1.27E-5 2.34E-6

25 × 25 2.08E-6 2.11E-7

30 × 30 3.74E-6 3.48E-7

Conventional ELM [2, 500, 530, 1] 5 × 5 3.75E+0 8.94E-1

10 × 10 3.46E-1 4.03E-2

15 × 15 1.05E-3 1.92E-4

20 × 20 8.63E-5 1.44E-5

25 × 25 3.90E-5 3.07E-6

30 × 30 3.50E-5 3.84E-6

HLConcELM [2, 30, 500, 1] 5 × 5 3.23E+0 8.43E-1

10 × 10 7.22E-1 1.32E-1

15 × 15 1.06E-3 2.36E-4

20 × 20 2.56E-5 3.12E-6

25 × 25 8.78E-7 1.38E-7

30 × 30 8.99E-7 8.20E-8

Conventional ELM [2, 30, 530, 1] 5 × 5 3.51E+0 9.04E-1

10 × 10 6.57E-1 1.11E-1

15 × 15 3.87E-4 8.38E-5

20 × 20 1.67E-5 2.07E-6

25 × 25 2.74E-6 3.22E-7

30 × 30 1.87E-6 1.73E-7

In all cases, the neural network has two hidden layers and a total of 530 trainable parameters for both HLCon-
cELM and conventional ELM. The HLConcELM data in this table correspond to those in Table 4. For
conventional ELM, the hidden-layer coefficients are assigned to uniform random values from [−Rm , Rm]
with Rm = Rm0. Here Rm0 is the optimal Rm obtained using the method of [13], with Rm0 = 0.4 for the
network [2, 500, 530, 1] and Rm0 = 0.6 for the network [2, 30, 530, 1]

parameters. The simulation parameter values are provided in the table captions or listed in the
tables. Note that the HLConcELM data in Table 12 correspond to those in Table 4 with the
networks [2, 500, 30, 1] and [2, 30, 500, 1]. The relative performance betweenHLConcELM
and conventional ELM exhibited by these data is similar to what has been observed from
Tables 10 and 11 for the variable-coefficient Poisson equation. The error levels resulting
from HLConcELM and conventional ELM are quite close, on the order of 10−6 or 10−7 in
terms of the maximum error and 10−7 or 10−8 in terms of the rms error. Overall the error
values from HLConcELM appear slightly better than those from the conventional ELM;
see e.g. those data in Table 12 and the cases between HLConcELM with [2, 30, 30, 500, 1]
and conventional ELM with [2, 30, 30, 560, 1] in Table 13. But this is not consistently so
for all the test cases; see e.g. the cases between HLConcELM with [2, 500, 30, 30, 1] and
conventional ELM with [2, 500, 30, 560, 1] in Table 13.

123

 35 Page 48 of 65 Journal of Scientific Computing (2023) 95:35

Table 13 Appendix C (nonlinear Helmholtz equation): comparison of the maximum and rms errors versus
the number of collocation points (Q) obtained by HLConcELM and conventional ELM

method network Q max error rms error

HLConcELM [2, 500, 30, 30, 1] 5 × 5 5.74E+0 1.85E+0

10 × 10 6.84E-1 1.98E-1

15 × 15 4.45E-3 9.10E-4

20 × 20 1.78E-5 3.46E-6

25 × 25 1.85E-6 1.44E-7

30 × 30 1.52E-6 1.86E-7

Conventional ELM [2, 500, 30, 560, 1] 5 × 5 2.89E+0 9.17E-1

10 × 10 6.18E-1 1.06E-1

15 × 15 2.05E-3 3.99E-4

20 × 20 3.88E-5 5.72E-6

25 × 25 9.46E-7 1.17E-7

30 × 30 3.51E-7 4.24E-8

HLConcELM [2, 30, 30, 500, 1] 5 × 5 3.30E+0 8.69E-1

10 × 10 2.17E-1 4.33E-2

15 × 15 4.42E-3 7.98E-4

20 × 20 7.43E-5 1.53E-5

25 × 25 6.38E-6 1.06E-6

30 × 30 5.82E-6 3.73E-7

Conventional ELM [2, 30, 30, 560, 1] 5 × 5 4.51E+0 1.04E+0

10 × 10 1.47E+0 1.05E-1

15 × 15 8.24E-1 1.53E-1

20 × 20 2.36E-2 2.90E-3

25 × 25 4.49E-5 7.54E-6

30 × 30 6.33E-6 6.68E-7

In all cases, the neural network has 3 hidden layers and a total of 560 trainable parameters for bothHLConcELM
and conventional ELM. For HLConcELM, the hidden magnitude vector R = (2.1, 0.2, 2.3) for the network
[2, 500, 30, 30, 1] and R = (0.82, 0.26, 0.34) for the network [2, 30, 30, 500, 1]. For conventional ELM, the
hidden-layer coefficients are assigned to uniform random values from [−Rm , Rm]with Rm = Rm0. Here Rm0
is the optimal Rm obtained using the method of [13], with Rm0 = 0.37 for the network [2, 500, 30, 560, 1]
and Rm0 = 0.55 for the network [2, 30, 30, 560, 1]

It is noted that in all these test cases the neural network for the conventional ELM has a
wide last hidden layer. This is consistent with the observation that the conventional ELM is
only accurate when the last hidden layer is wide.

Appendix D. Laplace Equation Around a Reentrant Corner

This appendix provides a test of the HLConcELMmethod with the Laplace equation around
a reentrant corner, where the solution is not smooth. Figure25 is a sketch of the L-shaped
domainΩ = OABCDEO (with an reentrant corner at O) employed in this test.We consider
the following problem on Ω ,

123

Journal of Scientific Computing (2023) 95:35 Page 49 of 65 35

Fig. 25 Appendix D (reentrant corner): sketch of the L-shaped domain OABCDEO with an reentrant corner
at O . The sketch shows an example set of Q = 3× (10× 10) uniform collocation points, with 10× 10 points
in each of the three regions OABF , OFCG and OGDE

∂2u

∂x2
+ ∂2u

∂ y2
= 0, (x, y) ∈ Ω, (37a)

u(x, y) = 0, (x, y) ∈ OA, OE, (37b)

u(x, y) = r
2k
3 sin

(
2k

3
θ

)
, (x, y) ∈ AB, BC, CD, DE, (37c)

where u(x, y) is the field to be solved for, (r , θ) denotes the polar coordinate, and k ≥ 1 is
a prescribed integer. This problem has the following solution,

u(x, y) = r
2k
3 sin

(
2k

3
θ

)
, (x, y) ∈ Ω. (38)

The integer k influences the regularity of the solution. If k is a multiple of 3, then the
solution u(x, y) is smooth (C∞) on Ω . Otherwise, the solution is non-smooth, with its � 2k

3 �-
th derivative being singular at the reentrant corner.We solve this problemby theHLConcELM
method, and employ a set of uniform grid points in the sub-regions OABF , OFCG and
OGDE as the collocation points. Figure25 shows a set of Q = 3 × (10 × 10) uniform
collocation points on the domain as an example. TheGaussian activation function is employed
in the neural network. We employ a fixed seed value 10 for the random number generators.

Figure 26 shows distributions of the exact solution (38), the HLConcELM solution and
its point-wise absolute error, corresponding to three different solution fields with k = 1,
3 and 5. The values for the simulation parameters are provided in the figure caption. The
HLConcELM result is extremely accurate for the case with a smooth solution (k = 3), with
the maximum error on the order 10−11 in the domain. On the other hand, the HLConcELM
solution is much less accurate for the non-smooth cases (k = 1, 5), with the maximum

123

 35 Page 50 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 26 Appendix D (reentrant corner): Distributions of the exact solution (a, d, g), the HLConcELM solution
(b, e, h), and the point-wise absolute error of the HLConcELM solution (c, f, i) to the Laplace equation. a–c
k = 1 (non-smooth), d–f k = 3 (smooth), and g–i k = 5 (non-smooth) in the solution field. In HLConcELM,
neural network [2, 800, 50, 1], Gaussian activation function, Q = 3 × (20 × 20) uniform collocation points,
R = (5.0, 0.1)

error around 10−1 for k = 1 and around 10−4 for k = 5. One can note that the computed
HLConcELM solution is more accurate for a smoother solution field (larger k).

Tables 14 and 15 illustrate the convergence behavior of the HLConcELM errors with
respect to the number of hidden nodes in the neural network and the number of collocation
points (Q). Several cases corresponding to smooth and non-smooth solution fields are shown.
The simulation parameter values are provided in the captions of these tables. The neural
network architecture is given by [2, M, 50, 1], where M is either fixed at M = 800 or
varied systematically. The set of collocation points is either fixed at Q = 3 × (20 × 20) or
varied systematically. For the smooth case (k = 3), the HLConcELM solution exhibits an
exponential convergencewith respect toM and Q. For the non-smooth cases (k = 1, 2, 5), the
convergence is much slower and in general quite slow. However, if the solution is smoother
(larger k), we can generally observe an initial exponential decrease in theHLConcELMerrors
as M or Q increases, and that the error reduction slows down as M or Q reaches a certain
level. For example, with the case k = 5 one can observe in Table 14 the initial exponential
decrease in the errors with increasing M for M ≤ 300.

123

Journal of Scientific Computing (2023) 95:35 Page 51 of 65 35

Table 14 Appendix D (reentrant corner): the maximum/rms errors of the HLConcELM solution versus the
number of nodes in the first hidden layer (M) for solution fields with different regularity (k parameter)

M k=1 k=2 k=3 k=5

max-err rms-err max-err rms-err max-err rms-err max-err rms-err

100 3.47E-1 6.81E-2 1.97E-1 5.52E-2 3.22E-1 8.56E-2 1.05E+0 3.01E-1

200 2.12E-1 2.59E-2 8.03E-2 1.47E-2 2.18E-2 3.28E-3 8.91E-2 1.45E-2

300 1.71E-1 1.64E-2 6.04E-2 8.43E-3 4.33E-4 5.47E-5 3.47E-3 6.65E-4

400 1.53E-1 1.28E-2 4.04E-2 4.90E-3 5.76E-6 7.44E-7 2.56E-3 3.60E-4

500 1.37E-1 1.01E-2 3.58E-2 3.82E-3 2.01E-7 2.84E-8 1.68E-3 1.91E-4

600 1.21E-1 7.75E-3 2.65E-2 2.46E-3 7.72E-9 7.24E-10 9.08E-4 9.02E-5

700 1.11E-1 6.46E-3 2.28E-2 1.87E-3 4.69E-10 3.92E-11 6.19E-4 5.48E-5

800 1.02E-1 5.47E-3 1.98E-2 1.50E-3 1.65E-11 1.06E-12 4.27E-4 3.52E-5

900 9.62E-2 4.85E-3 1.78E-2 1.32E-3 1.80E-11 2.60E-12 3.33E-4 2.64E-5

1000 8.94E-2 6.96E-3 1.57E-2 1.23E-3 1.37E-11 2.55E-12 3.00E-4 3.14E-5

In HLConcELM, neural network [2, M, 50, 1], Gaussian activation function, Q = 3 × (20 × 20) uniform
collocation points, R = (5.0, 0.1). The solution field is smooth if k is a multiple of 3, and non-smooth
otherwise. The (non-smooth) solution is smoother if k is larger

Table 15 Appendix D (reentrant corner): the maximum/rms errors of the HLConcELM solution versus the
number of collocation points (Q) for solution fields with different regularity

Q k=1 k=2 k=3 k=5

max-err rms-err max-err rms-err max-err rms-err max-err rms-err

3×(5×5) 1.75E-1 6.15E-2 9.30E-2 2.60E-2 9.47E-2 3.15E-2 2.33E-1 8.27E-2

3×(10×10) 4.65E-1 6.92E-2 7.92E-2 1.25E-2 5.09E-4 9.55E-5 1.59E-3 2.31E-4

3×(20×20) 1.02E-1 5.47E-3 1.98E-2 1.50E-3 1.65E-11 1.06E-12 4.27E-4 3.52E-5

3×(30×30) 1.14E-1 6.81E-3 2.33E-2 1.93E-3 1.70E-11 1.51E-12 6.40E-4 5.75E-5

In HLConcELM, neural network [2, 800, 50, 1], Gaussian activation function, R = (5.0, 0.1)

Appendix E. Kuramoto–Sivashinsky Equation

This appendix provides a test of the HLConcELM method with the Kuramoto–Sivashinsky
equation [38, 55]. We consider the domain (x, t) ∈ Ω = [a, b]× [0, t f], and the Kuramoto–
Sivashinsky equation on Ω with periodic boundary conditions,

∂u

∂t
+ αu

∂u

∂x
+ β

∂2u

∂x2
+ γ

∂4u

∂x4
= f (x, t), (39a)

u(a, t) = u(b, t),
∂u

∂x

∣∣∣∣
(a,t)

= ∂u

∂x

∣∣∣∣
(b,t)

, (39b)

∂2u

∂x2

∣∣∣∣∣
(a,t)

= ∂2u

∂x2

∣∣∣∣∣
(b,t)

,
∂3u

∂x3

∣∣∣∣∣
(a,t)

= ∂3u

∂x3

∣∣∣∣∣
(b,t)

, (39c)

u(x, 0) = g(x). (39d)

In these equations, (α, β, γ) are constants, u(x, t) is the field function to be solved for, f is
a prescribed source term, and g denotes the initial distribution. The domain parameters a, b
and t f will be specified below. We solve this problem by the locHLConcELM method (see

123

 35 Page 52 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 27 (Appendix E) Kuramoto–Sivashinsky equation (case #1): Distributions of a the exact solution, b the
HLConcELM solution and c its point-wise absolute error. In HLConcELM, 5 uniform time blocks, neural
networkM = [2, 400, 50, 1] and Q = 25 × 25 uniform collocation points per time block, hidden magnitude
vector R = (1.64, 0.05), Gaussian activation function

Table 16 (Appendix E)
Kuramoto–Sivashinsky equation
(case #1): the maximum/rms
errors of the HLConcELM
solution versus the number of
collocation points (Q) on two
neural networks

neural network collocation points max error rms error

[2, 400, 50, 1] 5 × 5 2.45E+1 5.80E+0

10 × 10 2.18E-1 4.86E-2

15 × 15 2.62E-4 6.95E-5

20 × 20 2.55E-7 8.08E-8

25 × 25 3.44E-8 4.57E-9

30 × 30 1.61E-8 7.52E-10

[2, 50, 400, 1] 5 × 5 1.96E+1 5.26E+0

10 × 10 4.48E+0 9.88E-1

15 × 15 2.59E-4 4.77E-5

20 × 20 2.57E-6 5.08E-7

25 × 25 4.32E-7 8.16E-8

30 × 30 7.40E-8 2.91E-9

5 uniform time blocks, hidden magnitude vector R = (1.64, 0.05)
for the network [2, 400, 50, 1] and R = (0.64, 0.2) for the network
[2, 50, 400, 1]

Remark 6) together with the block time marching scheme (see Remark 5). The seed for the
random number generators is set to 100 in the following tests.

Case #1:ManufacturedAnalytic Solution Wefirst consider amanufactured analytic solution
to (39) to illustrate the convergence behavior of HLConcELM. We employ the following
parameter values,

a = 0, b = 2, t f = 1, α = 1, β = 1, γ = 0.1,

123

Journal of Scientific Computing (2023) 95:35 Page 53 of 65 35

Table 17 (Appendix E)
Kuramoto–Sivashinsky equation
(case #1): the maximum/rms
errors of the HLConcELM
solution versus the number of
nodes (M) on two network
architectures [2, M, 50, 1] and
[2, 50, M, 1] (M varied)

neural network M max error rms error

[2, M, 50, 1] 100 2.64E+1 6.41E+0

200 1.84E-3 3.85E-4

300 9.00E-7 1.87E-7

400 3.44E-8 4.57E-9

500 1.05E-8 1.32E-9

[2, 50, M, 1] 100 3.20E+1 9.54E+0

200 8.76E-4 1.91E-4

300 6.53E-7 8.31E-8

400 4.32E-7 8.16E-8

500 2.05E-7 2.30E-8

5 uniform time blocks, Q = 25×25 uniform collocation points per time
block, hidden magnitude vector R = (1.64, 0.05) for the architecture
[2, M, 50, 1] and R = (0.64, 0.2) for the architecture [2, 50, M, 1]

and the analytic solution given by

u(x, t) =
[
3

2
cos

(
πx + 7π

20

)
+ 27

20
cos

(
2πx − 3π

5

)][
3

2
cos

(
π t + 7π

20

)

+27

20
cos

(
2π t − 3π

5

)]
.

(40)

The source term f and the initial distribution g are chosen such that the expression (40)
satisfies the system (39). The distribution of this solution is shown in Fig.27a.

The distributions of the HLConcELM solution and its point-wise absolute error are shown
in Fig. 27b, c.We have employed 5 uniform time blocks in theHLConcELMsimulation, and a
neural network architecture [2, 400, 50, 1] with the Gaussian activation function within each
time block. The other simulation parameter values are provided in the caption of Fig. 27. The
HLConcELMmethod captures the solution accurately, with the maximum error on the order
10−8 in the spatial-temporal domain.

Tables 16 and 17 illustrate the exponential convergence behavior of the HLConcELM
accuracy with respect to the collocation points and the network size for the Kuramoto–
Sivashinsky equation. Table 16 lists the HLConcELMerrors versus the number of collocation
points (Q) obtained with two neural networks, with a narrow and wide last hidden layer,
respectively. Table 17 shows the HLConcELM errors versus the number of nodes (M) in the
first or the last hidden layer of the neural network, obtained with a fixed set of Q = 25× 25
uniform collocation points. The captions of these tables provide the parameter values in these
simulations. It can be observed that the HLConcELM errors decrease exponentially as the
number of collocation points or the network size increases.

Case #2: No Exact Solution and Comparison with Chebfun We next consider the following
parameter values and settings:

a = −1, b = 1, t f = 1, α = 5, β = 0.5, γ = 0.005,

f (x, t) = 0, g(x) = − sin(πx).

123

 35 Page 54 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 28 (Appendix E) Kuramoto–Sivashinsky equation (case #2): Distributions of a the locHLConcELM
solution and b the Chebfun solution. In Chebfun, 400 Fourier grid points in x , time step size Δt = 1e − 4.
In locHLConcELM, 20 uniform time blocks, 4 uniform sub-domains along x within each time block, neural
networkM = [2, 400, 1] and Q = 25×25 uniform collocation points on each sub-domain, hidden magnitude
vector R = 8.0, sine activation function

Fig. 29 (Appendix E) Kuramoto–Sivashinsky equation (case #2): Comparison of solution profiles between
locHLConcELM and Chebfun at t = 0.2 (a), t = 0.5 (b), and t = 0.8 (c). Profiles of the absolution error
between the Chebfun and the HLConcELM solutions at t = 0.2 (d), t = 0.5 (e), and t = 0.8 (f). Simulation
settings and parameters follow those of Fig. 28

The exact solution for this case is unknown. We will employ the result computed by the
software package Chebfun [14], with a sufficient resolution, as the reference solution to
compare with HLConcELM.

Figure 28 shows the solution distributions obtained by the locHLConcELM method and
by Chebfun in the spatial-temporal domain for this case. With locHLConcELM, we have
employed 20 uniform time blocks, 4 uniform sub-domains (along the x direction) within each
time block, and a local neural network [2, 400, 1] with Q = 25 × 25 uniform collocation
points on each sub-domain. The sine activation, σ(x) = sin(x), has been employed with the
local neural networks. The Chebfun solution is obtained with 400 Fourier grid points along
the x direction and a time step size Δt = 10−4. The locHLConcELM solution agrees well
with the Chebfun solution qualitatively.

123

Journal of Scientific Computing (2023) 95:35 Page 55 of 65 35

Fig. 30 (Appendix E) Kuramoto–Sivashinsky equation (case #3): Distributions of a the locHLConcELM
solution and b the Chebfun solution. In Chebfun, 1000 Fourier grid points in x , time step size Δt = 1e − 5.
In locHLConcELM, 12 time blocks (time block size: 0.025 for the first 8 time blocks, 0.0125 for the last 4
time blocks), 10 uniform sub-domains along x within each time block, neural network M = [2, 300, 1] and
Q = 21 × 21 uniform collocation points within each sub-domain, hidden magnitude vector R = 2.5, sinc
activation function

Fig. 31 (Appendix E) Kuramoto–Sivashinsky equation (case #3): Comparison of solution profiles between
locHLConcELM and Chebfun at a t = 0.05, b t = 0.1, c t = 0.15, and d t = 0.2. Profiles of the absolute
error between the locHLConcELM solution and the Chebfun solution at e t = 0.05, f t = 0.1, g t = 0.15,
and h t = 0.2. Simulation settings and parameters follow those of Fig.30

Figure 29 provides quantitative comparisons between locHLConcELM and Chebfun for
this case. It compares the solution profiles obtained by these two methods at three time
instants t = 0.2, 0.5 and 0.8 (top row), and also shows the corresponding profiles of the
absolute error between these two methods (bottom row). No difference can be discerned
from the solution profiles between locHLConcELM and Chebfun. The errors between these
two methods generally increase over time, with the maximum error on the order 10−6 at
t = 0.2 and 10−4 at t = 0.5 and 0.8. These results indicate that the current method has
captured the solution quite accurately.

123

 35 Page 56 of 65 Journal of Scientific Computing (2023) 95:35

Case #3: Another Comparison With Chebfun We consider still another set of problem
parameters as follows:

a = −1, b = 1, t f = 0.25, α = 6, β = 0.5, γ = 0.001,

f (x, t) = 0, g(x) = − sin(πx).

Weagain compare theHLConcELM result with the reference solution computed byChebfun.
Figure 30 compares distributions of the locHLConcELM solution and the Chebfun solu-

tion. With locHLConcELM, we have employed 12 time blocks, 10 uniform sub-domains
along the x direction within each time block, a local neural network [2, 300, 1] and a uni-
form set of Q = 21 × 21 collocation points on each sub-domain. The random magnitude
vector is R = 2.5, and the sinc activation function (σ(x) = sin(πx)

πx) is employed. With
Chebfun, we have employed 1000 Fourier grid points along the x direction and a time step
size Δt = 10−5. The distribution of the locHLConcELM solution is qualitatively similar to
that of the Chebfun solution.

Figure 31 provides a quantitative comparison of the solution profiles between locHLCon-
cELM and Chebfun at several time instants (top row), and also shows the corresponding
profiles of the absolute error between the locHLConcELM solution and the Chebfun solu-
tion (bottom row). The locHLConcELM solution agrees very well with the Chebfun solution
initially, and the difference between these two solutions grows over time.

Appendix F. Schrodinger Equation

This appendix provides a test of the HLConcELM method with the Schrodinger equation.
We consider the domain (x, t) ∈ Ω = [a, b] × [0, t f], and the Schrodinger equation on Ω

with periodic boundary conditions:

i
∂h

∂t
+ 1

2

∂2h

∂x2
+ |h|2h = f (x, t), (41a)

h(a, t) = h(b, t),
∂h

∂x

∣∣∣∣
(a,t)

= ∂h

∂x

∣∣∣∣
(b,t)

, (41b)

h(x, 0) = g(x), (41c)

where h(x, t) is the complex field function to be solved for, f (x, t) is a prescribed complex
source term, and g(x) is the initial distribution. Let h = u(x, t) + iv(x, t), where u and v

denote the real and the imaginary parts of h, respectively. The domain parameters a, b and
t f will be specified below.

We solve this problem by the HLConcELMmethod, or the locHLConcELMmethod (see
Remark 6), combined with the block time marching scheme (see Remark 5). The input layer
of the neural network consists of two nodes, representing x and t , respectively. The output
layer consists also of two nodes, representing the real part and the imaginary part of h(x, t),
respectively. Accordingly, the system (41) is re-written into an equivalent form in terms of
the real part and the imaginary part of h(x, t). The reformulated system is employed in the
HLConcELM simulation.Whenmultiple sub-domains are employed in locHLConcELM,we
impose C1 continuity conditions along the x direction and C0 continuity conditions along
the t direction across the shared sub-domain boundaries. The seed for the random number
generators is set to 100 in the HLConcELM simulations.

123

Journal of Scientific Computing (2023) 95:35 Page 57 of 65 35

Fig. 32 (Appendix F) Schrodinger equation (case #1): Distributions of the real part (a) and its point-wise
absolute error (d), the imaginary part (b) and its point-wise absolute error (e), the norm (c) and its point-wise
absolute error (f), of the HLConcELM solution h(x, t). Neural network [2, 400, 30, 2], Gaussian activation
function, Q = 25 × 25 uniform collocation points, hidden magnitude vector R = (1.7, 0.01)

Table 18 (Appendix F) Schrodinger equation (case #1): themaximum/rms errors of theHLConcELM solution
versus the number of collocation points (Q) on two neural networks

neural Q real(h) imag(h) |h|
network max-err rms-err max-err rms-err max-err rms-err

[2,400,30,1] 5 × 5 1.04E+1 3.11E+0 9.32E+0 2.86E+0 6.43E+0 1.81E+0

10 × 10 6.44E+0 9.78E-1 1.01E+1 1.63E+0 9.27E+0 1.43E+0

15 × 15 3.66E-5 3.79E-6 6.32E-5 5.79E-6 5.68E-5 5.29E-6

20 × 20 9.32E-8 9.93E-9 1.09E-7 1.03E-8 1.23E-7 1.01E-8

25 × 25 2.23E-8 3.39E-9 2.32E-8 3.47E-9 2.25E-8 3.20E-9

30 × 30 1.51E-8 1.94E-9 1.52E-8 2.32E-9 1.52E-8 2.13E-9

[2,30,400,1] 5 × 5 8.51E+0 2.46E+0 1.85E+1 4.74E+0 1.27E+1 3.18E+0

10 × 10 3.12E-1 3.20E-2 1.32E-1 3.63E-2 2.43E-1 3.23E-2

15 × 15 5.37E-4 4.45E-5 6.30E-4 4.71E-5 7.16E-4 4.72E-5

20 × 20 3.86E-6 2.95E-7 1.93E-6 2.18E-7 3.77E-6 2.32E-7

25 × 25 2.75E-7 3.31E-8 2.75E-7 3.23E-8 2.74E-7 3.03E-8

30 × 30 1.55E-7 3.16E-8 1.90E-7 3.65E-8 1.95E-7 3.14E-8

Hiddenmagnitude vectorR = (1.7, 0.01) for the network [2, 400, 30, 1] andR = (0.86, 0.25) for the network
[2, 30, 400, 1]. “real(h)”, “imag(h)” and |h| refer to the real part, the imaginary part, and the norm of h(x, t)

Case #1: Manufactured Analytic Solution We first illustrate the convergence behavior of
HLConcELM using a manufactured analytic solution. We employ the following domain
parameters,

a = −1, b = 1, t f = 1.5,

123

 35 Page 58 of 65 Journal of Scientific Computing (2023) 95:35

Table 19 (Appendix F) Schrodinger equation (case #1): themaximum/rms errors of theHLConcELM solution
versus the number of nodes (M) on two network architectures [2, M, 30, 2] and [2, 30, M, 2] (M varied)

neural M real(h) imag(h) |h|
network max-err rms-err max-err rms-err max-err rms-err

[2,M,30,1] 50 1.13E+0 1.59E-1 2.84E+0 3.00E-1 1.85E+0 2.44E-1

100 1.21E-1 1.91E-2 1.04E-1 2.04E-2 1.14E-1 1.95E-2

200 9.07E-5 1.45E-5 1.05E-4 1.64E-5 9.55E-5 1.53E-5

300 1.70E-7 3.38E-8 1.98E-7 3.62E-8 1.99E-7 3.34E-8

400 2.23E-8 3.39E-9 2.32E-8 3.47E-9 2.25E-8 3.20E-9

500 1.42E-8 1.20E-9 1.79E-8 1.37E-9 1.55E-8 1.31E-9

[2,30,M,1] 50 3.36E+0 3.70E-1 2.43E+0 3.39E-1 3.60E+0 3.75E-1

100 9.70E-2 1.08E-2 7.37E-2 1.54E-2 9.52E-2 1.44E-2

200 1.57E-3 1.53E-4 1.46E-3 1.51E-4 2.04E-3 1.52E-4

300 1.21E-5 2.09E-6 1.78E-5 1.96E-6 1.36E-5 1.93E-6

400 2.75E-7 3.31E-8 2.75E-7 3.23E-8 2.74E-7 3.03E-8

500 1.70E-7 2.35E-8 9.68E-8 1.91E-8 1.57E-7 2.13E-8

Q = 25 × 25 uniform collocation points, hidden magnitude vector R = (1.7, 0.01) for the architecture
[2, M, 30, 1] and R = (0.86, 0.25) for the architecture [2, 30, M, 1]

and the analytic solution h = u + iv, where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, t) =
[
3

2
sin

(
πx + 7π

20

)
+ 27

20
sin

(
2πx − 3π

5

)][
3

2
sin

(
π t + 7π

20

)

+27

20
sin

(
2π t − 3π

5

)]
,

v(x, t) =
[
5

4
cos

(
πx + 7π

20

)
+ 3

2
cos

(
2πx − 3π

5

)][
5

4
cos

(
π t + 7π

20

)

+3

2
cos

(
2π t − 3π

5

)]
.

(42)

The source term f (x, t) and the initial distribution g(x, t) are chosen such that the expres-
sion (42) satisfies the system (41).

Figure 32 shows distributions of the real part u, the imaginary part v, and the norm |h| of the
HLConcELMsolution h(x, t), aswell as their point-wise absolute errorswhen comparedwith
the analytic solution (42), in the spatial-temporal domain. The neural network architecture
is given by M = [2, 400, 30, 2], and the other simulation parameter values are listed in
the figure caption. The HLConcELM solution is observed to be highly accurate, and the
maximum error on the order 10−8 for all of these quantities.

The exponential convergence of the HLConcELM accuracy is illustrated by the data in
Tables 18 and 19. Table 18 lists the maximum and rms errors of the real part, the imaginary
part, and the norm of h(x, t) as a function of the number of collocation points (Q) obtained by
HLConcELMon two neural networkswith a narrow and awide last hidden layer, respectively.
Table 19 lists the HLConcELM errors for the real/imaginary parts and the norm of h(x, t)
on two network architectures having two hidden layers, with the number of nodes (M) in the
first or the last hidden layer varied. The values for the simulation parameters are listed in the
captions of these two tables. It is evident that theHLConcELMerrors decrease approximately

123

Journal of Scientific Computing (2023) 95:35 Page 59 of 65 35

Fig. 33 (Appendix F) Schrodinger equation (case #2): Distributions of a, b the real part, c, d the imaginary
part, and e, f the norm, of h(x, t) obtained byHLConcELM (a, c, e) and by Chebfun (b, d, f). In Chebfun, 1024
Fourier grid points in x , time step size Δt = 10−4. In HLConcELM, 5 uniform time blocks, 3 sub-domains
along the x direction within each time block (sub-domain boundary points X = [−1,−0.35, 0.35, 1]), local
neural network [2, 400, 2] and Q = 25 × 25 uniform collocation points on each sub-domain, R = 2.0,
Gaussian activation function

exponentially (before saturation) as the number of collocation points or the number of nodes
in the neural network increases.

Case #2: No Exact Solution and Comparison with Chebfun We next consider a case with
no exact solution available, and so we use the numerical result obtained by Chebfun [14] as
a reference to compare with the HLConcELM solution. We employ the following parameter
values for the domain and the system (41),

a = −1, b = 1, t f = 1, f (x, t) = 0, g(x) = 7

4
[cos(πx) + 1] .

Figure 33 illustrates the distributions of the locHLConcELM solution and the Chebfun
solution for the real part, the imaginary part, and the norm of h(x, t). The Chebfun solution is
obtained on 1024 Fourier grid points along the x direction with a time step size Δt = 10−4.
For locHLConcELM with block time marching, we have employed 5 uniform time blocks,
3 sub-domains along the x direction within each time block (interior sub-domain boundaries
located at x = −0.35 and 0.35), and a local neural networkM = [2, 400, 2]with theGaussian
activation function on each sub-domain. The other simulation parameter values are listed in

123

 35 Page 60 of 65 Journal of Scientific Computing (2023) 95:35

Fig. 34 (Appendix F) Schrodinger equation (case #2): Comparison of the solution profiles between locHLCon-
cELM and Chebfun at a t = 0.2, b t = 0.5, and c t = 0.8. Profiles of the absolute error between the
locHLConcELM solution and the Chebfun solution at d t = 0.2, e t = 0.5, and f t = 0.8. Simulation settings
and parameters follow those of Fig. 33

the figure caption. No apparent difference can be discerned between the locHLConcELM
solution and the Chebfun solution qualitatively.

Figure 34 provides a comparison between the locHLConcELM solution and the Chebfun
solution quantitatively. Figure34a–c compare profiles of the locHLConcELM solution and
the Chebfun solution for the real part, the imaginary part and the norm of h(x, t) at three time
instants t = 0.2, 0.5 and 0.8. The locHLConcELM solution profiles and the Chebfun solution
profiles exactly overlap with one another. Figures34d–f show profiles of the absolute error
between the locHLConcELM solution and the Chebfun solution at the same time instants.
One can observe that the difference between locHLConcELM and Chebfun is on the order
of 10−4, suggesting that the locHLConcELM result agrees well with the Chebfun result for
this problem.

Appendix G. Two-Dimensional Advection Equation

This appendix provides a further test of theHLConcELMmethodwith the advection equation
in two spatial dimensions plus time. Note that the numerical results in Sect. 3.2 are for the
one-dimensional advection equation (plus time). We consider the spatial-temporal domain
(x, y, t) ∈ Ω = [0, 2] × [0, 2] × [0, 10], and the advection equation on Ω with periodic
boundary conditions,

∂u

∂t
− ∂u

∂x
− ∂u

∂ y
= 0, (43a)

u(0, y, t) = u(2, y, t), u(x, 0, t) = u(x, 2, t), (43b)

u(x, y, 0) = cos [π (x + y − 1)] . (43c)

123

Journal of Scientific Computing (2023) 95:35 Page 61 of 65 35

Fig. 35 (Appendix G) 2D Advection equation: Distributions of a the exact solution, b the HLConcELM
solution and c its point-wise absolute error in the spatial-temporal domain. In HLConcELM (with block time
marching), 20 uniform time blocks, neural network [3, 1000, 1] and Q = 15 × 15 × 15 uniform collocation
points within each time block, hidden magnitude vector R = 0.6, Gaussian activation function

Table 20 (Appendix G) 2D
Advection equation: the
maximum and rms errors of the
HLConcELM solution versus the
number of uniform collocation
points

collocation points max error rms error

4 × 4 × 4 1.87E+0 7.32E-1

8 × 8 × 8 1.59E-1 3.35E-2

12 × 12 × 12 9.92E-5 1.77E-5

16 × 16 × 16 7.94E-6 1.94E-6

20 × 20 × 20 8.29E-6 2.11E-6

20 uniform time blocks, neural network [3, 1000, 1] within each time
block, hidden magnitude vector R = 0.6, Gaussian activation function

Table 21 (Appendix G) 2D
Advection equation: the
maximum and rms errors of the
HLConcELM solution versus the
number of nodes in hidden layer

M max error rms error

200 8.51E-1 3.50E-1

400 3.75E-2 1.05E-2

600 1.62E-3 4.46E-4

800 1.79E-4 4.23E-5

1000 7.39E-6 1.90E-6

20 uniform time blocks, neural network [3, M, 1] (M varied) and Q =
15× 15× 15 uniform collocation points within each time block, hidden
magnitude vector R = 0.6, Gaussian activation function

This initial/boundary value problem has the following exact solution,

u(x, y, t) = cos [π (x + y + t − 1)] . (44)

We solve the problem (43) by theHLConcELMmethod togetherwith block timemarching
(see Remark 5). We employ 20 uniform time blocks in the simulation, with a size 0.5 for
each time block. Within each time block we employ a neural network architecture [3, M, 1]
(M varied) with the Gaussian activation function, and a uniform set of Q = Q1 × Q1 × Q1

123

 35 Page 62 of 65 Journal of Scientific Computing (2023) 95:35

collocation points (Q1 varied). The seed for the random number generators is set to 100 in
the numerical tests. After the network is trained, we evaluate the neural network on another
fixed set of Qeval = 51 × 51 × 51 uniform grid points within each time block to attain
the HLConcELM solution values for all time blocks. We then compare the HLConcELM
solution with the exact solution (44) on the same set of Qeval points within each time block,
to compute the maximum (l∞) and rms (l2) errors over the entire spatial-temporal domain
Ω . The error values as computed above are said to be associated with the neural network
[3, M, 1] with the Q = Q1 × Q1 × Q1 collocation points.

Figure 35 illustrates the distributions of the exact solution (44), the HLConcELM solution,
and the point-wise absolute error of the HLConcELM solution over Ω . The values for the
simulation parameters in HLConcELM are provided in the figure caption. The HLConcELM
solution is quite accurate, with the maximum error on the order 10−6 over the entire domain
Ω .

The exponential convergence of the HLConcELM accuracy is illustrated by Tables 20
and 21. Table 20 lists the maximum and rms errors of HLConcELM (overΩ) as a function of
the number of collocation points (Q), obtained with a neural network [3, 1000, 1]. Table 21
lists the maximum and rms errors of HLConcELM as a function of the number of hidden
nodes (M) in the neural network, obtained on a fixed set of Q = 15 × 15 × 15 uniform
collocation points. The other simulation parameter values are provided in the captions of these
tables. It is evident that the HLConcELM errors decrease exponentially (before saturation)
with increasing number of collocation points or increasing number of hidden nodes in the
network.

References

1. Alaba, P., Popoola, S., Olatomiwa, L., Akanle, M., Ohunakin, O., Adetiba, E., Alex, O., Atayero, A.,
Daud,W.: Towards a more efficient and cost-sensitive extreme learning machine: a state-of-the-art review
of recent trend. Neurocomputing 350, 70–90 (2019)

2. Basdevant, C., Deville, M., Haldenwang, P., Lacroix, J., Ouazzani, J., Peyret, R., Orlandi, P., Patera, A.:
Spectral and finite difference solutions of the Burgers equation. Comput. Fluids 14, 23–41 (1986)

3. Braake, H., Straten, G.: Random activation weight neural net (RAWN) for fast non-iterative training. Eng.
Appl. Artif. Intell. 8, 71–80 (1995)

4. Branch, M., Coleman, T., Li, Y.: A subspace, interior, and conjugate gradient method for large-scale
bound-constrained minimization problems. SIAM J. Sci. Comput. 21, 1–23 (1999)

5. Byrd, R., Schnabel, R., Shultz, G.: Approximate solution of the trust region problem by minimization
over two-dimensional subspaces. Math. Program. 40, 247–263 (1988)

6. Calabro, F., Fabiani, G., Siettos, C.: Extreme learning machine collocation for the numerical solution of
elliptic PDEs with sharp gradients. Comput. Methods Appl. Mech. Eng. 387, 114188 (2021)

7. Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., Yang, S.: Adanet: adaptive structural learning of
artificial neural networks. arXiv:1607.01097 (2016)

8. Cyr, E., Gulian, M., Patel, R., Perego, M., Trask, N.: Robust training and initialization of deep neural
networks: an adaptive basis viewpoint. Proc. Mach. Learn. Res. 107, 512–536 (2020)

9. Dong, S., Li, Z.: Local extreme learning machines and domain decomposition for solving linear and
nonlinear partial differential equations. Comput. Methods Appl. Mech. Eng. 387, 114129 (2021)

10. Dong, S., Li, Z.: A modified batch intrinsic plasticity method for pre-training the random coefficients of
extreme learning machines. J. Comput. Phys. 445, 110585 (2021)

11. Dong, S., Ni, N.: A method for representing periodic functions and enforcing exactly periodic boundary
conditions with deep neural networks. J. Comput. Phys. 435, 110242 (2021)

12. Dong, S., Yang, J.: Numerical approximation of partial differential equations by a variable projection
method with artificial neural networks. Comput. Methods Appl. Mech. Eng. 398, 115284 (2022)

13. Dong, S., Yang, J.: On computing the hyperparameter of extreme learning machines: algorithm and
application to computational PDEs and comparison with classical and high-order finite elements. J.
Comput. Phys. 463, 111290 (2022)

123

http://arxiv.org/abs/1607.01097

Journal of Scientific Computing (2023) 95:35 Page 63 of 65 35

14. Driscoll, T., Hale, N., Trefethen, L.: Chebfun Guide. Pafnuty Publications, Oxford (2014)
15. Dwivedi, V., Srinivasan, B.: Physics informed extreme learning machine (pielm) − a rapid method for

the numerical solution of partial differential equations. Neurocomputing 391, 96–118 (2020)
16. Dwivedi, V., Srinivasan, B.: A normal equation-based extreme learning machine for solving linear partial

differential equations. J. Comput. Inf. Sci. Eng. 22, 014502 (2022)
17. Weinan, E., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving varia-

tional problems. Commun. Math. Stat. 6, 1–12 (2018)
18. Fabiani, G., Calabro, F., Russo, L., Siettos, C.: Numerical solution and bifurcation analysis of nonlinear

partial differential equations with extreme learning machines. J. Sci. Comput. 89, 44 (2021)
19. Fokina, D., Oseledets, I.: Growing axons: greedy learning of neural networks with application to function

approximation. arXiv:1910.12686 (2020)
20. Freire, A., Rocha-Neto, A., Barreto, G.: On robust randomized neural networks for regression: a compre-

hensive review and evaluation. Neural Comput. Appl. 32, 16931–16950 (2020)
21. Galaris, E., Fabiani, G., Calabro, F., Serafino, D., Siettos, C.: Numerical solution of stiff ODEs with

physics-informed random projection neural networks. arXiv:2108.01584 (2021)
22. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)
23. Guo, P., Chen, C., Sun, Y.: An exact supervised learning for a three-layer supervised neural network. In:

Proceedings of 1995 International Conference on Neural Information Processing, pp. 1041–1044 (1995)
24. He, J., Xu, J.: MgNet: a unified framework for multigrid and convolutional neural network. Sci. China

Math. 62, 1331–1354 (2019)
25. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELU). arXiv:1606.08415 (2016)
26. Huang, G., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward

networks with random hidden nodes. IEEE Trans. Neural Netw. 17, 879–892 (2006)
27. Huang, G., Huang, G., Song, S., You, K.: Trends in extreme learning machines: a review. Neural Netw.

61, 32–48 (2015)
28. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.: Densely connected convolutional networks.

arXiv:1608.06993 (2018)
29. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward

neural networks. In: 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 985–990
(2004)

30. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learningmachine: theory and applications. Neurocomputing
70, 489–501 (2006)

31. Igelnik, B., Pao, Y.: Stochastic choice of basis functions in adaptive function approximation and the
functional-link net. IEEE Trans. Neural Netw. 6, 1320–1329 (1995)

32. Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state
networks with leaky integrator neurons. Neural Netw. 20, 335–352 (2007)

33. Jagtap, A., Kharazmi, E., Karniadakis, G.: Conservative physics-informed neural networks on discrete
domains for conservation laws: applications to forward and inverse problems. Comput. Methods Appl.
Mech. Eng. 365, 113028 (2020)

34. Karniadakis, G., Kevrekidis, G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine
learning. Nat. Rev. Phys. 3, 422–440 (2021)

35. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn.
Oxford University Press, Oxford (2005)

36. Katuwal, R., Suganthan, P., Tanveer, M.: Random vector functional link neural network based ensemble
deep learning. arXiv:1907.00350 (2019)

37. Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., Mahoney, M.: Characterizing possible failure modes
in physics-informed neural networks. arXiv:2109.01050 (2021)

38. Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Suppl. 64, 346–367 (1978)
39. Li, J.Y., Chow, W., Igelnik, B., Pao, Y.H.: Comments on “stochastic choice of basis functions in adaptive

function approximation and the functional-link net”. IEEE Trans. Neural Netw. 8, 452–454 (1997)
40. Liu, H., Xing, B., Wang, Z., Li, L.: Legendre neural network method for several classes of singularly

perturbed differential equations based onmapping andpiecewise optimization technology.Neural Process.
Lett. 51, 2891–2913 (2020)

41. Liu, M., Hou, M., Wang, J., Cheng, Y.: Solving two-dimensional linear partial differential equations
based on Chebyshev neural network with extreme learning machine algorithm. Eng. Comput. 38, 874–
894 (2021)

42. Lu, L., Meng, X., Mao, Z., Karniadakis, G.: DeepXDE: a deep learning library for solving differential
equations. SIAM Rev. 63, 208–228 (2021)

43. Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training.
Comput. Sci. Rev. 3, 127–149 (2009)

123

http://arxiv.org/abs/1910.12686
http://arxiv.org/abs/2108.01584
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1907.00350
http://arxiv.org/abs/2109.01050

 35 Page 64 of 65 Journal of Scientific Computing (2023) 95:35

44. Maas, W., Markram, H.: On the computational power of recurrent circuits of spiking neurons. J. Comput.
Syst. Sci. 69, 593–616 (2004)

45. Needell, D., Nelson, A., Saab, R., Salanevich, P.: Random vector functional link networks for function
approximation on manifolds. arXiv:2007.15776 (2020)

46. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)
47. Panghal, S., Kumar, M.: Optimization free neural network approach for solving ordinary and partial

differential equations. Eng. Comput. 37, 2989–3002 (2021)
48. Pao, Y., Park, G., Sobajic, D.: Learning and generalization characteristics of the random vector functional-

link net. Neurocomputing 6, 163–180 (1994)
49. Pao, Y., Takefuji, Y.: Functional-link net computing: theory, system architecture, and functionalities.

Computer 25, 76–79 (1992)
50. Rahimi, A., Recht, B.: Weighted sums of random kitchen sinks: replacing minimization with random-

ization in learning. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural
Information Processing Systems (NIPS), vol. 2, pp. 1316–1323 (2008)

51. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: a deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput.
Phys. 378, 686–707 (2019)

52. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain.
Psychol. Rev. 65, 386–408 (1958)

53. Scardapane, S., Wang, D.: Randomness in neural networks: an overview. WIREs Data Mining Knowl.
Discov. 7, e1200 (2017)

54. Sirignano, J., Spoliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations.
J. Comput. Phys. 375, 1339–1364 (2018)

55. Sivashinsky, G.: Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic
equations. Acta Astronautica 4, 1177–1206 (1977)

56. Suhanthan, P., Katuwal, R.: On the origins of randomization-based feedforward neural networks. Appl.
Soft Comput. 105, 107239 (2021)

57. Sun, H., Hou, M., Yang, Y., Zhang, T., Weng, F., Han, F.: Solving partial differential equations based on
Bernstein neural network and extreme learning machine algorithm. Neural Process. Lett. 50, 1153–1172
(2019)

58. Tang, K., Wan, X., Liao, Q.: Adaptive deep density estimation for Fokker–Planck equations. J. Comput.
Phys. 457, 111080 (2022)

59. Verma, B., Mulawka, J.: A modified backpropagation algorithm. In: Proceedings of 1994 IEEE Interna-
tional Conference on Neural Networks, vol. 2, pp. 840–844 (1994)

60. Wan, X., Wei, S.: VAE-KRnet and its applications to variational Bayes. Commun. Comput. Phys. 31,
1049–1082 (2022)

61. Wang, S., Yu, X., Perdikaris, P.: When and why PINNs fail to train: a neural tangent kernel perspective.
J. Comput. Phys. 449, 110768 (2022)

62. Wang, Y., Lin, G.: Efficient deep learning techniques for multiphase flow simulation in heterogeneous
porous media. J. Comput. Phys. 401, 108968 (2020)

63. Webster, C.: Alan Turing’s unorganized machines and artificial neural networks: his remarkable early
work and future possibilities. Evol. Intell. 5, 35–43 (2012)

64. Widrow, B., Greenblatt, A., Kim, Y., Park, D.: The no-prop algorithm: a new learning algorithm for
multilayer neural networks. Neural Netw. 37, 182–188 (2013)

65. Wilamowski, B., Yu, H.: Neural network learning without backpropagation. IEEE Trans. Neural Netw.
21, 1793–1803 (2010)

66. Winovich, N., Ramani, K., Lin, G.: ConvPDE-UQ: convolutional neural networks with quantified uncer-
tainty for heterogeneous elliptic partial differential equations on varied domains. J. Comput. Phys. 394,
263–279 (2019)

67. Yang, Y., Hou, M., Luo, J.: A novel improved extreme learning machine algorithm in solving ordinary
differential equations by Legendre neural network methods. Adv. Differ. Equ. 469, 1–24 (2018)

68. Yang, Z., Dong, S.: An unconditionally energy-stable scheme based on an implicit auxiliary energy vari-
able for incompressible two-phase flows with different densities involving only precomputable coefficient
matrices. J. Comput. Phys. 393, 229–257 (2019)

69. Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a
generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109121 (2020)

70. Yang, Z., Lin, L., Dong, S.: A family of second-order energy-stable schemes for Cahn–Hilliard type
equations. J. Comput. Phys. 383, 24–54 (2019)

71. Zhang, L., Suganthan, P.: A comprehensive evaluation of random vector functional link networks. Inf.
Sci. 367–368, 1094–1105 (2016)

123

http://arxiv.org/abs/2007.15776

Journal of Scientific Computing (2023) 95:35 Page 65 of 65 35

72. Zheng, X., Dong, S.: An eigen-based high-order expansion basis for structured spectral elements. J.
Comput. Phys. 230, 8573–8602 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Numerical Computation of Partial Differential Equations by Hidden-Layer Concatenated Extreme Learning Machine
	Abstract
	1 Introduction
	2 Hidden-Layer Concatenated Extreme Learning Machine
	2.1 Conventional ELM and Drawback
	2.2 Modifying ELM Neural Network with Hidden-Layer Concatenation
	2.3 Solving Linear/Nonlinear PDEs with Hidden-Layer Concatenated ELM

	3 Numerical Benchmarks
	3.1 Variable-Coefficient Poisson Equation
	3.2 Advection Equation
	3.3 Nonlinear Helmholtz Equation
	3.4 Burgers' Equation
	3.5 KdV Equation

	4 Concluding Remarks
	Appendix A: Proofs of Theorems from Sect.2
	Appendix B. Numerical Tests with Several Activation Functions
	Appendix C. Additional Comparisons Between HLConcELM and Conventional ELM
	Appendix D. Laplace Equation Around a Reentrant Corner
	Appendix E. Kuramoto–Sivashinsky Equation
	Appendix F. Schrodinger Equation
	Appendix G. Two-Dimensional Advection Equation
	References

