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A B S T R A C T

We present two effective methods for solving high-dimensional partial differential equations
(PDE) based on randomized neural networks. Motivated by the universal approximation
property of this type of networks, both methods extend the extreme learning machine (ELM)
approach from low to high dimensions. With the first method the unknown solution field in 𝑑
dimensions is represented by a randomized feed-forward neural network, in which the hidden-
layer parameters are randomly assigned and fixed while the output-layer parameters are trained.
The PDE and the boundary/initial conditions, as well as the continuity conditions (for the local
variant of the method), are enforced on a set of random interior/boundary collocation points.
The resultant linear or nonlinear algebraic system, through its least squares solution, provides
the trained values for the network parameters. With the second method the high-dimensional
PDE problem is reformulated through a constrained expression based on an Approximate variant
of the Theory of Functional Connections (A-TFC), which avoids the exponential growth in
the number of terms of TFC as the dimension increases. The free field function in the A-
TFC constrained expression is represented by a randomized neural network and is trained
by a procedure analogous to the first method. We present ample numerical simulations for
a number of high-dimensional linear/nonlinear stationary/dynamic PDEs to demonstrate their
performance. These methods can produce accurate solutions to high-dimensional PDEs, in
particular with their errors reaching levels not far from the machine accuracy for relatively
lower dimensions. Compared with the physics-informed neural network (PINN) method, the
current method is both cost-effective and more accurate for high-dimensional PDEs.

. Introduction

This work concerns the numerical approximation of partial differential equations (PDEs) in higher dimensions (typically beyond
hree). Mathematical models describing natural and physical processes or phenomena are usually expressed in PDEs. In a number of
ields and domains, including physics, biology and finance, the models are naturally formulated in terms of high-dimensional PDEs.

ell-known examples include the Schrodinger equation for many-body problems in quantum mechanics, the Black–Scholes equation
or the price evolution of financial derivatives, and the Hamilton–Jacobi–Bellman (HJB) equation in dynamic programming and
ame theory [1,2]. Development of computational techniques for PDEs is a primary thrust in scientific computing. In low dimensions,
raditional numerical methods such as the finite difference, finite element (FEM), finite volume, and spectral type methods (and their
ariants), which are typically grid- or mesh-based, have achieved a tremendous success and are routinely used in computational
cience and engineering applications. For high-dimensional PDEs, on the other hand, these mesh-based approaches encounter severe
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challenges owing to the curse of dimensionality, because the computational effort/complexity involved therein grows exponentially
with increasing problem dimension [3–6].

In the past few years deep neural networks (DNN or NN) have emerged as a promising approach to alleviate or overcome the curse
f dimensionality for solving high-dimensional PDEs [7–10]. DNN-based methods usually compute the PDE solution in a mesh-free
anner by transforming the PDE problem into an optimization problem. The PDE and the boundary/initial conditions are encoded

nto the loss function by penalizing their residual norms on a set of sampling points. The differential operators involved therein
re typically computed by automatic differentiation. The loss function is minimized by an optimizer, usually based on some flavor
f gradient descent type algorithms [11]. Early works on NN-based methods for differential equations can be traced to the 1990s
see e.g. [12–14]). More recent prominent methods in this area include the physics-informed neural network (PINN) method [15],
eep Galerkin method (DGM) [16], deep Ritz method [17], deep Nitsche method [18], deep mixed residual method [19], as well as
ther related approaches, variants and extensions (see e.g. [20–36], among others). Another approach for solving high-dimensional
DEs is to reformulate the problem using stochastic differential equations, thus casting the PDE problem into a learning problem.
epresentative techniques of this type include the deep backward stochastic differential equation (Deep BSDE) [1,37] and the

orward–backward stochastic neural network method [38]. Temporal difference learning has been employed in [39,40] for solving
igh-dimensional parabolic PDEs and partial integro-differential equations, which discretizes the problem in time and represents
he solution by a neural network at each time step. A data-driven method is developed in [33] to approximate the semi-global
olutions to the HJB equations for high-dimensional nonlinear systems and to compute the optimal feedback controls. In [34] the
eneralization error bounds are derived for two-layer neural networks in the framework of deep Ritz method for solving two elliptic
DEs, and it is shown that the errors are independent of the problem dimension. We would also like to refer the reader to [41] for
recent review of NN-based techniques for high-dimensional PDEs.

For the neural network-based techniques reviewed above for high-dimensional PDEs, all the weight/bias parameters in the neural
etwork are trained and determined by an optimizer, which in most cases is Adam, L-BFGS or some related variant. Unlike these
ethods, in the current work we consider another type of neural networks for the computation of high-dimensional PDEs, referred

o as randomized neural networks (or random-weight neural networks), in which a subset of the network parameters is assigned to
andom values and fixed (not trainable) while the rest of the network parameters are trained.

Randomness has long been exploited in neural networks [42]. Randomized neural networks can be traced to the un-organized
achine by Turing [43] and the perceptron by Rosenblatt [44] in the 1950s. Since the early 1990s, methods based on randomized
Ns have witnessed a strong resurgence and expansion [45,46], with prominent techniques widely applied and exerting a profound

nfluence over a variety of areas [42,47].
A simple strategy underlies randomized neural networks. Since it is extremely hard and expensive to optimize the full set of

eight/bias parameters in the neural network, it seems sensible if a subset of the network parameters is randomly assigned and
ixed, so that the resultant optimization problem of network training can become simpler, and in certain cases linear, hopefully
ithout severely sacrificing the network’s achievable approximation capacity [48,49]. When applied to different types of neural
etworks or under different configurations, randomization gives rise to several techniques, including the random vector functional
ink (RVFL) network [50–52], the extreme learning machine (ELM) [53,54], and the echo-state network [55,56], among others.

We consider the extreme learning machine (ELM) approach for high-dimensional PDE problems. The original work on ELM
as [53,57], developed for linear classification and regression problems with single hidden-layer feed-forward neural networks. This
ethod has since found widespread applications in many fields [58,59]. ELM is characterized by two ideas, randomly-assigned non-

rainable (fixed) hidden-layer parameters, and trainable linear output-layer parameters determined by linear least squares method
r by the pseudo-inverse of coefficient matrix [51,60]. Randomized neural networks of the ELM type and its close cousin RVFL
ype, with a single hidden layer, are universal function approximators. Their universal approximation ability has been established
y the theoretical studies of [52,54,61,62]. In particular, the expected rate of convergence for approximating Lipschitz continuous
unctions has been provided by [52,62,63] (see also Section 2.2 below).

The adoption of ELM for scientific computing, in particular for the numerical solution of differential equations, occurs only fairly
ecently. The existing works in this area have been confined to PDEs in low dimensions (primarily one or two spacial dimensions) or
rdinary differential equations (ODEs) so far. Early works in this regard [64–66] have used polynomials (e.g. Chebyshev, Legendre,
ernstein) as activation functions for solving linear ODEs/PDEs. Subsequent contributions have explored other types of functions and
ade advances on a variety of fronts. While many studies are confined to linear ODE/PDE problems (see e.g. [67–74]), ELM-based
ethods for nonlinear PDEs/ODEs have been developed in e.g. [48,49,75–82] (among others). As has become clear from these

tudies, the ELM technique can produce highly accurate solutions to linear and nonlinear PDEs in low dimensions (and ODEs) with
competitive computational cost. For smooth solutions the ELM errors decrease exponentially as the number of degrees of freedom

number of training points, or number of trainable parameters) increases [49,75], reminiscent of the traditional high-order methods
uch as the spectral or spectral element techniques [83–88]. Their errors can reach the level of machine accuracy as the degrees of
reedom become large [48]. In the presence of local complex features (e.g. sharp gradient) in the solution field, a combination of
omain decomposition and ELM, referred to as local ELM (or locELM) in [75], will be critical to achieving a high accuracy [49].
LM-based methods have been compared extensively with the traditional numerical methods (e.g. classical FEM, high-order finite
lements) and with the dominant DNN-based solvers (e.g. PINN/DGM) for low-dimensional PDE problems; see e.g. [48,75]. ELM far
utperforms the classical FEM, and also outperforms the high-order FEM markedly when the problem size is not very small [48].
ith a small problem size, the performance of ELM and high-order FEM is comparable, with the latter being slightly better [48]. Here

‘outperform’’ refers to the ability of a method to achieve a better accuracy under the same computational cost or to incur a lower
2

omputational cost for the same accuracy. ELM also considerably outperforms DGM and PINN for low-dimensional problems [75].
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Very recently it has been shown by [80] that the ELM-based method exhibits a spectral accuracy for solving inverse PDE problems
(in low dimensions) if the measurement data is noise-free, when the network is trained by nonlinear least squares or the variable
projection algorithm [89].

In the current paper we focus on the computation of high-dimensional PDEs with the ELM-based approach. There seems to be
ery little investigation in this aspect so far. A recent work related to this topic is [90], in which random feature neural networks are
ound to be able to approximate the functions with a convolutional structure efficiently (without curse of dimensionality). Since the
olutions to linear Kolmogorov PDEs associated to exponential Levy models (e.g. Black–Scholes equation) can be expressed into this
ype of functions based on the Feynman–Kac formula, this work recasts the problem of learning the solution to linear Kolmogorov
DEs into a regression problem and employs random feature neural networks to approximate the solution data. We note that the
ethod in [90] relies on an external Monte-Carlo solver to first generate the solution data to the Kolmogorov PDE in order to train

he random feature neural network by regression. We also note the interesting theoretical aspect of [90].
The technique developed in the current work computes high-dimensional PDEs in a ‘‘physics-informed’’ manner, which is self-

ontained and does not rely on any external PDE solver. The high-dimensional initial/boundary value problems considered here
lso involve more general PDEs and bounded domains. We are especially interested in the following question:

• Is the ELM-type randomized neural network approach effective for computational PDEs in high dimensions?

he objective of this paper is to present two ELM-based methods for solving high-dimensional PDEs, and to demonstrate with
umerical simulations that these methods provide a positive answer to the above question, at least for the range of problem
imensions studied in this paper.

The first method (termed simply ELM herein) extends the ELM technique and its local variant locELM developed in [75] (for
ow-dimensional problems) to linear and nonlinear PDEs in high dimensions. The solution field to the high-dimensional PDE problem
s represented by a randomized feed-forward neural network, with its hidden-layer coefficients randomly assigned and fixed and its
utput-layer coefficients trained. Enforcing the PDE, the boundary and initial conditions on a random set of collocation points from
he domain interior and domain boundaries gives rise to a linear or nonlinear algebraic system of equations about the trainable NN
arameters. We seek a least squares solution to this algebraic system, attained by either linear or nonlinear least squares method,
hich provides the trained values for the network parameters. In the local variant of this method, the high-dimensional domain is
ecomposed along a maximum of  ( = 2 herein) directions, and the solution field on each sub-domain is represented by an

ELM-type randomized neural network. We enforce the PDE, the boundary/initial conditions and appropriate continuity conditions
across sub-domains on a set of random collocation points from each sub-domain, from the domain boundaries and from the shared
sub-domain boundaries. The resultant linear or nonlinear algebraic system yields, by its least squares solution, the trained values
for the network parameters of the local NNs.

The second method (termed ELM/A-TFC herein) combines the ELM approach and an approximate variant of the theory of
functional connections (TFC) for solving high-dimensional PDEs. TFC [91,92] provides a systematic approach for enforcing the
boundary/initial conditions through a constrained expression (see e.g. [77,93]). However, the number of terms in TFC constrained
expressions grows exponentially with respect to the problem dimension, rendering TFC infeasible for high-dimensional problems.
By noting a hierarchical decomposition of the constrained expression, we introduce an approximate variant of TFC (referred to as
A-TFC herein) that retains only the dominant terms therein. A-TFC avoids the exponential growth in the number of terms of TFC and
is suitable for high-dimensional problems. On the other hand, since A-TFC is an approximation of TFC, its constrained expression
does not satisfy the boundary conditions unconditionally for an arbitrary free function contained therein. However, the conditions
for the free function of the A-TFC constrained expression in general involve functions of a simpler form, which is effectively a
linearized form of those of the original boundary/initial conditions. A-TFC represents a trade-off. It carries a level of benefit of TFC
for enforcing the boundary/initial conditions and is simultaneously suitable for high-dimensional PDEs. The ELM/A-TFC method
uses the A-TFC constrained expression to reformulate the given high-dimensional PDE problem into a transformed problem about
the free function contained in the expression. This free function is then represented by an ELM-type randomized neural network,
and the reformulated PDE problem is enforced on a set of random collocation points. The least squares solution to the resultant
algebraic system provides the trained values for the network parameters, thus leading to the solution for the free function. The
solution to the original high-dimensional PDE problem is then computed based on the A-TFC constrained expression.

Ample numerical simulations are presented to test these methods for a number of high-dimensional PDEs that are linear or
nonlinear, stationary or time-dependent. The current method has also been compared with the PINN method for a range of problem
dimensions. The numerical results show that the current methods exhibit a clear sense of convergence with respect to the number of
training parameters and the number of boundary collocation points for high-dimensional PDEs. The rate of convergence is close to
exponential for an initial range of parameter values (before saturation). These methods can capture the solutions to high-dimensional
PDEs quite accurately, in particular with their errors reaching levels not far from the machine accuracy for comparatively lower
dimensions. The error levels produced by these two methods are generally comparable, with ELM/A-TFC appearing slightly better in
lower dimensions. On the other hand, ELM generally involves a smaller computational effort and cost than ELM/A-TFC. Compared
with PINN, the current ELM method can achieve a significantly better accuracy under a markedly lower computational cost (network
training time) for solving high-dimensional PDEs.

The contributions of this paper lie in the ELM method and the ELM/A-TFC method presented herein for computing high-
dimensional PDE problems. To the best of the authors’ knowledge, this seems to be the first physics-informed technique based
3

on ELM-type randomized neural networks for solving high-dimensional PDEs.
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The methods presented in this paper are implemented in Python based on the Tensorflow and Keras libraries. The linear and
onlinear least squares methods are based on routines from the Scipy library. The numerical simulations are performed on a MAC
omputer (Apple M1 Chip, 8 cores, 8 GB memory, 250 GB hard disk, macOS Ventura) in the authors’ institution.

The rest of this paper is organized as follows. In Section 2 we first briefly recall the theoretical result on ELM-type randomized
Ns for function approximations in high dimensions, and then describe the ELM method and the ELM/A-TFC method for solving
igh-dimensional PDEs. In Section 3 we present extensive numerical simulations to test these two methods with several linear
nd nonlinear, stationary and dynamic PDEs for a range of problem dimensions. The current method is also compared with PINN.
ection 4 concludes the presentation with a summary of the results and some further remarks.

. Extreme learning machine for high-dimensional PDEs

Suppose 𝛺 = 𝛺1 ×𝛺2 ×⋯ ×𝛺𝑑 is a domain in R𝑑 (𝑑 being a positive integer) with boundary 𝜕𝛺, where 𝛺𝑖 = [𝑎𝑖, 𝑏𝑖] for given
onstants 𝑎𝑖 and 𝑏𝑖 (1 ⩽ 𝑖 ⩽ 𝑑). We consider the boundary value problem below,

𝑢(𝑥) + 𝜇 (𝑢(𝑥)) = 𝑄(𝑥), 𝑥 ∈ 𝛺, (1a)

𝑢(𝑥) = 𝐻(𝑥), 𝑥 ∈ 𝜕𝛺. (1b)

Here  and  are linear and nonlinear differential operators, respectively. 𝑢(𝑥) ∈ R is the unknown field to be computed.  is
a linear differential or algebraic operator, and Eq. (1b) represents the boundary conditions. 𝑄 and 𝐻 are given functions, and 𝜇 is
a constant. If 𝜇 = 0, the problem is linear. We assume that  may contain time derivatives (e.g. 𝜕

𝜕𝑡 or 𝜕2

𝜕𝑡2
, with 𝑡 being the time

ariable). In this case, the problem is time dependent, and we will treat 𝑡 in the same fashion as 𝑥. More specifically, we will treat
his as a (𝑑 + 1)-dimensional problem with 𝑡 as the last dimension, 𝑥 = (𝑥1,… , 𝑥𝑑 , 𝑥𝑑+1 = 𝑡), where 𝑥𝑖 (1 ⩽ 𝑖 ⩽ 𝑑 + 1) denotes the
omponents of 𝑥. Accordingly, in this case we will assume that (1b) contains appropriate initial conditions with respect to 𝑡. The
oint here is that the problem (1) may represent an initial/boundary value problem, and we will not distinguish this case in the
ollowing discussions unless necessary.

In what follows we present two methods for solving the system (1). The first is an extension to high dimensions of the
LM technique originally developed in [75] for low-dimensional problems. The second method is a combination of ELM with
n approximate variant of the Theory of Functional Connections, termed A-TFC, which avoids the exponential growth in the
omputational effort of TFC in high dimensions.

.1. Randomized feed-forward neural networks

We consider the approximation of the solution field 𝑢(𝑥) to system (1) by a randomized feed-forward neural network. A feed-
orward neural network (FNN) having (𝐿 + 1) (𝐿 ⩾ 2) layers represents a parameterized function (𝑥; 𝜃) given by (for the input 𝑥
nd parameter 𝜃) [94],

(𝑥; 𝜃) = 𝑊𝐿 ⋅ 𝜎
(

𝑊𝐿−1 ⋅ 𝜎
(

⋯ 𝜎
(

𝑊2 ⋅ 𝜎
(

𝑊1 ⋅ 𝑥 + 𝑏1
)

+ 𝑏2
)

⋯
)

+ 𝑏𝐿−1
)

+ 𝑏𝐿, (2)

here 𝑊𝑖 and 𝑏𝑖 (1 ⩽ 𝑖 ⩽ 𝐿) are the weight and bias in the 𝑖th layer, 𝜃 =
(

𝑊1,… ,𝑊𝐿, 𝑏1,… , 𝑏𝐿
)

, and 𝜎 ∶ R → R is the activation
function. Layer 0 (input layer) contains 𝑑 nodes, representing the components of 𝑥, and layer 𝐿 (output layer) contains a single
node, representing 𝑢(𝑥). The layers in between are the hidden layers. Note that the output layer in (2) is linear, with no activation
function applied. In the current paper we further assume that the output layer has zero bias, i.e. 𝑏𝐿 = 0.

A randomized feed-forward neural network is an FNN in which a subset of the network parameters 𝜃 are assigned to random
values and fixed (non-trainable), while only the rest of the network parameters are trained. Extreme learning machine (ELM) [53]
is one type of randomized neural networks, in which all the hidden-layer coefficients are randomly assigned and fixed and only
the output-layer coefficients are trained [75]. In the current work we approximate the solution field 𝑢(𝑥) to the system (1) by ELM,
and assign the network coefficients in all the hidden layers to uniform random values from the interval [−𝑅𝑚, 𝑅𝑚], where 𝑅𝑚 is a
constant. We note that it is possible to assign the random parameters in other fashions, e.g. by fixing the hidden-layer weights/biases
to ones or zeros and randomly assigning a shape parameter introduced in the activation function such as in [81].

Remark 1. While multiple hidden layers can be employed in ELM networks, computational experience seems to indicate that a
deeper network does not in general deliver better simulation results (they usually seem somewhat worse) compared with a shallow
network with ELM. In practice, a small number of hidden layers (e.g. one, or perhaps two) are usually employed in the actual
simulations with ELM; see e.g. [75] (among others). In the numerical simulations with high-dimensional PDEs in this paper, we
have employed ELM networks with a single hidden layer (see Section 3).

2.2. Randomized NNs for high-dimensional function approximation

Extreme learning machines (or RVFL networks) are universal function approximators; see e.g. [52,54]. The universal approx-
imation theorems [52,54] basically state that any given continuous function can be approximated by a randomized NN having a
single hidden layer, in which the hidden-layer coefficients are randomly assigned and fixed and the output-layer coefficients can be
4

adjusted/trained, to any desired degree of accuracy, if the number of hidden units is sufficiently large.
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We next recall the result from [52] concerning the convergence rate of randomized NNs for function approximations in high
imensions, which motivates the development of the current methods for high-dimensional computational PDEs.

Define 𝐼𝑑 ∶= [0, 1]𝑑 and consider a continuous function 𝑓 ∈ 𝐶(𝐼𝑑 ) satisfying the Lipschitz condition, i.e., there exists a constant
> 0 such that for any 𝑥, 𝑦 ∈ 𝐼𝑑 ,

|𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝛾‖𝑥 − 𝑦‖, (3)

here ‖𝑥 − 𝑦‖ ∶=
∑𝑑

𝑖=1 |𝑥𝑖 − 𝑦𝑖|. To approximate 𝑓 , we construct a sequence functions {𝑓𝜔𝑛
} as follows,

𝑓𝜔𝑛
(𝑥) =

𝑛
∑

𝑗=1
𝑎𝑗𝑔(𝑤𝑗 ⋅ 𝑥 + 𝑏𝑗 ), (4)

here 𝜔𝑛 is defined as 𝜔𝑛 ∶= (𝑛, 𝑎1,… , 𝑎𝑛, 𝑏1,… , 𝑏𝑛, 𝑤1,… , 𝑤𝑛). In particular, 𝜆𝑛 ∶= {𝑏1,… , 𝑏𝑛, 𝑤1,… , 𝑤𝑛} denotes a set of
andom parameters from some probabilistic space 𝑆𝑛(𝛺, 𝛼), where 𝛼 is a parameter. The corresponding probability measure 𝜇𝑛,𝛺,𝛼
s specified as follows. Suppose 𝑤̂0 = (𝑤̂01,… , 𝑤̂0𝑑 ), 𝑦0 = (𝑦01,… , 𝑦0𝑑 ) and 𝑢0 are independent and uniformly distributed in
𝑉 𝑑 = [0, 𝛺] × ⋯ × [−𝛺,𝛺], 𝐼𝑑 and [−2𝛺, 2𝛺], respectively. Then 𝑤0 = 𝛼𝑤̂0 and 𝑏0 = −𝑤0 ⋅ 𝑦0 − 𝑢0. (𝑤1,… , 𝑤𝑛) and (𝑏1,… , 𝑏𝑛)
are two sets of samples of the random variables 𝑤0 and 𝑏0. 𝑔 in (4) is the activation function, chosen to be absolutely integrable,
i.e.,

∫R
𝑔2(𝑥)𝑑𝑥 < +∞. (5)

We further restrict 𝑔 on some compact support ∏𝑑
𝑖=1[−𝛽𝑤𝑖, 𝛽𝑤𝑖] to get 𝑔𝛽 (𝛽 denotes a parameter). Then the following result holds.

Theorem 1 ([52]). For any 𝑓 ∈ 𝐶(𝐼𝑑 ) satisfying (3), any compact 𝐾 ⊂ 𝐼𝑑 that is a proper subset of 𝐼𝑑 , and any activation function 𝑔𝛽
satisfying (5), there exists a sequence of {𝑓𝜔𝑛

} and probability measure 𝜇𝑛,𝛺,𝛼 such that

𝐸 ∫𝐾
|𝑓 (𝑥) − 𝑓𝜔𝑛

(𝑥)|2𝑑𝑥 ≤
𝐶𝑓,𝑔,𝛺,𝛼,𝛽,𝑑

𝑛
, (6)

for some constant 𝐶𝑓,𝑔,𝛺,𝛼,𝛽,𝑑 independent of 𝑛.

Remark 2. The theorem can be generalized when 𝐼𝑑 is replaced by [𝑎, 𝑏]𝑑 by a change of variables. We omit this detail and consider
the generic situation.

Remark 3. It is notable that the approximation error is of the order 1∕
√

𝑛 as the number of basis functions 𝑛 increases, irrespective
f the dimension 𝑑. This indicates that the approximation (4) with random basis functions can be effective for high dimensions.
n the other hand, one notes from [95] that the approximation by linear combinations of deterministic and fixed bases leads to an
pproximation error on the order of (1∕𝑛

1
𝑑 ). In other words, if deterministic and fixed basis functions are used, it is impossible to

avoid the exponential growth in 𝑑 for the number of basis functions. The randomized bases (such as in ELM and RVFL), however,
can be effective for high-dimensional function approximations in the sense of the expectation.

2.3. Solving high-dimensional PDEs with ELM

Adopting ELM for computational PDEs is characterized by two ideas: (i) The hidden-layer coefficients are assigned to random
values and fixed, and only the output-layer coefficients are trainable, as already mentioned previously. (ii) The trainable network
parameters are determined by the linear or nonlinear least squares method [75], not by the gradient descent type algorithms. This
means that in Eq. (2) the coefficients (𝑊𝑖, 𝑏𝑖) for 1 ⩽ 𝑖 ⩽ 𝐿−1 will be assigned to uniform random values from [−𝑅𝑚, 𝑅𝑚] and fixed,
while only 𝑊𝐿 is trained (noting that we set 𝑏𝐿 = 0).

Let 𝑁𝑢 denote the number of nodes in the last hidden layer of the neural network, and 𝑉𝑗 (𝑥) (1 ⩽ 𝑗 ⩽ 𝑁𝑢) denote the output
fields of the last hidden layer. Then Eq. (2) can be written into,

𝑢(𝑥) =
𝑁𝑢
∑

𝑖=1
𝜙𝑗𝑉𝑗 (𝑥) = 𝐕(𝑥)𝜱, 𝑥 ∈ 𝛺, (7)

where 𝐕(𝑥) = (𝑉1(𝑥),… , 𝑉𝑁𝑢
(𝑥)) = 𝜎

(

𝑊𝐿−1 ⋅ 𝜎
(

⋯ 𝜎
(

𝑊2 ⋅ 𝜎
(

𝑊1 ⋅ 𝑥 + 𝑏1
)

+ 𝑏2
)

⋯
)

+ 𝑏𝐿−1
)

, and 𝜱 = (𝜙1,… , 𝜙𝑁𝑢
)𝑇 = 𝑊𝐿. Note that

𝐕(𝑥) is fixed once the hidden-layer coefficients are randomly assigned and 𝜙𝑗 (1 ⩽ 𝑗 ⩽ 𝑁𝑢) are the output-layer coefficients (trainable
parameters) of ELM.

The residual function of the system (1) is,

𝑅(𝑥, 𝑦,𝜱) =
[

𝑅pde(𝑥,𝜱)
𝑅bc(𝑦,𝜱)

]

=
[

𝐕(𝑥)𝜱 + 𝜇 (𝐕(𝑥)𝜱) −𝑄(𝑥), 𝑥 ∈ 𝛺
𝐕(𝑦)𝜱 −𝐻(𝑦), 𝑦 ∈ 𝜕𝛺

]

(8)

where 𝑅pde and 𝑅bc are the residuals corresponding to the PDE and the boundary/initial conditions, respectively.
We next choose a set of collocation points from the domain interior and the domain boundaries, and enforce the residual
5

function (8) to be zero on these collocation points. For solving high-dimensional PDEs we will employ a set of random collocation
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(

points from the interior/boundary of the domain in this work. We note that the regular grid points, which have been used with ELM
in e.g. [48,49,75,76,80] as the sampling points for low-dimensional problems, are not feasible for high-dimensional PDEs, because
of the exponential growth in the number of points with increasing dimension.

More specifically, the collocation points are set as follows. Let 𝑁in denote the number of random collocation points in the interior
f 𝛺, and 𝑁bc denote the number of random collocation points on each hyperface of 𝜕𝛺. To generate the interior collocation points

we set

𝑃𝑖 = (𝑥1,𝑖,… , 𝑥𝑑,𝑖), for 𝑖 ∈ [𝑁in], (9)

where 𝑥𝑗,𝑖 ∈ (𝑎𝑗 , 𝑏𝑗 ) is a uniform random value for 𝑗 ∈ [𝑑]. Here we have used the notation in combinatorics that [𝑑] = {1,… , 𝑑}. For
the boundary collocation points, we choose 𝑁bc random points on each hyperface of 𝜕𝛺, which is a (𝑑−1)-dimensional hyperplane,
and there are 2𝑑 hyperfaces in total. The total number of boundary collocation points is 𝑁 tot

bc = 2𝑑𝑁bc. For 𝑖 ∈ [𝑁bc], 𝑗 ∈ [𝑑] and
𝑙 ∈ {0, 1}, we set

𝑃𝑖,𝑗,𝑙 = (𝑥1,𝑖,… , 𝑥𝑗−1,𝑖, 𝑥𝑗,𝑖 = 𝑎𝑗𝛿𝑙,0 + 𝑏𝑗𝛿𝑙,1, 𝑥𝑗+1,𝑖,… , 𝑥𝑑,𝑖) (10)

as the boundary collocation points, in which 𝑥𝑘,𝑖 ∈ (𝑎𝑘, 𝑏𝑘) is a uniform random value if 𝑘 ≠ 𝑗. Here 𝛿𝑖,𝑗 denotes the Kronecker delta,
𝛿𝑖,𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise. Overall, the total number of collocation points is 𝑁𝑐 = 𝑁in +𝑁 tot

bc . Let 𝑁𝑎 = 𝑁𝑐 +𝑁 tot
bc , and

𝐱in =
⎡

⎢

⎢

⎣

⋮
𝑃𝑖
⋮

⎤

⎥

⎥

⎦

∈ M𝑁in×𝑑 , 𝐲 =
⎡

⎢

⎢

⎣

⋮
𝑃𝑖,𝑗,𝑙
⋮

⎤

⎥

⎥

⎦

∈ M𝑁 tot
bc ×𝑑 , 𝐱 =

[

𝐱in
𝐲

]

∈ M𝑁𝑐×𝑑 , (11)

where M𝑎×𝑏 denotes the set of matrices with shape 𝑎 × 𝑏.
Enforcing the residual function (8) to be zero on all the collocation points gives rise to the following system,

𝟎 = 𝐑(𝜱) = 𝑅(𝐱, 𝐲,𝜱) =
[

𝑅pde(𝐱,𝜱)
𝑅bc(𝐲,𝜱)

]

=
[

𝐕(𝐱)𝜱 + 𝜇 (𝐕(𝐱)𝜱) −𝑄(𝐱)
𝐕(𝐲)𝜱 −𝐻(𝐲)

]

=
[

𝐑pde(𝜱)
𝐑bc(𝜱)

]

. (12)

Here 𝐑(𝜱) ∈ M𝑁𝑎×1, 𝐑pde(𝜱) ∈ M𝑁𝑐×1, 𝐑bc(𝜱) ∈ M𝑁 tot
bc ×1, 𝐕(𝐱) ∈ M𝑁𝑐×𝑁𝑢 , and 𝐕(𝐲) ∈ M𝑁 tot

bc ×𝑁𝑢 .
The system (12) is an algebraic system about 𝜱, containing 𝑁𝑎 equations with 𝑁𝑢 unknowns. We seek a least squares solution

to this system. When 𝜇 = 0, this system is linear about 𝜱 and can be written as
[

𝐕(𝐱)
𝐕(𝐲)

]

𝜱 =
[

𝑄(𝐱)
𝐻(𝐲)

]

. (13)

In this case we compute 𝜱 by solving the system (13) using the linear least squares method (with a minimum norm if the coefficient
matrix is rank deficient) [96].

When 𝜇 ≠ 0, the algebraic system (12) is nonlinear with respect to 𝜱. In this case we compute 𝜱 by solving this system using the
nonlinear least squares method with perturbations (NLLSQ-perturb) from [48,75,80]. The nonlinear least squares method [96] as
in [48,75,80] represents a Gauss–Newton method combined with a trust-region strategy. The NLLSQ-perturb algorithm requires, for
an arbitrary given 𝜱 ∈ R𝑁𝑢 , the computation of 𝐑(𝜱) and its Jacobian matrix 𝐉(𝜱) = 𝜕𝐑

𝜕𝜱 ∈ M𝑁𝑎×𝑁𝑢 for the Gauss–Newton iterations
see [48,75] for details). The Jacobian matrix for (12) is given by

𝐉(𝜱) =
[

𝐕(𝐱) + 𝜇 ′(𝐕(𝐱)𝜱)𝐕(𝐱)
𝐕(𝐲)

]

, (14)

where  ′(𝑢) = 𝜕
𝜕𝑢 .

Remark 4. In our implementation, the input data to the ELM neural network consists of 𝐱 (coordinates of all collocation points), and
the output data consists of 𝑢(𝐱) ∈ M𝑁𝑐×1 (the solution field evaluated on the collocation points). After the hidden-layer coefficients
are randomly assigned, 𝑉 (𝐱) is computed by a forward evaluation of a sub-network, implemented in Keras as a sub-model of the
original NN, whose input is 𝐱 and output is the last hidden layer of the original NN. The differential operators involved in 𝑉 (𝐱)
and 𝑉 (𝐱) are then computed by a forward-mode automatic differentiation with this sub-model. The linear least squares method is
based on the routine scipy.linalg.lstsq from the SciPy library. The NLLSQ-perturb algorithm for the nonlinear least squares method
is based on the routine scipy.optimize.least_squares from the SciPy library (see [75] or the Appendix A of [80] for more details).

Remark 5. When the solution field contains local features (e.g. sharp gradient), it would be preferable to combine ELM with
domain decomposition for approximating the solution, thus leading to the local ELM approach (called locELM in [75]). In this
case, we represent the solution on each sub-domain by a local randomized FNN, and impose 𝐶𝑘 (with 𝑘 related to the PDE order)
continuity conditions across the shared sub-domain boundaries.

For high-dimensional PDE problems, if domain decomposition is performed in every direction, the number of sub-domains would
increase exponentially with increasing problem dimension. To avoid the exponential growth in the number of sub-domains in local
ELM, we require that the domain should be decomposed only along a maximum of  directions, where  is a fixed small integer
(0 ⩽  ⩽ 𝑑). The specific directions in which the domain is decomposed can be any subset of the 𝑑 directions with a size not
exceeding . We use  = 2 in the current work, i.e. domain decomposition in a maximum of two directions with local ELM.
6
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f
d

In the presence of domain decomposition, the residual function (8) for the system (1) needs to be modified accordingly to account
or the 𝐶𝑘 continuity conditions across sub-domain boundaries. Let 𝑁𝛺 denote the number of sub-domains, and 𝛺𝑖 (1 ⩽ 𝑖 ⩽ 𝑁𝛺)
enote the 𝑖th sub-domain. Symbolically, the modified residual function can be written as,

𝑅(𝑥, 𝑦, 𝑧,𝜱) =
⎡

⎢

⎢

⎣

𝑅pde(𝑥,𝜱)
𝑅bc(𝑦,𝜱)
𝑅ck(𝑧,𝜱)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐕𝑖(𝑥)𝜱𝑖 + 𝜇 (𝐕𝑖(𝑥)𝜱𝑖) −𝑄(𝑥), 𝑥 ∈ 𝛺𝑖, 1 ⩽ 𝑖 ⩽ 𝑁𝛺
𝐕𝑖(𝑦)𝜱𝑖 −𝐻(𝑦), 𝑦 ∈ 𝜕𝛺𝑖 ∩ 𝜕𝛺, 1 ⩽ 𝑖 ⩽ 𝑁𝛺

𝐕𝑖(𝑧)𝜱𝑖 − 𝐕𝑗 (𝑧)𝜱𝑗 , 𝑧 ∈ 𝜕𝛺𝑖 ∩ 𝜕𝛺𝑗 , ∀ adjacent (𝛺𝑖, 𝛺𝑗 )

⎤

⎥

⎥

⎦

, (15)

where 𝐕𝑖(𝑥) = (𝑉𝑖1(𝑥),… , 𝑉𝑖𝑁𝑢
(𝑥)) denotes the output fields of the last hidden layer of the local NN on 𝛺𝑖, 𝜱𝑖 = (𝜙𝑖1,…𝜙𝑖𝑁𝑢

)𝑇 denotes
the vector of output-layer coefficients of the local network for 𝛺𝑖, and 𝜱 = (𝜱𝑇

1 ,… ,𝜱𝑇
𝑁𝛺

)𝑇 denotes the set of training parameters
of the overall problem. The solution field 𝑢(𝑥), when restricted to 𝛺𝑖 (1 ⩽ 𝑖 ⩽ 𝑁𝛺), is given by

𝑢𝑖(𝑥) =
𝑁𝑢
∑

𝑗=1
𝜙𝑖𝑗𝑉𝑖𝑗 (𝑥) = 𝐕𝑖(𝑥)𝜱𝑖, 𝑥 ∈ 𝛺𝑖. (16)

In (15), 𝑅ck(𝑧,𝜱) = 𝑢𝑖(𝑧) − 𝑢𝑗 (𝑧) denotes the residual corresponding to the continuity conditions between 𝑢𝑖(𝑧) and 𝑢𝑗 (𝑧) on their
shared sub-domain boundary, and  denotes a differential (or algebraic) operator corresponding to the continuity conditions. If the
PDE order is 𝑚 (𝑚 ⩾ 1) with respect to 𝑥𝑖, we will in general impose 𝐶𝑚−1 conditions across the sub-domain boundaries along the
𝑥𝑖 direction.

Accordingly, we choose a set of random collocation points on the interior and on the boundaries of each sub-domain, and enforce
the residual function (15) to be zero on these collocation points. This leads to a linear or nonlinear algebraic system about 𝜱, which
is solved by the linear or nonlinear least squares method to attain a least squares solution for the training parameters 𝜱.

Let us next further comment on enforcing the continuity conditions across sub-domains and illustrate it with an example. In order
to impose the continuity conditions on the common boundary between two adjacent sub-domains (𝛺𝑖, 𝛺𝑗 ), the random boundary
collocation points for 𝛺𝑖 and the random boundary collocation points for 𝛺𝑗 , when restricted to their shared boundary, must be
identical. We illustrate this point using Fig. 1, which shows two adjacent sub-domains in 2D. Two random collocation points
(𝑁bc = 2) are generated on each boundary of each sub-domain. Note that the collocation points for different sub-domains are
generated independently. But we need to make sure that the points for the common face 𝑙 (highlighted in orange in Fig. 1) in both
sub-domains sharing 𝑙 should be identical.

This requirement is implemented by the following procedure in our implementation. For each sub-domain we arrange the
boundary collocation points in the following order: those random points on the left face, followed by those on the right face,
the bottom face, and the top face. We first generate the random boundary points for all sub-domains independently. Then we go
through all sub-domains, and the four boundaries (left, right, bottom, top) on each sub-domain, successively. If the boundary being
examined is a shared boundary and the ID of the current sub-domain is higher than that of the neighboring sub-domain, then we
replace the collocation points for the this boundary of the current sub-domain by those collocation points for the same boundary in
the neighboring sub-domain. As shown in Fig. 1, one can see that the random collocation points for the left boundary of the second
sub-domain will be replaced by (thus identical to) those for the right boundary of the first sub-domain.

Remark 6. As mentioned previously, the hidden-layer coefficients of the ELM neural network are assigned to uniform random
values generated on the interval [−𝑅𝑚, 𝑅𝑚] in this paper. We observe from numerical simulations that the value of the constant
𝑅𝑚 influences the ELM accuracy; see [75] for a similar observation for low-dimensional PDEs and also [97,98] for other types of
problems with RVFL networks. In the numerical simulations of Section 3 below, we have used 𝑅𝑚 = 𝑅𝑚0, where 𝑅𝑚0 is a value
determined by the following procedure for a given problem. For a PDE problem of a given dimension 𝑑, we first fix the number of
training parameters in the NN and the number of collocation points to some chosen values. Then we perform preliminary simulations
of the given problem using this fixed network setting, and a set of different 𝑅𝑚 values for generating the random hidden-layer
coefficients. We record the errors of the computed solution (when the exact solution is available), or the norm of the residual vector
𝐑(𝜱) corresponding to the computed solution (when the exact solution is unavailable), for this set of 𝑅𝑚 values. We choose the
value with the lowest error or the lowest residual norm, and denote it by 𝑅𝑚0. Then we fix 𝑅𝑚 = 𝑅𝑚0 for generating the random
hidden-layer coefficients for the subsequent simulations of this PDE problem in a given dimension 𝑑, while some other simulation
parameters (e.g. number of training parameters or collocation points) are varied. We observe that the 𝑅𝑚0 as determined above in
general decreases with respect to the problem dimension 𝑑.

2.4. Solving high-dimensional PDEs by combined ELM and approximate theory of functional connections (A-TFC)

In this subsection we present an alternative strategy for approximating the solution field 𝑢(𝑥), by combining ELM and an
approximate variant of the Theory of Functional Connections (TFC). TFC provides a systematic technique for handling linear
constraints, in particular the boundary or initial conditions [77,91–93]. The number of terms in TFC constrained expression,
however, increases exponentially with increasing problem dimension, rendering TFC infeasible for high-dimensional problems. The
approximate variant of TFC, termed A-TFC here, avoids the exponential growth in the number of terms of TFC and is suitable for
7

computational PDEs in high dimensions.
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Fig. 1. Illustration of random boundary collocation points on two adjacent sub-domains in two dimensions.

2.4.1. TFC and approximate TFC
Consider the domain 𝛺 = [𝑎, 𝑏]𝑑 , where 𝑎 and 𝑏 are constants, and a function 𝑢(𝑥) defined on 𝛺 satisfying the condition,

𝑢|𝜕𝛺 = 𝐶(𝑥), 𝑥 ∈ 𝜕𝛺, (17)

where 𝐶(𝑥) is a prescribed function on 𝜕𝛺. Then the general form of 𝑢(𝑥) is given by [93],

𝑢(𝑥) = 𝑔(𝑥) − 𝛺𝑔(𝑥) + 𝛺𝐶(𝑥), 𝑥 ∈ 𝛺, (18)

where 𝑔 is an arbitrary (free) function on 𝛺. 𝛺 is a linear operator satisfying the property that, for any function 𝑓 defined on 𝜕𝛺,
𝛺𝑓 (𝑥) is a function defined on 𝛺 and,

𝛺𝑓 ||𝜕𝛺 = 𝑓 (𝑥), 𝑥 ∈ 𝜕𝛺. (19)

One can verify that 𝑢(𝑥) as given by (18) satisfies (17) for an arbitrary 𝑔. The expression (18) is called the constrained expression
of TFC [93].

For a function 𝑓 defined on 𝜕𝛺, 𝛺𝑓 (𝑥) can be constructed as follows. We first use a 2D (𝑑 = 2) example to illustrate the
procedure and then discuss the general 𝑑-dimensional case. Suppose 𝛺 = [𝑎, 𝑏]2 and 𝑓 (𝑥) is a function defined on 𝜕𝛺. Let 𝑐1𝑖 ∈ {𝑎, 𝑏}

for 𝑖 ∈ {1, 2}, and define 𝑓
𝑐1𝑖
𝑖 (𝑥) ∶= 𝑓 (𝑥)|𝑥𝑖=𝑐1𝑖 . Let 𝑐𝑖1,2 ∈ {𝑎, 𝑏} for 𝑖 ∈ {1, 2}, and define 𝑓

𝑐11,2 ,𝑐
2
1,2

1,2 (𝑥) ∶= 𝑓 (𝑥1 = 𝑐11,2, 𝑥2 = 𝑐21,2). We
further define

𝜙
𝑐1𝑖
𝑎,𝑏(𝑥) = 𝛿𝑎,𝑐1𝑖

𝑏 − 𝑥𝑖
𝑏 − 𝑎

+ 𝛿𝑏,𝑐1𝑖
𝑥𝑖 − 𝑎
𝑏 − 𝑎

, 𝜙
𝑐𝑖1,2
𝑎,𝑏 (𝑥) = 𝛿𝑎,𝑐𝑖1,2

𝑏 − 𝑥𝑖
𝑏 − 𝑎

+ 𝛿𝑏,𝑐𝑖1,2
𝑥𝑖 − 𝑎
𝑏 − 𝑎

, 𝑖 ∈ {1, 2}. (20)

Then

𝛺𝑓 (𝑥) = 𝑇 1
𝛺𝑓 (𝑥) − 𝑇 2

𝛺𝑓 (𝑥), (21)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

 1
𝛺𝑓 (𝑥) =

2
∑

𝑖=1

∑

𝑐1𝑖 ∈{𝑎,𝑏}

𝜙
𝑐1𝑖
𝑎,𝑏(𝑥)𝑓

𝑐1𝑖
𝑖 (𝑥) =

2
∑

𝑖=1

[

𝑏 − 𝑥𝑖
𝑏 − 𝑎

𝑓 (𝑥)|𝑥𝑖=𝑎 +
𝑥𝑖 − 𝑎
𝑏 − 𝑎

𝑓 (𝑥)|𝑥𝑖=𝑏

]

,

 2
𝛺𝑓 (𝑥) =

∑

𝑐11,2 ,𝑐
2
1,2∈{𝑎,𝑏}

𝜙
𝑐11,2
𝑎,𝑏 (𝑥)𝜙

𝑐21,2
𝑎,𝑏 (𝑥)𝑓

𝑐11,2 ,𝑐
2
1,2

1,2 (𝑥)

=
(𝑏 − 𝑥1)(𝑏 − 𝑥2)

(𝑏 − 𝑎)2
𝑓 (𝑎, 𝑎) +

(𝑏 − 𝑥1)(𝑥2 − 𝑎)
(𝑏 − 𝑎)2

𝑓 (𝑎, 𝑏) +
(𝑥1 − 𝑎)(𝑏 − 𝑥2)

(𝑏 − 𝑎)2
𝑓 (𝑏, 𝑎)

+
(𝑥1 − 𝑎)(𝑥2 − 𝑎)

(𝑏 − 𝑎)2
𝑓 (𝑏, 𝑏).

(22)

For the general case, one can construct 𝛺𝑓 in a similar fashion. The domain 𝛺 = [𝑎, 𝑏]𝑑 is a 𝑑-dimensional hypercube (referred
to as 𝑑-cube hereafter). We need to consider all 𝑗-cubes contained on the boundary 𝜕𝛺, for 𝑗 = 0,… , 𝑑 − 1. To this end, we define
the following notations. For 𝑗 = 1,… , 𝑑, we define 𝑗 as the collection of all 𝑗 tuples (𝑘1,… , 𝑘𝑗 ) with 1 ≤ 𝑘1 < 𝑘2 < ⋯ < 𝑘𝑗 ≤ 𝑑. The

cardinality of 𝑗 is
[

𝑑
𝑗

]

. Hence, there are 2𝑗
[

𝑑
𝑗

]

(𝑑 − 𝑗)-cubes on 𝜕𝛺. We define

⎧

⎪

⎨

⎪

𝑓
𝑐1𝐩 ,…,𝑐𝑗𝐩
𝐩 (𝑥) = 𝑓 (𝑥)|(𝑥𝑝1=𝑐

1
𝐩 ,𝑥𝑝2=𝑐

2
𝐩 ,…,𝑥𝑝𝑗 =𝑐

𝑗
𝐩)
, 𝐩 = (𝑝1,… , 𝑝𝑗 ) ∈ 𝑗 ;

𝜙
𝑐𝑖𝐩 (𝑥) = 𝛿 𝑖

𝑏 − 𝑥𝑝𝑖 + 𝛿 𝑖
𝑥𝑝𝑖 − 𝑎

, 𝐩 ∈  , 𝑖 ∈ [𝑗],
(23)
8

⎩ 𝑎,𝑏 𝑎,𝑐𝐩 𝑏 − 𝑎 𝑏,𝑐𝐩 𝑏 − 𝑎 𝑗
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where 𝑐𝑖𝐩 ∈ {𝑎, 𝑏} for 1 ⩽ 𝑖 ⩽ 𝑗. Then 𝛺𝑓 (𝑥) is given by

𝛺𝑓 (𝑥) =
𝑑
∑

𝑖=1
(−1)𝑖−1 𝑖

𝛺𝑓 (𝑥), (24)

where

 𝑖
𝛺𝑓 (𝑥) =

∑

𝐩∈𝑖

∑

𝑐1𝐩 ,…,𝑐𝑖𝐩∈{𝑎,𝑏}

𝜙
𝑐1𝐩
𝑎,𝑏(𝑥)⋯𝜙

𝑐𝑖𝐩
𝑎,𝑏(𝑥)𝑓

𝑐1𝐩 ,…,𝑐𝑖𝐩
𝐩 (𝑥), ∀𝑖 ∈ [𝑑]. (25)

While the constrained expression (18) satisfies the condition (17) exactly, the number of terms contained therein grows

exponentially with respect to the dimension 𝑑. The expression (25) contains 2𝑖
[

𝑑
𝑖

]

terms, giving rise to a total number of (3𝑑 − 1)

terms in (24). Therefore, the constrained expression (18) contains (3𝑑 ) terms in 𝑑 dimensions, rendering TFC infeasible for
high-dimensional PDE problems.

To devise a TFC-like approximation of the solution field suitable for high-dimensional problems, we notice that the expres-
sion (24) represents a hierarchical decomposition of 𝛺𝑓 (𝑥) in some sense, in which  𝑖

𝛺𝑓 (𝑥) represents the contributions of 𝑓 (𝑥)
from the (𝑑 − 𝑖)-dimensional hyperplanes on the boundary 𝜕𝛺. Taking 𝑑 = 3 as an example, one can note that  1

𝛺𝑓 ,  2
𝛺𝑓 and  3

𝛺𝑓
represent the contributions of 𝑓 (𝑥) from the faces, the edges, and the vertices of the cube 𝛺 = [𝑎, 𝑏]3.

This observation inspires the following strategy for approximating 𝛺𝑓 (𝑥). We can truncate the expression (24) by keeping only
the leading terms, in a spirit analogous to the truncation in Taylor expansion. Specifically, by choosing a number 𝑘 ∈ [𝑑 − 1] as the
ut-off value, we retain all the terms  𝑗

𝛺𝑓 with 1 ⩽ 𝑗 ⩽ 𝑘 in (24) and discard the rest of the terms. In the current paper we choose
= 1 for simplicity. In other words, for a function 𝑓 (𝑥) defined on 𝜕𝛺, we define 𝛺𝑓 (𝑥) by

𝛺𝑓 (𝑥) ∶=  1
𝛺𝑓 (𝑥), 𝑥 ∈ 𝛺. (26)

hen we approximate the function 𝑢(𝑥) satisfying the condition (17) by,

𝑢(𝑥) = 𝑔(𝑥) −𝛺𝑔(𝑥) +𝛺𝐶(𝑥), (27)

where 𝑔(𝑥) is a function to be determined. We refer to the approximation (27) as the approximate TFC (or A-TFC) constrained
expression.

The terms 𝛺𝑔 and 𝛺𝐶 in the A-TFC expression (27) both contain 2𝑑 terms. The computation of (27) is thus feasible for large
𝑑, and A-TFC avoids the exponential growth in the number of terms of the TFC constrained expression (18). However, there is a
trade-off with A-TFC. Specifically, the A-TFC expression (27) for 𝑢(𝑥) does not satisfy the boundary condition (17) unconditionally
for an arbitrary function 𝑔(𝑥), because 𝛺𝑓 is an approximation of 𝛺𝑓 . In general, 𝑔(𝑥) needs to satisfy a certain condition on 𝜕𝛺
n order for 𝑢(𝑥) to satisfy (17).

We first illustrate this point using the 2D case. Suppose 𝛺 = [𝑎, 𝑏]2, and we substitute the expression (27) into (17). On the
oundary 𝑥2 = 𝑎, we have

𝐶(𝑥1, 𝑎) = 𝐶(𝑥1, 𝑎) + 𝑔(𝑥1, 𝑎) −𝑔(𝑥1, 𝑎)

= 𝐶(𝑥1, 𝑎) + [𝐶(𝑎, 𝑎) − 𝑔(𝑎, 𝑎)]
𝑏 − 𝑥1
𝑏 − 𝑎

+ [𝐶(𝑏, 𝑎) − 𝑔(𝑏, 𝑎)]
𝑥1 − 𝑎
𝑏 − 𝑎

.
(28)

This leads to the following condition for 𝑔,

[𝐶(𝑎, 𝑎) − 𝑔(𝑎, 𝑎)]
𝑏 − 𝑥1
𝑏 − 𝑎

+ [𝐶(𝑏, 𝑎) − 𝑔(𝑏, 𝑎)]
𝑥1 − 𝑎
𝑏 − 𝑎

= 0, ∀𝑥1 ∈ [𝑎, 𝑏]. (29)

imilarly, by considering the other boundaries we attain the following conditions,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[𝐶(𝑎, 𝑏) − 𝑔(𝑎, 𝑏)]
𝑏 − 𝑥1
𝑏 − 𝑎

+ [𝐶(𝑏, 𝑏) − 𝑔(𝑏, 𝑏)]
𝑥1 − 𝑎
𝑏 − 𝑎

= 0, ∀𝑥1 ∈ [𝑎, 𝑏];

[𝐶(𝑎, 𝑎) − 𝑔(𝑎, 𝑎)]
𝑏 − 𝑥2
𝑏 − 𝑎

+ [𝐶(𝑎, 𝑏) − 𝑔(𝑎, 𝑏)]
𝑥2 − 𝑎
𝑏 − 𝑎

= 0, ∀𝑥2 ∈ [𝑎, 𝑏];

[𝐶(𝑏, 𝑎) − 𝑔(𝑏, 𝑎)]
𝑏 − 𝑥2
𝑏 − 𝑎

+ [𝐶(𝑏, 𝑏) − 𝑔(𝑏, 𝑏)]
𝑥2 − 𝑎
𝑏 − 𝑎

= 0, ∀𝑥2 ∈ [𝑎, 𝑏].

(30)

In this 2D case, it is straightforward to choose 𝑔(𝑎, 𝑎) = 𝐶(𝑎, 𝑎), 𝑔(𝑎, 𝑏) = 𝐶(𝑎, 𝑏), 𝑔(𝑏, 𝑎) = 𝐶(𝑏, 𝑎) and 𝑔(𝑏, 𝑏) = 𝐶(𝑏, 𝑏) as the boundary
onditions for 𝑔. However, in high-dimensional cases the conditions given by (29) and (30) are easier to implement with randomly
hosen collocation points.

For the general 𝑑-dimensional case, we again use the notation in (23). The conditions for 𝑔 are then given by,

∑

𝑗≠𝑖

[

(

𝐶𝑎,𝑎
𝑖,𝑗 − 𝑔𝑎,𝑎𝑖,𝑗

) 𝑏 − 𝑥𝑗
𝑏 − 𝑎

+
(

𝐶𝑎,𝑏
𝑖,𝑗 − 𝑔𝑎,𝑏𝑖,𝑗

) 𝑥𝑗 − 𝑎
𝑏 − 𝑎

]

= 0, on 𝑥𝑖 = 𝑎, ∀𝑖 ∈ [𝑑]; (31a)

∑

[

(

𝐶𝑏,𝑎
𝑖,𝑗 − 𝑔𝑏,𝑎𝑖,𝑗

) 𝑏 − 𝑥𝑗
𝑏 − 𝑎

+
(

𝐶𝑏,𝑏
𝑖,𝑗 − 𝑔𝑏,𝑏𝑖,𝑗

) 𝑥𝑗 − 𝑎
𝑏 − 𝑎

]

= 0, on 𝑥𝑖 = 𝑏, ∀𝑖 ∈ [𝑑]. (31b)
9

𝑗≠𝑖
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We define ̃𝛺 as

̃𝛺𝑓 (𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⋮
∑

𝑗≠𝑖

(

𝑓 𝑎,𝑎
𝑖,𝑗

𝑏 − 𝑥𝑗
𝑏 − 𝑎

+ 𝑓 𝑎,𝑏
𝑖,𝑗

𝑥𝑗 − 𝑎
𝑏 − 𝑎

)

∑

𝑗≠𝑖

(

𝑓 𝑏,𝑎
𝑖,𝑗

𝑏 − 𝑥𝑗
𝑏 − 𝑎

+ 𝑓 𝑏,𝑏
𝑖,𝑗

𝑥𝑗 − 𝑎
𝑏 − 𝑎

)

⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑥 ∈ 𝜕𝛺. (32)

Then one can rewrite (31) as

̃𝛺𝑔(𝑥) = 𝑠𝛺(𝑥), 𝑥 ∈ 𝜕𝛺, (33)

where 𝑠𝛺(𝑥) ∶= ̃𝛺𝐶(𝑥) denotes the boundary data. This is the boundary condition for 𝑔(𝑥) with A-TFC.
We can make the following observation from the above discussions. With A-TFC, while the constrained expression does not satisfy

the condition (17) exactly for an arbitrary 𝑔, the condition that 𝑔 needs to satisfy generally involves functions of a simpler form
than the original condition. Specifically, there are 2(𝑑 − 1) terms in the condition for 𝑔 on each boundary, and each term involves
the product of a linear function and the 𝑔 evaluated on a (𝑑 − 2)-dimensional hyperplane of the boundary. Therefore, A-TFC can
simplify the functional forms involved in the condition in some sense. Let us again use 2D as an example to illustrate this point.
Assume a boundary distribution 𝐶(𝑥1, 𝑎) = sin(𝑥1) on the boundary 𝑥2 = 𝑎. Then, without A-TFC, the boundary condition for 𝑢(𝑥) on
𝑥2 = 𝑎 is given by,

𝑢(𝑥1, 𝑎) = sin(𝑥1), ∀𝑥1 ∈ [𝑎, 𝑏].

In contrast, with A-TFC, the condition for 𝑔 on 𝑥2 = 𝑎 is reduced to (see (29)),

[sin(𝑎) − 𝑔(𝑎, 𝑎)]
𝑏 − 𝑥1
𝑏 − 𝑎

+ [sin(𝑏) − 𝑔(𝑏, 𝑎)]
𝑥1 − 𝑎
𝑏 − 𝑎

= 0, ∀𝑥1 ∈ [𝑎, 𝑏].

he linear function involved in the condition for 𝑔 with A-TFC is obviously simpler than that of the original condition without
-TFC.

.4.2. A-TFC embedded ELM
Let us now consider how to combine ELM and A-TFC for solving the system (1). In this sub-section we will assume that  = 𝐈

identity operator) in (1b), i.e. the problem has Dirichlet boundary conditions.
Based on A-TFC, we perform the following transformation,

𝑢(𝑥) = 𝑔(𝑥) −𝛺𝑔(𝑥) +𝛺𝐻(𝑥), 𝑥 ∈ 𝛺, (34)

here 𝑔(𝑥) is an unknown function, 𝛺 is defined in (26), and 𝐻 is the boundary distribution in (1b). The system (1) is accordingly
ransformed into,

𝑔(𝑥) − 𝛺𝑔(𝑥) + 𝜇 (𝛺𝐻(𝑥) + 𝑔(𝑥) −𝛺𝑔(𝑥)) = 𝑄(𝑥) − 𝛺𝐻(𝑥) = 𝑄1(𝑥), 𝑥 ∈ 𝛺, (35a)

̃𝛺𝑔(𝑥) = ̃𝛺𝐻(𝑥) = 𝑆𝛺(𝑥), 𝑥 ∈ 𝜕𝛺, (35b)

here ̃𝛺 is defined in (32). 𝑔(𝑥) is the field function to be solved for in (35).
We represent 𝑔(𝑥) by an ELM-type randomized neural network, following the settings as outlined in Section 2.3. In particular, the

nput layer of the network contains 𝑑 nodes (representing 𝑥), and the output layer contains a single node (representing 𝑔(𝑥)) with
ero bias and no activation function. The hidden-layer coefficients are set to uniform random values from the interval [−𝑅𝑚, 𝑅𝑚].
et 𝑁𝑔 denote the number of nodes in the last hidden layer of the neural network, and 𝑉𝑗 (𝑥) (1 ⩽ 𝑗 ⩽ 𝑁𝑔) denote the output fields
f the last hidden layer. Then the network logic gives rise to,

𝑔(𝑥) =
𝑁𝑔
∑

𝑗=1
𝜙𝑗𝑉𝑗 (𝑥) = 𝐕(𝑥)𝜱, (36)

here 𝐕(𝑥) = (𝑉1(𝑥),… , 𝑉𝑁𝑔
(𝑥)), 𝜙𝑗 (1 ⩽ 𝑗 ⩽ 𝑁𝑔) are the output-layer coefficients (training parameters), and 𝜱 = (𝜙1,… , 𝜙𝑁𝑔

)𝑇 .
We determine the training parameters 𝜱 in (36) in a fashion similar to in Section 2.3. We again employ random collocation

oints inside the domain and on the domain boundaries, and let 𝑁in and 𝑁bc denote the number of interior collocation points and
he number of boundary collocation points on each hyperface, respectively. Enforcing the residual function of the system (35) to be
ero on these collocation points leads to the following algebraic system,

𝐑(𝜱) =
[

(𝐕(𝐱) −𝛺𝐕(𝐱))𝜱 + 𝜇 (𝛺𝐻(𝐱) + 𝐕(𝐱)𝜱 −𝛺𝐕(𝐱)𝜱) −𝑄1(𝐱)
̃𝛺𝐕(𝐲)𝜱 − 𝑆𝛺(𝐲)

]

= 𝟎, (37)

here 𝐱 and 𝐲 are defined in (11), and 𝐑(𝜱) ∈ R𝑁𝑎 denotes the residual vector of the system (35) on the collocation points, where
tot
10

𝑎 = 𝑁in + 2𝑁bc = 𝑁in + 4𝑑𝑁bc.
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We seek a least squares solution to the system (37), and solve this system for 𝜱 by the linear least squares method, if 𝜇 = 0, and
y the nonlinear least squares method with perturbations (NLLSQ-perturb) [75], if 𝜇 ≠ 0. When 𝜇 = 0, the system (37) is reduced
o,

[

(𝐕(𝐱) −𝛺𝐕(𝐱))
̃𝛺𝐕(𝐲)

]

𝜱 =
[

𝑄1(𝐱)
𝑆𝛺(𝐲)

]

, (38)

hich is linear, and 𝜱 can be computed by the linear least squares method. When 𝜇 ≠ 0, the system (37) is nonlinear. The Jacobian
atrix of this system is given by,

𝐉(𝜱) = 𝜕𝐑
𝜕𝜱

=
[

(𝐕(𝐱) −𝛺𝐕(𝐱)) + 𝜇 ′(𝛺𝐻(𝐱) + 𝐕(𝐱)𝜱 −𝛺𝐕(𝐱)𝜱)(𝐕(𝐱) −𝛺𝐕(𝐱))
̃𝛺𝐕(𝐲)

]

, (39)

which is needed by the NLLSQ-perturb method [75] for solving (37).
Upon solving the system (37) by the linear or nonlinear least squares method, we set the output-layer coefficients of the neural

network by the least squares solution 𝜱. Afterwards, a forward evaluation of the neural network provides 𝑔(𝑥), and the solution
field to system (1) is computed by (34).

3. Numerical examples

In this section we test the performance of the proposed methods using several high-dimensional PDEs. These include the linear
and nonlinear Poisson equations, which are time-independent, and the heat, Korteweg-de Vries (KdV), and the advection diffusion
equations, which are time-dependent. For each problem we investigate the error convergence with respect to the number of training
parameters and number of collocation points for a range of problem dimensions.

A single hidden layer has been employed in the neural network with both the ELM and the ELM/A-TFC methods for all test
problems. In subsequent discussions we denote the neural network architecture by the following vector (or list) of positive integers,
referred to as the architectural vector henceforth,

𝐌arch = [𝑚in,𝑀,𝑚out] (40)

where 𝑚in, 𝑀 and 𝑚out are the number of nodes in the input layer, the hidden layer, and the output layer, respectively. 𝑚out = 1
in all tests of this section, and 𝑀 equals the number of training parameters of ELM. The hidden-layer coefficients are assigned to
uniform random values generated on the interval [−𝑅𝑚, 𝑅𝑚] with 𝑅𝑚 = 𝑅𝑚0 in the simulations below, where 𝑅𝑚0 is determined by
he procedure discussed in Remark 6. The tanh activation function has been employed in the hidden layer for all the numerical tests
f this section.

In all numerical experiments, after the NN with a particular setting (given number of training parameters, and given number of
raining collocation points) is trained, we compute the errors of the network solution as follows. We generate a set of test points
n the 𝑑-dimensional domain 𝛺: 𝑁 (𝑣)

in random points on the interior of 𝛺, and 𝑁 (𝑣)
bc random points on each boundary of 𝛺 ((𝑑 − 1)-

dimensional hypercube). There is a total of 𝑁 (𝑣)
𝑐 = 𝑁 (𝑣)

in +2𝑑𝑁 (𝑣)
bc random test points. They are different from the random collocation

points used in the network training, and the number is much larger than that of the latter. We evaluate the trained NN on these
test points to obtain the NN solution data, and evaluate the exact solution to the problem on the same test points. We compare the
data of the NN solution and the exact solution on these test points to compute the maximum error (𝑒𝑙∞ ) and the root-mean-squares
(rms) error (𝑒𝑙2 ) as follows,

𝑒𝑙∞ = max
{

|𝑢(𝐱𝑖) − 𝑢𝑒𝑥(𝐱𝑖)|
}𝑁 (𝑣)

𝑐
𝑖=1 , 𝑒𝑙2 =

√

√

√

√

√

1
𝑁 (𝑣)

𝑐

𝑁 (𝑣)
𝑐

∑

𝑖=1

[

𝑢(𝐱𝑖) − 𝑢𝑒𝑥(𝐱𝑖)
]2, (41)

here 𝐱𝑖 (1 ⩽ 𝑖 ⩽ 𝑁 (𝑣)
𝑐 ) denote the test points, and 𝑢(𝐱𝑖) and 𝑢𝑒𝑥(𝐱𝑖) denote the NN solution and the exact solution, respectively. We

efer to the computed 𝑒𝑙∞ and 𝑒𝑙2 as the errors associated with the given NN setting that is used for training the network. In all the
umerical simulations of this section we employ a fixed 𝑁 (𝑣)

bc = 100 and 𝑁 (𝑣)
in = 7000 for computing the 𝑒𝑙∞ and 𝑒𝑙2 errors.

In the numerical tests below, 𝑑 refers to the dimension of the spatial domain. For time-dependent problems, the time variable 𝑡
s not included in 𝑑 when we talk about the problem in 𝑑 dimensions. In other words, for a 𝑑-dimensional time-dependent problem,
he input layer of the neural network would contain 𝑚in = 𝑑+1 nodes (space and time). To make the reported results in this section
xactly re-producible, we have set the seed to a fixed value 1 in the random number generators of the Numpy and Tensorflow
ibraries for all the numerical examples. The test results with the ELM method are presented in Section 3.1 first, and those obtained
ith the combined ELM/A-TFC method are discussed in Section 3.2. We then compare the current ELM method with the PINN
ethod [15] for selected test problems in Section 3.3.

.1. Numerical tests with the ELM method

.1.1. Poisson equation
We consider the Poisson equation on the domain 𝛺 = [−1, 1]𝑑 ,
11

−𝛥𝑢 = 𝑓 (𝑥), 𝑥 ∈ 𝛺, (42a)
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Table 1
Poisson equation: Determining the 𝑅𝑚0 based on the procedure of Remark 6 for 𝑑 = 5. NN architecture: [𝑑, 2000, 1]; (𝑁bc , 𝑁in) =
(100, 1000).
𝑅𝑚 0.01 0.05 0.1 0.15 0.25 0.5

𝑒𝑙∞ 1.76E−6 1.30E−8 1.04E−7 1.23E−6 4.44E−5 8.33E−4
𝑒𝑙2 1.96E−7 6.68E−10 6.91E−9 8.48E−8 2.28E−6 9.03E−5

Table 2
Poisson equation: 𝑅𝑚0 determined by the pro-
cedure from Remark 6 for several problem
dimensions.
𝑑 5 7 15

𝑅𝑚0 0.05 0.05 0.001

Fig. 2. Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of training parameters (𝑀) for dimensions (a) 𝑑 = 5, (b) 𝑑 = 7, (c) 𝑑 = 15. (𝑁bc , 𝑁in) = (100, 2000)
in (a), (100, 1000) in (b), and (120, 2000) in (c).

𝑢 = ℎ(𝑥), 𝑥 ∈ 𝜕𝛺, (42b)

where 𝛥 =
∑𝑑

𝑖=1
𝜕2

𝜕𝑥2𝑖
, ℎ(𝑥) =

(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)2

+ sin
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

, and 𝑓 (𝑥) = 1
𝑑

(

sin
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

− 2
)

. The exact solution to this system is

𝑢(𝑥) =
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)2

+ sin
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

.
We solve the system (42) by the ELM method with an NN architecture 𝐌arch = [𝑑,𝑀, 1], where the 𝑑 input nodes represent 𝑥,

the single output node represents 𝑢(𝑥), and the hidden-layer width 𝑀 (i.e. number of training parameters) is varied systematically.
The neural network is trained by the algorithm from Section 2.3 on a set of random collocation points, consisting of 𝑁in points
from the interior of 𝛺 and 𝑁bc points on each of the 2𝑑 boundaries of 𝜕𝛺, where (𝑁bc, 𝑁in) are varied in the tests. For the network
training, the input data consists of the coordinates of all the collocation points. After the NN is trained for each case, as discussed
previously, the maximum and rms errors of the NN solution are computed on another set of random test points, characterized by
(𝑁 (𝑣)

bc , 𝑁
(𝑣)
in ) = (100, 7000) for the test points on each boundary and in the interior of 𝛺. In addition, on selected 2D cross sections

of 𝛺, such as the 𝑥𝑖−𝑥𝑗 plane (1 ⩽ 𝑖 < 𝑗 ⩽ 𝑑), we have evaluated the network solution on a set of regular 𝑄(𝑣) × 𝑄(𝑣) grid points
(𝑄(𝑣) = 800), and compared with the exact solution on the same set of points to study the point-wise errors of the NN solution.

We first determine the 𝑅𝑚0 based on the procedure from Remark 6 for generating the random hidden-layer coefficients.
Table 1 shows the maximum and rms errors of the ELM solution for dimension 𝑑 = 5, corresponding to several 𝑅𝑚 values for
generating the random hidden-layer coefficients. These are obtained using a network architecture [𝑑, 2000, 1] and the collocation
points (𝑁bc, 𝑁in) = (100, 1000). The ELM method produces accurate results in a range of 𝑅𝑚 values around 𝑅𝑚 ≈ 0.05, thus leading
to 𝑅𝑚0 = 0.05 for 𝑑 = 5.

Table 2 lists the 𝑅𝑚0 for several problem dimensions with the Poisson equation, which are obtained with the same network
architecture and the same number of collocation points as in Table 1. We observe that 𝑅𝑚0 tends to decrease as the dimension 𝑑
increases. This seems to be a characteristic common to all the test problems in this work. In the subsequent simulations, we set
𝑅𝑚 = 𝑅𝑚0 in ELM for generating the hidden-layer coefficients, while the other simulation parameters are varied.

Fig. 2 illustrates the effect of the number of training parameters on the ELM accuracy. It shows the maximum and rms errors
of ELM versus the number of training parameters (𝑀) for the Poisson equation in 𝑑 = 5, 7 and 15 dimensions. The other crucial
simulation parameters are listed in the figure caption. It is observed that the errors decrease quasi-exponentially with increasing
number of training parameters (when 𝑀 ≲ 1000), but appears to stagnate at a certain level as 𝑀 increases further. The stagnant
error level tends to be larger with a higher dimension. For example, the 𝑒𝑙2 error level is on the order of 10−10, 10−7 and 10−5 for
the dimensions 𝑑 = 5, 7 and 15, respectively.

Figs. 3 and 4 illustrate the effect of the training collocation points on the ELM accuracy. Fig. 3 shows the ELM errors (𝑒𝑙∞ and
𝑒 ) as a function of the number of collocation points on each boundary (𝑁 ) for dimensions 𝑑 = 5, 7 and 15. Fig. 4 shows the ELM
12
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Fig. 3. Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of boundary collocation points (𝑁bc) for dimensions (a) 𝑑 = 5, (b) 𝑑 = 7, and (c) 𝑑 = 15. NN
architecture: [𝑑, 2000, 1] in (a, b, c); 𝑁in = 500 in (a), 1000 in (b), and 50 in (c).

Fig. 4. Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of interior collocation points (𝑁in) for dimensions (a) 𝑑 = 5, (b) 𝑑 = 7, and (c) 𝑑 = 15. NN
architecture: [𝑑, 2000, 1] in (a, b, c); 𝑁bc = 100 in (a, b, c).

errors as a function of the number of interior collocation points (𝑁in). The other simulation parameters are fixed in the tests and
their values are provided in the captions of these figures. Increasing the number of boundary collocation points (𝑁bc) improves the
ELM accuracy significantly. The ELM maximum/rms errors decrease approximately exponentially with increasing 𝑁bc for 𝑑 = 5,
and also for 𝑑 = 7 when 𝑁bc ≲ 60 or 𝑑 = 15 when 𝑁bc ≲ 40. The errors stagnate when 𝑁bc increases beyond around 60 for 𝑑 = 7
and beyond 40 for 𝑑 = 15. On the other hand, varying the number of interior collocation points 𝑁in appears to have little effect
on the ELM accuracy for all three dimensions, which is evident from Fig. 4. With increasing problem dimension, the surface of the
hypercube (and hence the boundary collocation points) becomes more dominant, while the interior (hence the interior collocation
points) becomes less important. Therefore, a small number of interior collocation points will typically suffice in higher dimensions.

In all the studies so far, the 𝑒𝑙∞ and 𝑒𝑙2 errors are evaluated on a finite set of random test points from the domain, characterized
by (𝑁 (𝑣)

bc , 𝑁
(𝑣)
in ) = (100, 7000). We have observed the error levels on the order of 10−10 to 10−5 for the problem dimensions from 𝑑 = 5

to 15. We would like to consider the following question. Are these error levels representative of the ELM solution error on the entire
domain 𝛺?

To answer this question, ideally one would generate a regular set of grid points on 𝛺, with a sufficiently large number of grid
points in each direction, and then evaluate and visualize the point-wise errors of the ELM solution on these grid points. This is
feasible for low dimensions, but immediately becomes impractical when the dimension 𝑑 increases to even a moderate value. On
the other hand, we note that it is possible to extract/compute the ELM solution error on certain low-dimensional hyper-planes
(e.g. 2D cross sections) in high dimensions. By looking into the point-wise error distributions in selected cross sections, one can gain
a general sense of the representative error levels in the domain.

Fig. 5 is an illustration of the ELM error for the Poisson equation in dimension 𝑑 = 7, using cross sections. It shows distributions
of the exact solution, the ELM solution, and the point-wise absolute error of ELM, on three cross sections of the domain (𝑥1−𝑥2
plane, 𝑥2−𝑥3 plane, and 𝑥3−𝑥5 plane). For a selected 𝑥𝑖−𝑥𝑗 plane, the other coordinates of this plane has been set to zero, 𝑥𝑘 = 0
for 𝑘 ≠ 𝑖, 𝑗 (i.e. the middle of the domain). For each cross section, the ELM solution, the exact solution, and the ELM error are
evaluated on a uniform set of 𝑄(𝑣) ×𝑄(𝑣) (𝑄(𝑣) = 800) grid points. The other simulation parameters are listed in the caption of this
figure. One can observe that the point-wise error levels as shown in these cross sections are comparable to (or consistent with) those
observed in the convergence studies for 𝑑 = 7. This suggests that the 𝑒𝑙∞ and 𝑒𝑙2 errors computed on the random set of test points
with (𝑁 (𝑣), 𝑁 (𝑣)) = (100, 7000) indeed seems to reflect well the ELM error on the domain 𝛺.
13
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Fig. 5. Poisson equation (𝑑 = 7): Distributions of the exact solution (left column), the ELM solution (middle column), and the point-wise absolute error of ELM
(right column), in selected cross sections of the domain. Top row, 𝑥1−𝑥2 plane; Middle row, 𝑥2−𝑥3 plane; Bottom row, 𝑥3−𝑥5 plane. NN architecture: [𝑑, 2000, 1];
(𝑁bc , 𝑁in) = (100, 1000).

Table 3
Nonlinear Poisson equation: Determining 𝑅𝑚0 by the procedure from Remark 6 for 𝑑 = 3. NN architecture: [𝑑, 1000, 1];
(𝑁bc , 𝑁in) = (100, 100).
𝑅𝑚 0.01 0.05 0.1 0.5 1 2

𝑒𝑙∞ 5.44E−6 4.10E−9 2.59E−10 1.65E−8 5.92E−6 4.59E−4
𝑒𝑙2 9.07E−7 7.57E−10 3.16E−11 3.79E−9 1.25E−6 9.01E−5

Table 4
Nonlinear Poisson equation: 𝑅𝑚0 determined
by the procedure from Remark 6 for several
dimensions.
𝑑 3 5 9

𝑅𝑚0 0.1 0.05 0.001

3.1.2. Nonlinear Poisson equation

We consider the domain 𝛺 = [−1, 1]𝑑 and the following problem on 𝛺,

−∇ ⋅ (𝑎(𝑢)∇𝑢) = 𝑓 (𝑥), 𝑥 ∈ 𝛺, (43a)

𝑢 = 𝑔(𝑥), 𝑥 ∈ 𝜕𝛺, (43b)

where 𝑎(𝑢) = 𝑢2 − 𝑢, 𝑔(𝑥) = exp
(

− 1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

, and 𝑓 (𝑥) = 1
𝑑

[

−3 exp
(

− 3
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

+ 2 exp
(

− 2
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)]

. This system has an exact

solution 𝑢(𝑥) = exp
(

− 1 ∑𝑑 𝑥
)

.

14
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Fig. 6. Nonlinear Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of training parameters (𝑀) for dimensions (a) 𝑑 = 3, (b) 𝑑 = 5, and (c) 𝑑 = 9. NN
architecture: [𝑑,𝑀, 1] in (a, b, c); (𝑁bc , 𝑁in) = (100, 100) in (a, b) and (100,220) in (c).

Fig. 7. Nonlinear Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of collocation points on each boundary (𝑁bc). NN architecture: [𝑑,𝑀, 1] with 𝑀 = 500
in (a), 𝑀 = 2500 in (b), and 𝑀 = 3000 in (c). 𝑁in = 100 in (a, b, c).

We employ the same notations as in Section 3.1.1. The simulation parameters include the network architecture 𝐌arch = [𝑑,𝑀, 1],
the random collocation points characterized by (𝑁bc, 𝑁in), the random test points characterized by (𝑁 (𝑣)

bc , 𝑁
(𝑣)
in ) = (100, 7000), the set

of 𝑄(𝑣)×𝑄(𝑣) uniform grid points with 𝑄(𝑣) = 800 on selected cross sections of the domain for evaluating the ELM and exact solutions,
and 𝑅𝑚 = 𝑅𝑚0 for generating the random hidden-layer coefficients in the ELM neural network.

We first employ a fixed network architecture [𝑑, 1000, 1] and a set of collocation points characterized by (𝑁bc, 𝑁in) = (100, 100)
to determine 𝑅𝑚0 by the procedure from Remark 6. Table 3 lists the 𝑒𝑙∞ and 𝑒𝑙2 errors corresponding to several 𝑅𝑚 values for
generating the random hidden-layer coefficients in ELM for 𝑑 = 3, which leads to 𝑅𝑚0 ≈ 0.1. Table 4 lists the 𝑅𝑚0 values determined
by this procedure for several dimensions ranging from 𝑑 = 3 to 𝑑 = 9, using the same simulation parameters (network architecture,
collocation points) as in Table 3. One can again observe that 𝑅𝑚0 decreases with increasing 𝑑. We employ 𝑅𝑚 = 𝑅𝑚0 when generating
the random hidden-layer coefficients in ELM in the subsequent tests.

Fig. 6 illustrates the convergence behavior of the ELM errors with respect to the number of training parameters. It shows the
𝑒𝑙∞ and 𝑒𝑙2 errors as a function of the number of training parameters (𝑀) for three problem dimensions (𝑑 = 3, 5, 9). The number
of training collocation points is fixed, and their values are provided in the figure caption. The ELM errors decrease dramatically
(quasi-exponentially) with increasing 𝑀 initially, but gradually plateau when 𝑀 becomes large. The 𝑒𝑙2 error reaches a level around
10−11 for 𝑑 = 3, around 10−9 for 𝑑 = 5, and around 10−5 for 𝑑 = 9 in the range of parameters tested here. The nonlinear least
squares (Gauss–Newton) method typically takes several dozen iterations to converge.

The convergence of the ELM errors with respect to the number of collocation points is illustrated by Figs. 7 and 8, which show
the 𝑒𝑙∞ and 𝑒𝑙2 errors as a function of the boundary collocation points (𝑁bc) and the interior collocation points (𝑁in), respectively.
The other crucial simulation parameters are provided in the captions of these figures. The ELM errors decrease significantly
(approximately exponentially initially) with increasing number of boundary collocation points. On the other hand, increasing the
number of interior collocation points in general only slightly improves the error in dimensions 𝑑 = 5 and 𝑑 = 9, and the error
reduction is more significant in the lower dimension 𝑑 = 3. These behaviors are similar to what has been observed with the Poisson
equation in the previous subsection.

Finally, Fig. 9 shows distributions of the ELM solution, the exact solution, and the ELM point-wise absolute error on three cross
sections of the domain for 𝑑 = 5: the 𝑥1−𝑥3, 𝑥2−𝑥4, and 𝑥4−𝑥5 planes. For each plane, the other coordinates of the plane are set
to zero. The ELM simulation parameters are listed in the figure caption, and the distributions are plotted on a set of 800 × 800
uniform grid points in these planes. It is evident that the ELM method has captured the solution very accurately.
15
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Fig. 8. Nonlinear Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of interior collocation points (𝑁in). NN architecture: [𝑑,𝑀, 1] with 𝑀 = 500 in (a),
𝑀 = 2500 in (b), and 𝑀 = 3000 in (c). 𝑁bc = 100 in (a, b) and 80 in (c).

Fig. 9. Nonlinear Poisson equation (𝑑 = 5): Distributions of the exact solution (left column), the ELM solution (middle column), and the ELM point-wise absolute
error (right column) in the 𝑥1−𝑥3 plane (top row), 𝑥2−𝑥4 plane (middle row), and the 𝑥4−𝑥5 plane (bottom row). NN architecture: [𝑑, 2500, 1]; (𝑁bc , 𝑁in) = (100, 100).

3.1.3. Advection diffusion equation
We next test the ELM method using the high-dimensional advection-diffusion equation. Let 𝛺 = [−1, 1]𝑑 and 𝑇 = 1. Consider the

initial boundary value problem on the spatial–temporal domain (𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ],

𝜕𝑡𝑢 − ∇2𝑢 + 𝑅 ⋅ ∇𝑢 = 𝑓 (𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ], (44a)

𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝜕𝛺 × [0, 𝑇 ], (44b)

𝑢(𝑥, 0) = ℎ(𝑥), 𝑥 ∈ 𝛺, (44c)
16
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Table 5
Advection diffusion equation: Determining 𝑅𝑚0 based on the procedure from Remark 6 for 𝑑 = 3. NN architecture: [𝑑+1, 1000, 1];
(𝑁bc , 𝑁in , 𝑁𝑡0 ) = (100, 100, 1000).

𝑅𝑚 5E−3 1E−2 5E−2 1E−1 5E−1 1
𝑒𝑙∞ 9.79E−4 9.33E−5 6.21E−8 2.15E−8 1.92E−5 4.82E−4
𝑒𝑙2 2.28E−4 8.17E−6 7.01E−9 1.38E−9 1.98E−6 8.54E−5

Table 6
Advection diffusion equation: 𝑅𝑚0 determined
by the procedure from Remark 6 for several
problem dimensions. The simulation parameters
are the same as those in Table 5.
𝑑 3 6 10

𝑅𝑚0 0.1 0.05 0.05

where 𝑅 = 1
𝑑 (1, 1,… , 1)𝑇 , 𝑓 (𝑥, 𝑡) = 1

𝑑 cos
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

exp(− 𝑡
𝑑 ) on 𝜕𝛺 × [0, 𝑇 ], and ℎ(𝑥) = sin

(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

. We employ the following
analytic solution for this problem, 𝑢(𝑥, 𝑡) = sin( 1𝑑

∑𝑑
𝑖=1 𝑥𝑖) exp(−

𝑡
𝑑 ). 𝑔(𝑥, 𝑡) in (44b) is set according to this expression.

To simulate this problem with ELM, we treat the time variable 𝑡 in the same way as the spatial coordinate 𝑥. We employ a
neural network with an architecture, 𝐌arch = [𝑑 + 1,𝑀, 1], in which the (𝑑 + 1) input nodes represent (𝑥, 𝑡) and the single output
node represents the solution 𝑢(𝑥, 𝑡). So the problem has been effectively treated as a (𝑑 +1)-dimensional problem in the simulations.
We enforce the initial condition on 𝑁𝑡0 = 1000 random collocation points on 𝛺 at 𝑡 = 0, and enforce the boundary condition on
𝑁bc random collocation points on each of the boundaries 𝜕𝛺 × [0, 𝑇 ]. 𝑁in denotes the number of random collocation points on the
interior of 𝛺 × [0, 𝑇 ]. After the neural network is trained, the 𝑒𝑙∞ and 𝑒𝑙2 errors are computed on a set of random test points from

× {𝑇 } characterized by (𝑁 (𝑣)
bc , 𝑁

(𝑣)
in ) = (100, 7000). Here 𝑁 (𝑣)

in and 𝑁 (𝑣)
bc denote the number of random test points from the interior

f 𝛺 × {𝑇 } and from each of the boundaries of 𝛺 × {𝑇 }, respectively.
Table 5 shows the determination of 𝑅𝑚0 using the procedure from Remark 6 for dimension 𝑑 = 3, leading to 𝑅𝑚0 ≈ 0.1.

able 6 lists the 𝑅𝑚0 values corresponding to several problem dimensions for the advection diffusion equation. In these tests for
etermining 𝑅𝑚0, we have employed an NN architecture [𝑑 + 1, 1000, 1], and the number of collocation points is characterized by

(𝑁bc, 𝑁in, 𝑁𝑡0 ) = (100, 100, 1000). In subsequent tests of this section, the hidden-layer coefficients are set to uniform random values
rom [−𝑅𝑚0, 𝑅𝑚0].

Fig. 10 shows distributions of the exact solution and the ELM solution, as well as the point-wise absolute error of the ELM
solution, to the advection diffusion equation in dimension 𝑑 = 10 on several cross sections of the spatial–temporal domain. These
cross sections are the 𝑥1−𝑥2 plane, the 𝑥5−𝑥6 plane, and the 𝑥9−𝑡 plane. Each plane is located in the middle of the spatial–temporal
omain with respect to the rest of the coordinates. For example, the 𝑥𝑖−𝑥𝑗 plane is characterized by 𝑡 = 𝑇 ∕2 and 𝑥𝑘 = 0 (𝑘 ≠ 𝑖, 𝑗)

for 1 ⩽ 𝑘 ⩽ 𝑑, and the 𝑥𝑖−𝑡 plane is characterized by 𝑥𝑘 = 0 (𝑘 ≠ 𝑖) for 1 ⩽ 𝑘 ⩽ 𝑑. The network architecture and the other simulation
parameters are provided in figure caption. It is evident that ELM has captured the solution quite accurately, with the maximum
error on the order of 10−7 on these cross sections.

Fig. 11 illustrates the effect of the trainable parameters on the ELM accuracy. Here we show the 𝑒𝑙∞ and 𝑒𝑙2 errors of ELM versus
the number of training parameters 𝑀 in the neural network for solving the advection-diffusion equation in dimensions 𝑑 = 3, 6 and
10. The network architecture is given by [𝑑 + 1,𝑀, 1], where 𝑀 is varied in the tests. The other simulation parameters are listed in
the figure caption. The ELM errors can be observed to decrease dramatically (close to exponential rate) with increasing number of
training parameters. The 𝑒𝑙2 (rms) error levels are on the order of 10−9 (for 𝑑 = 3), and 10−6 (for 𝑑 = 6 and 10) for the range of
arameters tested here.

The effect of the boundary collocation points on the ELM accuracy is illustrated in Fig. 12. The number of interior collocation
oints, on the other hand, has little (or much less) influence on the ELM results compared with the boundary points. Fig. 12 shows
he 𝑒𝑙∞ and 𝑒𝑙2 errors versus 𝑁bc (collocation points on each boundary) for dimensions 𝑑 = 3, 6 and 10. As 𝑁bc increases, the errors
ppear to decrease approximately exponentially, and then level off when 𝑁bc reaches a certain level.

.1.4. Korteweg-de Vries equation
In this subsection we consider the Korteweg–De Vries (KdV) equation,

𝜕𝑡𝑢 +
𝑑
∑

𝑖=1
𝜕3𝑥𝑖𝑥𝑖𝑥𝑖𝑢 = 𝑓 (𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ], (45a)

𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝜕𝛺 × [0, 𝑇 ], (45b)

𝑢(𝑥, 0) = ℎ(𝑥), 𝑥 ∈ 𝛺, (45c)
17
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Fig. 10. Advection diffusion equation (𝑑 = 10): Distributions of the exact solution (left column), the ELM solution (middle column), and the point-wise absolute
error of ELM (right column) in selected cross sections of the domain, the 𝑥1−𝑥2 plane (first row), the 𝑥5−𝑥6 plane (middle row), and the 𝑥9−𝑡 plane (bottom
row). NN architecture: [𝑑 + 1, 5000, 1]; (𝑁bc , 𝑁in , 𝑁𝑡0 ) = (160, 10, 1000). For each cross section, the other coordinates of the plane are in the middle of the domain
in each direction.

Fig. 11. Advection diffusion equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of training parameters (𝑀) for problem dimensions (a) 𝑑 = 3, (b) 𝑑 = 6, and (c)
𝑑 = 10. NN architecture: [𝑑 + 1,𝑀, 1]; (𝑁bc , 𝑁in , 𝑁𝑡0 ) = (200, 10, 1000) in (a), (80, 10, 1000) in (b), and (160, 10, 1000) in (c). 𝑀 is varied in (a, b, c).

where 𝛺 = [−1, 1]𝑑 and 𝑇 = 1. In these equations 𝑓 (𝑥, 𝑡) = − 1
𝑑2

[

sin
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

+ cos
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)]

exp
(

− 𝑡
𝑑2

)

, 𝑔(𝑥, 𝑡) =

sin
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

exp
(

− 𝑡
𝑑2

)

on 𝜕𝛺×[0, 𝑇 ], and ℎ(𝑥) = sin
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

in 𝛺. This problem has an exact solution 𝑢(𝑥, 𝑡) = sin
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

exp
(

− 𝑡
𝑑2

)

. The notations below follow those of the previous subsections.

Table 7 documents the tests for determining the 𝑅𝑚0 for 𝑑 = 5 using the procedure from Remark 6, and Table 8 lists the resultant
𝑅 values corresponding to the dimensions 𝑑 = 3, 5 and 10 from this procedure. The simulation parameters employed in these tests
18
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Fig. 12. Advection diffusion equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of boundary collocation points (𝑁bc) for dimensions (a) 𝑑 = 3, (b) 𝑑 = 6, and (c)
𝑑 = 10. NN architecture: [𝑑 + 1,𝑀, 1] with 𝑀 = 1000 in (a), 𝑀 = 2000 in (b), and 𝑀 = 3000 in (c). (𝑁in , 𝑁𝑡0 ) = (10, 1000) in (a, b, c). 𝑁bc is varied in (a, b, c).

Table 7
KdV equation: Determining 𝑅𝑚0 based on the procedure of Remark 6 for 𝑑 = 5. NN architecture: [𝑑 + 1, 2000, 1]; (𝑁in , 𝑁bc , 𝑁𝑡0 ) =
(100, 100, 1000).
𝑅𝑚 1E−3 5E−3 1E−2 5E−2 1E−1
𝑒𝑙∞ 3.15E−4 1.48E−5 5.58E−6 2.51E−7 1.05E−6
𝑒𝑙2 2.31E−5 1.90E−6 2.97E−7 3.55E−8 1.71E−7

Table 8
KdV equation: 𝑅𝑚0 determined by the procedure
from Remark 6 for several problem dimensions.
In these tests the NN architecture and the num-
ber of collocation points are the same as those in
Table 7 for 𝑑 = 3 and 5. For 𝑑 = 10, the NN ar-
chitecture is [𝑑 + 1, 3000, 1], and (𝑁in , 𝑁bc , 𝑁𝑡0 ) =
(10, 100, 1000).
𝑑 3 5 10

𝑅𝑚0 0.05 0.05 0.05

are provided in the captions of these figures. We use 𝑅𝑚 = 𝑅𝑚0 for generating the random hidden-layer coefficients in the following
tests with ELM.

Fig. 13 provides an overview of distributions of the exact solution, the ELM solution, and the ELM point-wise absolute error in
several 2D cross sections (𝑥1−𝑥2 plane, 𝑥3−𝑥4 plane, 𝑥5−𝑡 plane) of the spatial–temporal domain for the KdV equation in dimension
𝑑 = 5. These cross sections are located in the middle of the domain with regard to the rest of the coordinates. The main simulation
parameters for these results are listed in the figure caption. The ELM method has evidently captured the solution accurately, with
an absolute error on the level of 10−9 in these cross sections.

The convergence behavior of the ELM method has been investigated and the test results are documented in Figs. 14 and 15. These
figures depict the 𝑒𝑙∞ and 𝑒𝑙2 errors for three problem dimensions (𝑑 = 3, 5 and 10) with respect to number of training parameters and
the number of boundary collocation points (per boundary), respectively. The crucial simulation parameters in the tests are listed in
the captions of these figures. With increasing number of training parameters in the network, the ELM errors decrease approximately
exponentially. With respect to the number of boundary collocation points (𝑁bc), the ELM errors initially decreases approximately
exponentially and gradually stagnates as 𝑁bc reaches a certain level for 𝑑 = 3 and 5. But for 𝑑 = 10, the reduction in the ELM errors
is not as significant as for the lower dimensions with increasing 𝑁bc.

3.2. Numerical tests with the ELM/A-TFC method

In this subsection we test the performance of the combined ELM/A-TFC method from Section 2.4 using several high-dimensional
linear/nonlinear PDEs.

3.2.1. Poisson equation
We employ the same Poisson problem as in Section 3.1.1 to test the ELM/A-TFC method. the governing equations are given

by Eqs. (42). The problem settings here follow those of Section 3.1.1. The notations below follow those of the test problems in
Section 3.1.

Let us first determine the 𝑅𝑚0 using the procedure from Remark 6 for generating the random hidden-layer coefficients with the
ELM/A-TFC method. Table 9 shows the test using this procedure for dimension 𝑑 = 7, leading to 𝑅 ≈ 0.01. The 𝑅 values for
19
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Fig. 13. KdV equation (𝑑 = 5): Distributions of exact solution (left column), the ELM solution (middle column), and the point-wise absolute error of ELM (right
column) on cross sections of the spatial–temporal domain: the 𝑥1−𝑥2 plane (top row), 𝑥3−𝑥4 plane (middle row), and 𝑥5−𝑡 plane (bottom row). NN architecture:
[𝑑 + 1, 1000, 1]; (𝑁in , 𝑁bc , 𝑁𝑡0 ) = (10, 150, 1000).

Fig. 14. KdV equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of training parameters (𝑀) for dimensions (a) 𝑑 = 3, (b) 𝑑 = 5, and (c) 𝑑 = 10. NN architecture:
[𝑑 + 1,𝑀, 1]; (𝑁in , 𝑁𝑡0 ) = (10, 1000) in (a, b, c); 𝑁bc = 200 in (a), 150 in (b), and 100 in (c); 𝑀 is varied in (a, b, c).

Table 9
Poisson equation (𝑑 = 7): determining 𝑅𝑚0 for the ELM/A-TFC method using the procedure from Remark 6. NN architecture:
[𝑑, 3000, 1]; (𝑁bc , 𝑁in) = (100, 1000).
𝑅𝑚 1E−3 5E−3 0.01 0.05 0.1
𝑒𝑙∞ 2.65E−4 6.06E−5 2.94E−5 4.40E−5 6.64E−4
𝑒𝑙2 3.19E−5 5.19E−6 2.51E−6 4.11E−6 6.06E−5
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Fig. 15. KdV equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of collocation points on each boundary (𝑁bc) for several problem dimensions. NN architecture:
[𝑑 + 1,𝑀, 1]; 𝑀 = 1000 in (a), 2000 in (b), and 3000 in (c). (𝑁in , 𝑁𝑡0 ) = (100, 1000) in (a), (10, 1000) in (b, c). 𝑁bc is varied in (a, b, c).

Table 10
Poisson equation: 𝑅𝑚0 for ELM/A-TFC deter-
mined by the procedure from Remark 6. The
simulation parameters (NN architecture, colloca-
tion points) here follow those of Table 9, except
that for 𝑑 = 3 the NN architecture is [𝑑, 1000, 1].
𝑑 3 7

𝑅𝑚0 0.1 0.01

Table 11
Poisson equation: Comparison of 𝑒𝑙∞ and 𝑒𝑙2 errors obtained with ELM and ELM/A-TFC corresponding to a set of boundary
collocation points (𝑁bc). NN architecture: [𝑑,𝑀, 1], with 𝑀 = 1000 for 𝑑 = 3 and with 𝑀 = 3000 for 𝑑 = 7. 𝑁in = 1000 in all
cases.
Dimension 𝑁bc ELM ELM/A-TFC

𝑒𝑙∞ 𝑒𝑙2 𝑒𝑙∞ 𝑒𝑙2

𝑑 = 3 10 1.16E−4 1.11E−5 6.08E−5 1.40E−5
100 1.03E−9 7.62E−11 1.10E−10 3.57E−11
500 2.96E−10 3.83E−11 6.76E−11 2.47E−11
1000 2.62E−10 3.58E−11 4.69E−11 1.50E−11

𝑑 = 7 80 1.12E−5 1.09E−6 9.81E−5 7.24E−6
90 9.26E−6 7.30E−7 6.85E−5 4.64E−6
100 8.16E−6 6.64E−7 2.96E−5 2.51E−6
110 7.30E−6 6.04E−7 2.48E−5 2.21E−6

different dimensions are listed in Table 10, which we will use for generating the random hidden-layer coefficients with ELM/A-TFC
in subsequent tests.

An illustration of the distributions of the exact solution, the ELM/A-TFC solution, and the point-wise absolute error of the ELM/A-
TFC solution for 𝑑 = 7 is provided in Fig. 16 for several 2D cross-sections of the domain (the 𝑥1−𝑥2, 𝑥4−𝑥5, 𝑥6−𝑥7 planes). These
planes are located in the middle of the domain with respect to the rest of the coordinates. These results are obtained using a
network architecture 𝐌arch = [𝑑, 3000, 1], with the collocation points characterized by (𝑁bc, 𝑁in) = (200, 10). The ELM/A-TFC results
are observed to be quite accurate, with the maximum errors on the order of 10−6 or 10−7 in these cross sections.

The convergence behavior of ELM/A-TFC with respect to the number of training parameters is illustrated in Fig. 17 for dimensions
𝑑 = 3 and 𝑑 = 7. Here the width of the single hidden layer in the network is varied, while the numbers of boundary/interior
collocation points are fixed and listed in the figure caption. We observe an initial exponential decrease in the 𝑒𝑙∞ and 𝑒𝑙2 errors with
increasing number of training parameters. Then the errors stagnate as the number of training parameters reaches a certain level.

Figs. 18 and 19 demonstrate the convergence behavior of ELM/A-TFC with respect to the number of boundary and interior
collocation points, respectively. Here the neural network architecture is 𝐌arch = [𝑑,𝑀, 1], with a fixed 𝑀 = 1000 for 𝑑 = 3 and
𝑀 = 3000 for 𝑑 = 7. We observe an exponential decrease in the 𝑒𝑙∞ and 𝑒𝑙2 errors (before saturation), as the number of boundary
collocation points (𝑁bc) increases. On the other hand, the number of interior collocation points (𝑁in) appears to have little effect
on the ELM/A-TFC accuracy. These behaviors are similar to what have been observed with the ELM method in Section 3.1.

Finally we show a comparison between the ELM method and the ELM/A-TFC method for solving the Poisson equation. Table 11
lists the 𝑒𝑙∞ and 𝑒𝑙2 errors obtained by ELM and ELM/A-TFC corresponding to a set of 𝑁bc values for two problem dimensions (𝑑 = 3
and 7). In these tests, the NN architecture is 𝐌arch = [𝑑,𝑀, 1] with 𝑀 = 1000 for 𝑑 = 3 and 𝑀 = 3000 for 𝑑 = 7, and the interior
collocation points is fixed at 𝑁in = 1000. It is observed that the accuracy with ELM and ELM/A-TFC is generally comparable, and
the ELM/A-TFC method appears to be slightly more accurate for lower dimensions. This can be attributed to the fact that the A-TFC
21
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Fig. 16. Poisson equation (𝑑 = 7): Distributions of the exact solution (left column), the ELM/A-TFC solution (middle column), and the point-wise absolute
error of ELM/A-TFC (right column) in several 2D cross-sections of the domain (top row: 𝑥1−𝑥2 plane; middle row: 𝑥4−𝑥5 plane; bottom row: 𝑥6−𝑥7 plane). NN
architecture: [𝑑, 3000, 1]; (𝑁bc , 𝑁in) = (200, 10).

Fig. 17. Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors of ELM/A-TFC versus the number of training parameters (𝑀) for dimensions (a) 𝑑 = 3 and (b) 𝑑 = 7. NN architecture:
[𝑑,𝑀, 1] (𝑀 varied); (𝑁bc , 𝑁in) = (100, 1000) in (a, b).

resembles the full TFC more closely in lower dimensions. Therefore A-TFC enforces the boundary conditions more accurately (closer
to TFC) in lower dimensions. On the other hand, we note that the computational effort and cost involved in ELM/A-TFC is generally
higher than that of ELM, because of the computations associated with the A-TFC terms.

3.2.2. Nonlinear Poisson equation
In this subsection we test the ELM/A-TFC method using the nonlinear Poisson problem from Section 3.1.2, under the same

problem settings and parameters.
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Fig. 18. Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors of ELM/A-TFC versus the number of boundary collocation points (𝑁bc). NN architecture: [𝑑,𝑀, 1], with 𝑀 = 1000
in (a) and 3000 in (b). 𝑁in = 1000 in (a, b), while 𝑁bc is varied.

Fig. 19. Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors of ELM/A-TFC versus the number of interior collocation points (𝑁in). NN architecture: [𝑑,𝑀, 1], with 𝑀 = 1000 in
(a) and 3000 in (b). 𝑁bc = 100 in (a, b), while 𝑁in is varied.

Table 12
Nonlinear Poisson equation (𝑑 = 3): Determining 𝑅𝑚0 for the ELM/A-TFC method based on the procedure from Remark 6. NN
architecture: [𝑑, 500, 1]; (𝑁bc , 𝑁in) = (100, 10).
𝑅𝑚 0.01 0.05 0.1 0.5 1.0
𝑒𝑙∞ 5.82E−6 5.21E−9 2.92E−9 3.47E−6 4.85E−1
𝑒𝑙2 1.64E−6 9.78E−10 5.72E−10 7.34E−7 6.71E−2

Table 13
Nonlinear Poisson equation: 𝑅𝑚0 for ELM/A-TFC
determined by the procedure from Remark 6.
The simulation parameters here for 𝑑 = 3 follow
those of Table 10. For 𝑑 = 7, NN architecture:
[𝑑, 3000, 1], (𝑁𝐜 , 𝑁in) = (300, 100).
𝑑 3 7

𝑅𝑚0 0.1 0.01

Tables 12 and 13 show the tests for determining the 𝑅𝑚0 using the procedure from Remark 6. The results lead to 𝑅𝑚0 ≈ 0.1 for
dimension 𝑑 = 3 and 𝑅𝑚0 ≈ 0.01 for 𝑑 = 7. These values are employed for generating the hidden-layer coefficients in the neural
network in the subsequent simulations.

Fig. 20 shows distributions of the exact solution, the ELM/A-TFC solution, and the point-wise absolute error of ELM/A-TFC in
several cross sections of the domain for the nonlinear Poisson equation in dimension 𝑑 = 7. The ELM/A-TFC results are obtained with
an NN architecture 𝐌arch = [𝑑, 1000, 1] and the random collocation points characterized by (𝑁bc, 𝑁in) = (50, 10). The ELM/A-TFC
method has captured the solution accurately, with the maximum error on the order 10−5 in the 𝑥1−𝑥3 and 𝑥3−𝑥6 planes and on the
order of 10−7 in the 𝑥6−𝑥7 plane.

The convergence behavior of the ELM/A-TFC method is illustrated by Figs. 21 and 22 for problem dimensions 𝑑 = 3 and 𝑑 = 7.
Fig. 21 shows the 𝑒𝑙∞ and 𝑒𝑙2 errors as a function of the number of training parameters in the neural network. In this set of tests, the
number of boundary/interior collocation points is fixed while the number of training parameters is varied. We can observe a rapid
decrease (approximately exponential) in the ELM/A-TFC errors as the number of training parameters increases (before saturation).
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Fig. 20. Nonlinear Poisson equation (𝑑 = 7): Distributions of the exact solution (left column), the ELM/A-TFC solution (middle column), and the point-wise
absolute error of ELM/A-TFC in several cross sections (top row: 𝑥1−𝑥3 plane; middle row: 𝑥3−𝑥6 plane; bottom row: 𝑥6−𝑥7 plane) of the domain. These cross
sections are located in the middle of the domain with respect to the rest of the coordinates. NN architecture: [𝑑, 1000, 1], (𝑁bc , 𝑁in) = (50, 10).

Fig. 21. Nonlinear Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors versus the number of training parameters (𝑀) in the ELM/A-TFC network. NN architecture: [𝑑,𝑀, 1]
(with 𝑀 varied); (𝑁bc , 𝑁in) = (100, 10) in (a) and (50, 100) in (b).

Fig. 22 shows the 𝑒𝑙∞ and 𝑒𝑙2 errors as a function of the number of boundary collocation points (𝑁bc). In this set of tests the number
of training parameters and the number of interior collocation points are fixed, while the number of boundary collocation points (𝑁bc)
is varied systematically. The ELM/A-TFC errors initially decrease rapidly as 𝑁bc increases, and then level off when 𝑁bc increases
beyond a certain level. We would like to further point out that the number of interior collocation points has little effect on the
ELM/A-TFC accuracy (result not shown here), similar to what has been observed with the ELM method.
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Fig. 22. Nonlinear Poisson equation: 𝑒𝑙∞ and 𝑒𝑙2 errors of ELM/A-TFC versus the number of boundary collocation points (𝑁bc). NN architecture: [𝑑,𝑀, 1], with
𝑀 = 500 in (a) and 𝑀 = 1000 in (b); 𝑁in = 10 in (a) and 𝑁in = 100 in (b); 𝑁bc varied in (a, b).

Table 14
Heat equation: Determination of 𝑅𝑚0 for ELM/A-TFC using the procedure from Remark 6 for 𝑑 = 3. NN architecture: [𝑑+1, 1000, 1];
(𝑁bc , 𝑁in , 𝑁𝑡0 ) = (100, 100, 1000).

𝑅𝑚 1E−3 1E−2 5E−2 1E−1 5E−1 1
𝑒𝑙∞ 6.05E−3 4.15E−4 3.56E−6 5.32E−7 2.64E−5 8.21E−4
𝑒𝑙2 1.16E−3 6.18E−5 6.37E−7 9.35E−8 6.03E−6 1.54E−4

Table 15
Heat equation: 𝑅𝑚0 for ELM/A-TFC determined
by the procedure from Remark 6. The simulation
parameters here follow those of Table 14.
𝑑 3 7

𝑅𝑚0 0.1 0.005

3.2.3. Heat equation
We next consider the domain 𝛺 = [−1, 1]𝑑 and the heat equation on 𝛺 × [0, 𝑇 ] (with 𝑇 = 1),

𝜕𝑡𝑢 − 𝛥𝑢 = 𝑓 (𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝛺 × [0, 𝑇 ], (46)

𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝜕𝛺 × [0, 𝑇 ], (47)

𝑢(𝑥, 0) = ℎ(𝑥), 𝑥 ∈ 𝛺, (48)

where 𝑓 (𝑥, 𝑡) = ( 1𝑑 − 1) cos
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

exp(−𝑡), 𝑔(𝑥, 𝑡) = cos
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

exp(−𝑡), and ℎ(𝑥) = cos
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

. This problem has the

exact solution 𝑢(𝑥, 𝑡) = cos
(

1
𝑑
∑𝑑

𝑖=1 𝑥𝑖
)

exp(−𝑡).
The simulation settings and the notations here follow those of Section 3.1.3. We employ a neural network architecture 𝐌arch =

[𝑑 + 1,𝑀, 1], where the (𝑑 + 1) input nodes denote (𝑥, 𝑡) and 𝑀 is the number of training parameters in the network. 𝑁bc, 𝑁in and
𝑁𝑡0 denote the number of random collocation points on each of the boundary of 𝜕𝛺 × [0, 𝑇 ], on the interior of 𝛺 × [0, 𝑇 ], and on 𝛺
at 𝑡 = 0, respectively.

Table 14 summarizes the tests for determining the 𝑅𝑚0 with the ELM/A-TFC method using the procedure from Remark 6 for
𝑑 = 3, which lead to 𝑅𝑚0 ≈ 0.1. Table 15 lists the 𝑅𝑚0 values for the problem dimensions we have considered for this problem. The
hidden-layer coefficients are set to uniform random values generated on [−𝑅𝑚0, 𝑅𝑚0] in the subsequent simulations.

Fig. 23 illustrates the distributions of the exact solution, the ELM/A-TFC solution, and the point-wise absolute error of ELM/A-TFC
in several cross sections of the spatial–temporal domain for the problem dimension 𝑑 = 7. It is observed that the ELM/A-TFC method
has captured the solution fairly accurately, with the maximum error on the order of 10−4 in these cross sections.

Figs. 24 and 25 demonstrate the convergence behavior of the ELM/A-TFC method with respect to the number of training
parameters and the number of boundary collocation points. The simulation parameters in these tests have been provided in the
figure captions. The characteristics are similar to what have been observed for other test problems in previous subsections. With
regard to the number of interior collocation points, we again observe that it has little influence on the accuracy of ELM/A-TFC
(result not shown here).

3.3. Comparison with PINN

We next compare the current ELM method with the classical physics-informed neural network (PINN) method [15] for the Poisson
equation of Section 3.1.1 and the nonlinear Poisson equation of Section 3.1.2 for a range of problem dimensions. In PINN all the
network parameters are trained, and the loss function consists of two terms, the term for the PDE residual and the one for the
25
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Fig. 23. Heat equation: (𝑑 = 7): Distributions of the exact solution (left column), the ELM/A-TFC solution (middle column), and the point-wise absolute
error of ELM/A-TFC in several cross sections (top row: 𝑥1−𝑥4 plane; middle row: 𝑥4−𝑥5 plane; bottom row: 𝑥7−𝑡 plane) of the spatial–temporal domain
𝛺 × [0, 𝑇 ]. These cross sections are located in the middle of the spatial–temporal domain with respect to the rest of coordinates. NN architecture: [𝑑 + 1, 3000, 1];
(𝑁bc , 𝑁in , 𝑁𝑡0 ) = (120, 10, 1000).

Fig. 24. Heat equation: 𝑒𝑙∞ and 𝑒𝑙2 errors of ELM/A-TFC versus the number of training parameters (𝑀). NN architecture: [𝑑 + 1,𝑀, 1] (with 𝑀 varied);
(𝑁bc , 𝑁in , 𝑁𝑡0 ) = (100, 100, 1000) in (a) and (100, 10, 1000) in (b).

residual of the boundary conditions. We employ the penalty coefficients (1 − 𝑝bc) and 𝑝bc in front of the loss terms for the PDE and
the boundary conditions, respectively, where 𝑝bc ∈ (0, 1) is a constant. The Adam optimizer is used to train the neural network in
PINN. Our PINN implementation is also based on the Tensorflow and Keras libraries.

With PINN, we have varied the random initialization of the weight/bias coefficients, the neural network architecture, the learning
rate, the learning rate schedule, and the penalty coefficient 𝑝 systematically for training the neural network. The PINN results
26
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Fig. 25. Heat equation: 𝑒𝑙∞ and 𝑒𝑙2 errors of ELM/A-TFC versus the number of boundary collocation points (𝑁bc). NN architecture: [𝑑 + 1,𝑀, 1], with 𝑀 = 1000
in (a) and 𝑀 = 3000 in (b). (𝑁in , 𝑁𝑡0 ) = (100, 1000) in (a) and (10, 1000) in (b). 𝑁bc is varied in (a, b).

Table 16
Poisson equation: Comparison of 𝑒𝑙∞ and 𝑒𝑙2 errors and the network training time between ELM and classical PINN. See the text for simulation
parameters.
Dimension Classical PINN Current (ELM)

𝑒𝑙∞ 𝑒𝑙2 train-time (s) 𝑒𝑙∞ 𝑒𝑙2 train-time (s)

𝑑 = 3 3.84E−3 6.90E−4 326.8 2.34E−10 4.42E−12 2.6
𝑑 = 5 1.25E−2 1.45E−3 552.5 1.30E−8 5.20E−10 3.5
𝑑 = 7 8.12E−2 2.85E−3 688.1 8.16E−6 6.64E−7 11.2
𝑑 = 9 8.56E−1 1.16E−1 964.0 3.95E−5 5.26E−6 14.6

Table 17
Nonlinear Poisson equation: Comparison of 𝑒𝑙∞ and 𝑒𝑙2 errors and the network training time between ELM and classical PINN. See the text for
simulation parameters.
Dimension Classical PINN Current (ELM)

𝑒𝑙∞ 𝑒𝑙2 train-time (s) 𝑒𝑙∞ 𝑒𝑙2 train-time (s)

𝑑 = 3 2.23E−3 4.77E−4 1977.4 8.10E−10 1.20E−11 29.8
𝑑 = 5 2.52E−3 3.75E−4 2526.3 3.20E−8 1.13E−9 112.5
𝑑 = 7 1.89E−2 1.24E−3 3517.9 3.96E−5 3.23E−6 220.9
𝑑 = 9 4.781E−2 1.33E−2 5036.0 1.61E−4 1.27E−5 678.8

reported below are the best we have obtained in these tests. It should be noted that much poorer PINN results (not used for
comparison or shown here) have been obtained in these tests.

Table 16 compares the 𝑒𝑙∞ and 𝑒𝑙2 errors, as well as the network training time (in seconds), obtained with PINN and with the
current ELM method for solving the Poisson problem from Section 3.1.1 in dimensions ranging from 𝑑 = 3 to 𝑑 = 9. The PINN results
are obtained with a network architecture [𝑑, 30, 30, 30, 30, 30, 30, 1] (tanh activation function), a penalty coefficient 𝑝bc = 0.99, and
the random collocation points characterized by (𝑁bc, 𝑁in) = (100, 3000) for the boundary and interior of the domain for dimensions
𝑑 = 3, 5 and 7 and (𝑁bc, 𝑁in) = (200, 5000) for dimension 𝑑 = 9. A staircase learning rate schedule has been employed with PINN,
starting with a learning rate 0.01 and decaying by a rate 0.5 every 500 epochs. The PINN has been trained for a total of 5000 epochs
for the Poisson problem. The ELM results are obtained using a network architecture [𝑑, 2000, 1] for dimensions 𝑑 = 3 and 5 and
[𝑑, 3000, 1] for dimensions 𝑑 = 7 and 9. The ELM random collocation points are characterized by (𝑁bc, 𝑁in) = (100, 200) for 𝑑 = 3
and 5 and (𝑁bc, 𝑁in) = (100, 1000) for 𝑑 = 7 and 9 for the boundary and interior of the domain. For generating the ELM random
hidden-layer coefficients we employ 𝑅𝑚 = 0.5 for 𝑑 = 3, 𝑅𝑚 = 0.05 for 𝑑 = 5 and 𝑑 = 7, and 𝑅𝑚 = 0.001 for 𝑑 = 9. Compared with
PINN, the current ELM method produces significantly more accurate results with a much smaller training time. For example, for
dimension 𝑑 = 5 the PINN method produces an error on the order of 10−3 ∼ 10−2 with a network training time close to 600 seconds.
In contrast, for this case the ELM method produces an error on the order of 10−10 ∼ 10−8 with a network training time around 3 or
4 seconds.

Table 17 compares the 𝑒𝑙∞ and 𝑒𝑙2 errors, as well as the network training time, obtained by PINN and ELM for the nonlinear
Poisson problem from Section 3.1.2 for dimensions ranging from 𝑑 = 3 to 𝑑 = 9. The PINN results correspond to a network
architecture [𝑑, 30, 30, 30, 30, 30, 30, 1] (tanh activation function), a penalty coefficient 𝑝bc = 0.99, a staircase learning rate schedule
starting with a learning rate 0.01 and decaying at a rate 0.8 every 1000 epochs, a set of random collocation points characterized by
(𝑁𝐜, 𝑁in) = (100, 3000) on the boundary and interior of the domain, and a total of 20 000 training epochs. The ELM results correspond
to a network architecture [𝑑, 2000, 1], and a set of random collocation points characterized by (𝑁bc, 𝑁in) = (100, 200) for dimensions
𝑑 = 3, 5 and 9 and (𝑁bc, 𝑁in) = (100, 100) for 𝑑 = 7 on the boundary and interior of the domain. We employ 𝑅𝑚 = 0.5 for 𝑑 = 3,
𝑅𝑚 = 0.05 for 𝑑 = 5 and 𝑑 = 7, and 𝑅𝑚 = 0.001 for 𝑑 = 9 for generating the ELM random hidden-layer coefficients. The results
here signify the considerably higher accuracy and less network training cost of ELM, when compared with PINN, for the nonlinear
27
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problem. For example, for dimension 𝑑 = 5 the PINN method achieves an error level on the order of 10−4 ∼ 10−3 with a training time
around 2500 seconds, while the ELM method achieves an error on the order of 10−9 ∼ 10−8 with a network training time around
110 seconds.

4. Concluding remarks

In this paper we have presented two methods for computing high-dimensional PDEs based on randomized neural networks.
These methods are motivated by the theoretical result established in the literature that the ELM-type randomized NNs can
effectively approximate high-dimensional functions, with a rate of convergence independent of the function dimension in the sense
of expectations.

The first method extends the ELM approach, and its local variant locELM, developed in a previous work for low-dimensional
problems to linear/nonlinear PDEs in high dimensions. We represent the solution field to the high-dimensional PDE problem by
a randomized NN, with its hidden-layer coefficients assigned to random values and fixed and its output-layer coefficients trained.
Enforcing the PDE problem on a set of collocation points randomly distributed on the interior/boundary of the domain leads to an
algebraic system of equations, which is linear for linear PDE problems and nonlinear for nonlinear PDE problems, about the ELM
trainable parameters. By seeking a least squares solution to this algebraic system, attained by either a linear or a nonlinear least
squares method, we can determine the values for the training parameters and complete the network training. ELM can be combined
with domain decomposition and local randomized NNs for solving high-dimensional PDEs, leading to a local variant of this method.
In this case, domain decomposition is performed along a maximum of two designated directions for a 𝑑-dimensional problem, and
he PDE problem, together with appropriate continuity conditions, is enforced on the random collocation points on each sub-domain
nd the shared sub-domain boundaries.

Compared with the ELM for low-dimensional problems, the difference of the method here for high-dimensional PDEs lies in at
east two aspects. First, the collocation points employed for training the ELM network for high-dimensional PDEs are randomly
enerated on the interior and the boundaries of the domain (or the sub-domains), and the number of interior collocation points has
ittle (essentially no) effect on the ELM accuracy in high dimensions. In contrast, for low-dimensional PDE problems the ELM neural
etwork is trained largely on grid-based collocation points (e.g. uniform grid points, or quadrature points), and the number of interior
ollocation points critically influences the ELM accuracy. Second, with the local variant of ELM (plus domain decomposition) for
olving high-dimensional PDEs, the domain is only decomposed along a maximum of  directions, where  is a prescribed small

integer ( = 2 in this paper), so as for the method to be feasible in high dimensions. This is an issue not present for low-dimensional
DEs.

The second method (ELM/A-TFC) combines the ELM approach and an approximate variant of TFC (A-TFC) for solving high-
imensional PDEs. While TFC provides a systematic approach to enforce the boundary/initial conditions, the number of terms
nvolved in TFC constrained expression grows exponentially as the problem dimension increases, rendering it infeasible for high-
imensional problems. By noting that the TFC constrained expression can be decomposed into a hierarchical form, we introduce
he A-TFC by retaining only the dominant terms in the constrained expression. A-TFC avoids the exponential growth in the
umber of terms of TFC and is feasible for high-dimensional PDEs. On the other hand, the A-TFC constrained expression does not
nconditionally satisfy the boundary/initial conditions for an arbitrary free function in the expression. However, the conditions
hat the free function in the A-TFC constrained expression needs to fulfill, in order to satisfy the boundary/initial conditions,
nvolve functions of simpler forms, which in some sense can be considered as an effective linearization of those involved in the
riginal boundary/initial conditions. A-TFC carries a level of benefit of TFC for enforcing the boundary/initial conditions and is
imultaneously suitable for high-dimensional problems. With the ELM/A-TFC method, we reformulate the high-dimensional PDE
roblem using the A-TFC constrained expression, and attain a transformed problem about the free function involved in the A-TFC
xpression. We represent this free function by ELM, and determine the ELM trainable parameters by the linear or nonlinear least
quares method in a fashion analogous to the first method. After the free function is determined by the ELM network, the solution
ield to the original high-dimensional PDE problem is then computed by the A-TFC constrained expression.

The two methods have been tested numerically using a number of linear/nonlinear stationary/dynamic PDEs for a range of
roblem dimensions. The method has also been compared with the PINN method. We have the following observations from these
umerical results:

• Both the ELM method and the ELM/A-TFC method produce accurate solutions to high-dimensional PDEs, in particular with
their errors reaching levels not far from the machine accuracy for relatively lower dimensions.

• Both methods exhibit a clear sense of convergence with respect to the number of trainable parameters and the number
of boundary collocation points. Their errors decrease rapidly (exponentially or nearly exponentially) for an initial range of
parameter values (before saturation).

• The number of interior collocation points appears to have a minimal (essentially no) effect on the accuracy of ELM and
ELM/A-TFC for high-dimensional PDEs.

• For a given PDE, the problem becomes more challenging to compute with increasing dimension, in the sense that the errors
of both methods in higher dimensions generally appear somewhat worse than in lower dimensions, at least with the range of
parameter values tested in this work.

• The error levels obtained by the ELM method and the ELM/A-TFC method are generally comparable, with ELM/A-TFC
appearing slightly better in lower dimensions. On the other hand, the ELM/A-TFC method generally involves a larger
28

computational effort and cost than ELM, due to the A-TFC constrained expression.
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• The current method exhibits a clear advantage compared with PINN for solving high-dimensional PDEs, and achieves a
significantly better accuracy under markedly smaller training time than the latter.

The simulation results signify that the ELM-based methods developed herein are effective for computational PDEs in high dimensions.
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